Spaces:
				
			
			
	
			
			
		Paused
		
	
	
	
			
			
	
	
	
	
		
		
		Paused
		
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -1,154 +1,159 @@ | |
| 1 | 
             
            import gradio as gr
         | 
| 2 | 
             
            import numpy as np
         | 
| 3 | 
             
            import random
         | 
| 4 | 
            -
             | 
| 5 | 
            -
            # import spaces #[uncomment to use ZeroGPU]
         | 
| 6 | 
            -
            from diffusers import DiffusionPipeline
         | 
| 7 | 
             
            import torch
         | 
| 8 | 
            -
             | 
| 9 | 
            -
             | 
| 10 | 
            -
             | 
| 11 | 
            -
             | 
| 12 | 
            -
             | 
| 13 | 
            -
             | 
| 14 | 
            -
             | 
| 15 | 
            -
             | 
| 16 | 
            -
             | 
| 17 | 
            -
             | 
| 18 | 
            -
             | 
| 19 | 
            -
             | 
| 20 | 
             
            MAX_SEED = np.iinfo(np.int32).max
         | 
| 21 | 
             
            MAX_IMAGE_SIZE = 1024
         | 
| 22 | 
            -
             | 
| 23 | 
            -
             | 
| 24 | 
            -
             | 
| 25 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 26 | 
             
                prompt,
         | 
| 27 | 
            -
                 | 
| 28 | 
             
                seed,
         | 
| 29 | 
             
                randomize_seed,
         | 
| 30 | 
             
                width,
         | 
| 31 | 
             
                height,
         | 
| 32 | 
            -
                guidance_scale,
         | 
| 33 | 
            -
                num_inference_steps,
         | 
| 34 | 
             
                progress=gr.Progress(track_tqdm=True),
         | 
| 35 | 
             
            ):
         | 
| 36 | 
             
                if randomize_seed:
         | 
| 37 | 
             
                    seed = random.randint(0, MAX_SEED)
         | 
| 38 | 
            -
             | 
| 39 | 
            -
                 | 
| 40 | 
            -
             | 
| 41 | 
            -
                 | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 42 | 
             
                    prompt=prompt,
         | 
| 43 | 
            -
                     | 
| 44 | 
            -
                    guidance_scale=guidance_scale,
         | 
| 45 | 
            -
                    num_inference_steps=num_inference_steps,
         | 
| 46 | 
             
                    width=width,
         | 
| 47 | 
             
                    height=height,
         | 
| 48 | 
            -
                     | 
| 49 | 
            -
                ) | 
| 50 | 
            -
             | 
| 51 | 
            -
                return  | 
| 52 | 
            -
             | 
| 53 | 
            -
             | 
| 54 | 
            -
            examples = [
         | 
| 55 | 
            -
                "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
         | 
| 56 | 
            -
                "An astronaut riding a green horse",
         | 
| 57 | 
            -
                "A delicious ceviche cheesecake slice",
         | 
| 58 | 
            -
            ]
         | 
| 59 |  | 
|  | |
| 60 | 
             
            css = """
         | 
| 61 | 
             
            #col-container {
         | 
| 62 | 
             
                margin: 0 auto;
         | 
| 63 | 
            -
                max-width:  | 
| 64 | 
             
            }
         | 
| 65 | 
             
            """
         | 
| 66 |  | 
|  | |
| 67 | 
             
            with gr.Blocks(css=css) as demo:
         | 
| 68 | 
             
                with gr.Column(elem_id="col-container"):
         | 
| 69 | 
            -
                    gr.Markdown(" | 
| 70 | 
            -
             | 
| 71 | 
             
                    with gr.Row():
         | 
| 72 | 
            -
                         | 
| 73 | 
            -
                             | 
| 74 | 
            -
             | 
| 75 | 
            -
             | 
| 76 | 
            -
                             | 
| 77 | 
            -
                             | 
| 78 | 
            -
             | 
| 79 | 
            -
             | 
| 80 | 
            -
             | 
| 81 | 
            -
             | 
| 82 | 
            -
             | 
| 83 | 
            -
             | 
|  | |
|  | |
|  | |
| 84 | 
             
                    with gr.Accordion("Advanced Settings", open=False):
         | 
| 85 | 
            -
                        negative_prompt = gr.Text(
         | 
| 86 | 
            -
                            label="Negative prompt",
         | 
| 87 | 
            -
                            max_lines=1,
         | 
| 88 | 
            -
                            placeholder="Enter a negative prompt",
         | 
| 89 | 
            -
                            visible=False,
         | 
| 90 | 
            -
                        )
         | 
| 91 | 
            -
             | 
| 92 | 
             
