Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -51,10 +51,10 @@ def format_prompt(message, history):
|
|
51 |
prompt += f"<start_of_turn>user{message}<end_of_turn><start_of_turn>model"
|
52 |
#print(prompt)
|
53 |
return prompt
|
|
|
54 |
|
55 |
|
56 |
-
|
57 |
-
def chat_inf(system_prompt,prompt,history,client_choice,seed,temp,tokens,top_p,rep_p):
|
58 |
#token max=8192
|
59 |
hist_len=0
|
60 |
client=clients[int(client_choice)-1]
|
@@ -62,17 +62,19 @@ def chat_inf(system_prompt,prompt,history,client_choice,seed,temp,tokens,top_p,r
|
|
62 |
history = []
|
63 |
hist_len=0
|
64 |
if history:
|
65 |
-
for ea in history:
|
66 |
hist_len+=len(str(ea))
|
67 |
print(hist_len)
|
68 |
in_len=len(system_prompt+prompt)+hist_len
|
|
|
|
|
69 |
print("\n######### HIST "+str(in_len))
|
70 |
print("\n######### TOKENS "+str(tokens))
|
71 |
if (in_len+tokens) > 8000:
|
72 |
yield [(prompt,"Wait. I need to compress our Chat history...")]
|
73 |
-
|
74 |
yield [(prompt,"History has been compressed, processing request...")]
|
75 |
-
|
76 |
generate_kwargs = dict(
|
77 |
temperature=temp,
|
78 |
max_new_tokens=tokens,
|
@@ -82,7 +84,7 @@ def chat_inf(system_prompt,prompt,history,client_choice,seed,temp,tokens,top_p,r
|
|
82 |
seed=seed,
|
83 |
)
|
84 |
#formatted_prompt=prompt
|
85 |
-
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
|
86 |
print("\n######### PROMPT "+str(len(formatted_prompt)))
|
87 |
|
88 |
|
@@ -95,7 +97,8 @@ def chat_inf(system_prompt,prompt,history,client_choice,seed,temp,tokens,top_p,r
|
|
95 |
output += response.token.text
|
96 |
yield [(prompt,output)]
|
97 |
history.append((prompt,output))
|
98 |
-
|
|
|
99 |
|
100 |
def get_screenshot(chat: list,height=5000,width=600,chatblock=[],theme="light",wait=3000,header=True):
|
101 |
print(chatblock)
|
@@ -121,6 +124,7 @@ def check_rand(inp,val):
|
|
121 |
|
122 |
|
123 |
with gr.Blocks() as app:
|
|
|
124 |
gr.HTML("""<center><h1 style='font-size:xx-large;'>Google Gemma Models</h1><br><h3>running on Huggingface Inference Client</h3><br><h7>EXPERIMENTAL""")
|
125 |
chat_b = gr.Chatbot(height=500)
|
126 |
with gr.Group():
|
@@ -145,6 +149,7 @@ with gr.Blocks() as app:
|
|
145 |
temp=gr.Slider(label="Temperature",step=0.01, minimum=0.01, maximum=1.0, value=0.9)
|
146 |
top_p=gr.Slider(label="Top-P",step=0.01, minimum=0.01, maximum=1.0, value=0.9)
|
147 |
rep_p=gr.Slider(label="Repetition Penalty",step=0.1, minimum=0.1, maximum=2.0, value=1.0)
|
|
|
148 |
with gr.Accordion(label="Screenshot",open=False):
|
149 |
with gr.Row():
|
150 |
with gr.Column(scale=3):
|
@@ -161,8 +166,10 @@ with gr.Blocks() as app:
|
|
161 |
|
162 |
|
163 |
im_go=im_btn.click(get_screenshot,[chat_b,im_height,im_width,chatblock,theme,wait_time],img)
|
164 |
-
chat_sub=inp.submit(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,client_choice,seed,temp,tokens,top_p,rep_p],chat_b)
|
165 |
-
|
|
|
|
|
166 |
stop_btn.click(None,None,None,cancels=[go,im_go,chat_sub])
|
167 |
clear_btn.click(clear_fn,None,[inp,sys_inp,chat_b])
|
168 |