                        seed = gr.Slider(
         | 
| 93 | 
             
                            label="Seed",
         | 
| 94 | 
             
                            minimum=0,
         | 
| 95 | 
             
                            maximum=MAX_SEED,
         | 
| 96 | 
             
                            step=1,
         | 
| 97 | 
            -
                            value= | 
| 98 | 
             
                        )
         | 
| 99 | 
            -
             | 
| 100 | 
             
                        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
         | 
| 101 | 
            -
             | 
| 102 | 
             
                        with gr.Row():
         | 
| 103 | 
             
                            width = gr.Slider(
         | 
| 104 | 
             
                                label="Width",
         | 
| 105 | 
             
                                minimum=256,
         | 
| 106 | 
             
                                maximum=MAX_IMAGE_SIZE,
         | 
| 107 | 
             
                                step=32,
         | 
| 108 | 
            -
                                value= | 
| 109 | 
             
                            )
         | 
| 110 | 
            -
             | 
| 111 | 
             
                            height = gr.Slider(
         | 
| 112 | 
             
                                label="Height",
         | 
| 113 | 
             
                                minimum=256,
         | 
| 114 | 
             
                                maximum=MAX_IMAGE_SIZE,
         | 
| 115 | 
             
                                step=32,
         | 
| 116 | 
            -
                                value= | 
| 117 | 
            -
                            )
         | 
| 118 | 
            -
             | 
| 119 | 
            -
                        with gr.Row():
         | 
| 120 | 
            -
                            guidance_scale = gr.Slider(
         | 
| 121 | 
            -
                                label="Guidance scale",
         | 
| 122 | 
            -
                                minimum=0.0,
         | 
| 123 | 
            -
                                maximum=10.0,
         | 
| 124 | 
            -
                                step=0.1,
         | 
| 125 | 
            -
                                value=0.0,  # Replace with defaults that work for your model
         | 
| 126 | 
             
                            )
         | 
| 127 | 
            -
             | 
| 128 | 
            -
             | 
| 129 | 
            -
             | 
| 130 | 
            -
             | 
| 131 | 
            -
             | 
| 132 | 
            -
             | 
| 133 | 
            -
             | 
| 134 | 
            -
             | 
| 135 | 
            -
             | 
| 136 | 
            -
             | 
| 137 | 
            -
             | 
| 138 | 
            -
                    triggers=[run_button.click, prompt.submit],
         | 
| 139 | 
            -
                    fn=infer,
         | 
| 140 | 
             
                    inputs=[
         | 
|  | |
| 141 | 
             
                        prompt,
         | 
| 142 | 
            -
                         | 
| 143 | 
             
                        seed,
         | 
| 144 | 
             
                        randomize_seed,
         | 
| 145 | 
             
                        width,
         | 
| 146 | 
             
                        height,
         | 
| 147 | 
            -
                        guidance_scale,
         | 
| 148 | 
            -
                        num_inference_steps,
         | 
| 149 | 
             
                    ],
         | 
| 150 | 
             
                    outputs=[result, seed],
         | 
| 151 | 
             
                )
         | 
| 152 |  | 
| 153 | 
             
            if __name__ == "__main__":
         | 
| 154 | 
            -
                demo.launch()
         | 
|  | |
| 1 | 
             
            import gradio as gr
         | 
| 2 | 
             
            import numpy as np
         | 
| 3 | 
             
            import random
         | 
|  | |
|  | |
|  | |
| 4 | 
             
            import torch
         | 
| 5 | 
            +
            from PIL import Image
         | 
| 6 | 
            +
            import os
         | 
| 7 | 
            +
            from pipeline_flux_ipa import FluxPipeline
         | 
| 8 | 
            +
            from transformer_flux import FluxTransformer2DModel
         | 
| 9 | 
            +
            from attention_processor import IPAFluxAttnProcessor2_0
         | 
| 10 | 
            +
            from transformers import AutoProcessor, SiglipVisionModel
         | 
| 11 | 
            +
            from infer_flux_ipa_siglip import MLPProjModel, IPAdapter
         | 
| 12 | 
            +
            from huggingface_hub import hf_hub_download
         | 
| 13 | 
            +
            import spaces
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            # Constants
         | 
|  | |
| 16 | 
             
            MAX_SEED = np.iinfo(np.int32).max
         | 
| 17 | 
             
            MAX_IMAGE_SIZE = 1024
         | 
| 18 | 
            +
            DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            image_encoder_path = "google/siglip-so400m-patch14-384"
         | 
| 21 | 
            +
            ipadapter_path = hf_hub_download(repo_id="InstantX/FLUX.1-dev-IP-Adapter", filename="ip-adapter.bin")
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            transformer = FluxTransformer2DModel.from_pretrained(
         | 
| 24 | 
            +
                "black-forest-labs/FLUX.1-dev", 
         | 
| 25 | 
            +
                subfolder="transformer", 
         | 
| 26 | 
            +
                torch_dtype=torch.bfloat16
         | 
| 27 | 
            +
            )
         | 
| 28 | 
            +
            pipe = FluxPipeline.from_pretrained(
         | 
| 29 | 
            +
                "black-forest-labs/FLUX.1-dev", 
         | 
| 30 | 
            +
                transformer=transformer, 
         | 
| 31 | 
            +
                torch_dtype=torch.bfloat16
         | 
| 32 | 
            +
            )
         | 
| 33 | 
            +
            ip_model = IPAdapter(pipe, image_encoder_path, ipadapter_path, device="cuda", num_tokens=128)
         | 
| 34 | 
            +
             | 
| 35 | 
            +
             | 
| 36 | 
            +
            def resize_img(image, max_size=1024):
         | 
| 37 | 
            +
                width, height = image.size
         | 
| 38 | 
            +
                scaling_factor = min(max_size / width, max_size / height)
         | 
| 39 | 
            +
                new_width = int(width * scaling_factor)
         | 
| 40 | 
            +
                new_height = int(height * scaling_factor)
         | 
| 41 | 
            +
                return image.resize((new_width, new_height), Image.LANCZOS)
         | 
| 42 | 
            +
             | 
| 43 | 
            +
            @spaces.GPU
         | 
| 44 | 
            +
            def process_image(
         | 
| 45 | 
            +
                image,
         | 
| 46 | 
             
                prompt,
         | 
| 47 | 
            +
                scale,
         | 
| 48 | 
             
                seed,
         | 
| 49 | 
             
                randomize_seed,
         | 
| 50 | 
             
                width,
         | 
| 51 | 
             
                height,
         | 
|  | |
|  | |
| 52 | 
             
                progress=gr.Progress(track_tqdm=True),
         | 
| 53 | 
             
            ):
         | 
| 54 | 
             
                if randomize_seed:
         | 
| 55 | 
             
                    seed = random.randint(0, MAX_SEED)
         | 
| 56 | 
            +
                
         | 
| 57 | 
            +
                if image is None:
         | 
| 58 | 
            +
                    return None, seed
         | 
| 59 | 
            +
                
         | 
| 60 | 
            +
                # Convert to PIL Image if needed
         | 
| 61 | 
            +
                if not isinstance(image, Image.Image):
         | 
| 62 | 
            +
                    image = Image.fromarray(image)
         | 
| 63 | 
            +
                
         | 
| 64 | 
            +
                # Resize image
         | 
| 65 | 
            +
                image = resize_img(image)
         | 
| 66 | 
            +
                
         | 
| 67 | 
            +
                # Generate the image
         | 
| 68 | 
            +
                result = ip_model.generate(
         | 
| 69 | 
            +
                    pil_image=image,
         | 
| 70 | 
             
                    prompt=prompt,
         | 
| 71 | 
            +
                    scale=scale,
         | 
|  | |
|  | |
| 72 | 
             
                    width=width,
         | 
| 73 | 
             
                    height=height,
         | 
| 74 | 
            +
                    seed=seed
         | 
| 75 | 
            +
                )
         | 
| 76 | 
            +
                
         | 
| 77 | 
            +
                return result[0], seed
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 78 |  | 
| 79 | 
            +
            # UI CSS
         | 
| 80 | 
             
            css = """
         | 
| 81 | 
             
            #col-container {
         | 
| 82 | 
             
                margin: 0 auto;
         | 
| 83 | 
            +
                max-width: 960px;
         | 
| 84 | 
             