app.queue(default_concurrency_limit=10).launch()
|
|
|
51 |
prompt += f"<start_of_turn>user{message}<end_of_turn><start_of_turn>model"
|
52 |
#print(prompt)
|
53 |
return prompt
|
54 |
+
result = []
|
55 |
|
56 |
|
57 |
+
def chat_inf(system_prompt,prompt,history,memory,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem):
|
|
|
58 |
#token max=8192
|
59 |
hist_len=0
|
60 |
client=clients[int(client_choice)-1]
|
|
|
62 |
history = []
|
63 |
hist_len=0
|
64 |
if history:
|
65 |
+
for ea in history[0-chat_mem:]:
|
66 |
hist_len+=len(str(ea))
|
67 |
print(hist_len)
|
68 |
in_len=len(system_prompt+prompt)+hist_len
|
69 |
+
|
70 |
+
|
71 |
print("\n######### HIST "+str(in_len))
|
72 |
print("\n######### TOKENS "+str(tokens))
|
73 |
if (in_len+tokens) > 8000:
|
74 |
yield [(prompt,"Wait. I need to compress our Chat history...")]
|
75 |
+
hist=compress_history(history[-5:],client_choice,seed,temp,tokens,top_p,rep_p)
|
76 |
yield [(prompt,"History has been compressed, processing request...")]
|
77 |
+
history = [(prompt,hist)]
|
78 |
generate_kwargs = dict(
|
79 |
temperature=temp,
|
80 |
max_new_tokens=tokens,
|
|
|
84 |
seed=seed,
|
85 |
)
|
86 |
#formatted_prompt=prompt
|
87 |
+
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history[0-chat_mem:])
|
88 |
print("\n######### PROMPT "+str(len(formatted_prompt)))
|
89 |
|
90 |
|
|
|
97 |
output += response.token.text
|
98 |
yield [(prompt,output)]
|
99 |
history.append((prompt,output))
|
100 |
+
memory=history
|
101 |
+
yield history,memory
|
102 |
|
103 |
def get_screenshot(chat: list,height=5000,width=600,chatblock=[],theme="light",wait=3000,header=True):
|
104 |
print(chatblock)
|
|
|
124 |
|
125 |
|
126 |
with gr.Blocks() as app:
|
127 |
+
memory=gr.State()
|
128 |
gr.HTML("""<center><h1 style='font-size:xx-large;'>Google Gemma Models</h1><br><h3>running on Huggingface Inference Client</h3><br><h7>EXPERIMENTAL""")
|
129 |
chat_b = gr.Chatbot(height=500)
|
130 |
with gr.Group():
|
|
|
149 |
temp=gr.Slider(label="Temperature",step=0.01, minimum=0.01, maximum=1.0, value=0.9)
|
150 |
top_p=gr.Slider(label="Top-P",step=0.01, minimum=0.01, maximum=1.0, value=0.9)
|
151 |
rep_p=gr.Slider(label="Repetition Penalty",step=0.1, minimum=0.1, maximum=2.0, value=1.0)
|
152 |
+
chat_mem=gr.Number(label="Chat Memory", info="Number of previous chats to retain",value=5)
|
153 |
with gr.Accordion(label="Screenshot",open=False):
|
154 |
with gr.Row():
|
155 |
with gr.Column(scale=3):
|
|
|
166 |
|
167 |
|
168 |
im_go=im_btn.click(get_screenshot,[chat_b,im_height,im_width,chatblock,theme,wait_time],img)
|
169 |
+
chat_sub=inp.submit(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem],chat_b)
|
170 |
+
|
171 |
+
go=btn.click(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,memory,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem],[chat_b,memory])
|
172 |
+
|
173 |
stop_btn.click(None,None,None,cancels=[go,im_go,chat_sub])
|
174 |
clear_btn.click(clear_fn,None,[inp,sys_inp,chat_b])
|
175 |
app.queue(default_concurrency_limit=10).launch()
|