            }
         | 
| 85 | 
             
            """
         | 
| 86 |  | 
| 87 | 
            +
            # Create the Gradio interface
         | 
| 88 | 
             
            with gr.Blocks(css=css) as demo:
         | 
| 89 | 
             
                with gr.Column(elem_id="col-container"):
         | 
| 90 | 
            +
                    gr.Markdown("# Image Processing Model")
         | 
| 91 | 
            +
                    
         | 
| 92 | 
             
                    with gr.Row():
         | 
| 93 | 
            +
                        with gr.Column():
         | 
| 94 | 
            +
                            input_image = gr.Image(
         | 
| 95 | 
            +
                                label="Input Image",
         | 
| 96 | 
            +
                                type="pil"
         | 
| 97 | 
            +
                            )
         | 
| 98 | 
            +
                            prompt = gr.Text(
         | 
| 99 | 
            +
                                label="Prompt",
         | 
| 100 | 
            +
                                max_lines=1,
         | 
| 101 | 
            +
                                placeholder="Enter your prompt",
         | 
| 102 | 
            +
                            )
         | 
| 103 | 
            +
                            run_button = gr.Button("Process", variant="primary")
         | 
| 104 | 
            +
                        
         | 
| 105 | 
            +
                        with gr.Column():
         | 
| 106 | 
            +
                            result = gr.Image(label="Result")
         | 
| 107 | 
            +
                    
         | 
| 108 | 
             
                    with gr.Accordion("Advanced Settings", open=False):
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 109 | 
             
                        seed = gr.Slider(
         | 
| 110 | 
             
                            label="Seed",
         | 
| 111 | 
             
                            minimum=0,
         | 
| 112 | 
             
                            maximum=MAX_SEED,
         | 
| 113 | 
             
                            step=1,
         | 
| 114 | 
            +
                            value=42,
         | 
| 115 | 
             
                        )
         | 
| 116 | 
            +
                        
         | 
| 117 | 
             
                        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
         | 
| 118 | 
            +
                        
         | 
| 119 | 
             
                        with gr.Row():
         | 
| 120 | 
             
                            width = gr.Slider(
         | 
| 121 | 
             
                                label="Width",
         | 
| 122 | 
             
                                minimum=256,
         | 
| 123 | 
             
                                maximum=MAX_IMAGE_SIZE,
         | 
| 124 | 
             
                                step=32,
         | 
| 125 | 
            +
                                value=960,
         | 
| 126 | 
             
                            )
         | 
| 127 | 
            +
                            
         | 
| 128 | 
             
                            height = gr.Slider(
         | 
| 129 | 
             
                                label="Height",
         | 
| 130 | 
             
                                minimum=256,
         | 
| 131 | 
             
                                maximum=MAX_IMAGE_SIZE,
         | 
| 132 | 
             
                                step=32,
         | 
| 133 | 
            +
                                value=1280,
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 134 | 
             
                            )
         | 
| 135 | 
            +
                        
         | 
| 136 | 
            +
                        scale = gr.Slider(
         | 
| 137 | 
            +
                            label="Scale",
         | 
| 138 | 
            +
                            minimum=0.0,
         | 
| 139 | 
            +
                            maximum=1.0,
         | 
| 140 | 
            +
                            step=0.1,
         | 
| 141 | 
            +
                            value=0.7,
         | 
| 142 | 
            +
                        )
         | 
| 143 | 
            +
                
         | 
| 144 | 
            +
                run_button.click(
         | 
| 145 | 
            +
                    fn=process_image,
         | 
|  | |
|  | |
| 146 | 
             
                    inputs=[
         | 
| 147 | 
            +
                        input_image,
         | 
| 148 | 
             
                        prompt,
         | 
| 149 | 
            +
                        scale,
         | 
| 150 | 
             
                        seed,
         | 
| 151 | 
             
                        randomize_seed,
         | 
| 152 | 
             
                        width,
         | 
| 153 | 
             
                        height,
         | 
|  | |
|  | |
| 154 | 
             
                    ],
         | 
| 155 | 
             
                    outputs=[result, seed],
         | 
| 156 | 
             
                )
         | 
| 157 |  | 
| 158 | 
             
            if __name__ == "__main__":
         | 
| 159 | 
            +
                demo.launch()
         |