import gradio as gr from openai import OpenAI import os # Retrieve the access token from the environment variable ACCESS_TOKEN = os.getenv("HF_TOKEN") print("Access token loaded.") # Initialize the OpenAI client with the Hugging Face Inference API endpoint client = OpenAI( base_url="https://api-inference.huggingface.co/v1/", api_key=ACCESS_TOKEN, ) print("OpenAI client initialized.") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, frequency_penalty, seed, custom_model, selected_model ): """ Handles the chatbot response generation. """ print(f"Received message: {message}") print(f"History: {history}") print(f"System message: {system_message}") print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}") print(f"Custom model: {custom_model}") print(f"Selected model: {selected_model}") # Convert seed to None if -1 (meaning random) if seed == -1: seed = None # Construct the messages array required by the API messages = [{"role": "system", "content": system_message}] # Add conversation history to the context for val in history: user_part = val[0] assistant_part = val[1] if user_part: messages.append({"role": "user", "content": user_part}) print(f"Added user message to context: {user_part}") if assistant_part: messages.append({"role": "assistant", "content": assistant_part}) print(f"Added assistant message to context: {assistant_part}") # Append the latest user message messages.append({"role": "user", "content": message}) # Determine which model to use model_to_use = ( custom_model.strip() if custom_model.strip() != "" else selected_model.strip() ) print(f"Model selected for inference: {model_to_use}") # Start with an empty string to build the response as tokens stream in response = "" print("Sending request to OpenAI API.") # Make the streaming request to the HF Inference API via openai-like client for message_chunk in client.chat.completions.create( model=model_to_use, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, frequency_penalty=frequency_penalty, seed=seed, messages=messages, ): # Extract the token text from the response chunk token_text = message_chunk.choices[0].delta.content print(f"Received token: {token_text}") response += token_text yield response print("Completed response generation.") # Predefined list of placeholder models for the Featured Models accordion models_list = [ "meta-llama/Llama-3.3-70B-Instruct", "bigscience/bloom-7b1", "EleutherAI/gpt-neo-2.7B", "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5", "HuggingFace/distilgpt2", ] # Function to filter models based on search input def filter_models(search_term): filtered_models = [m for m in models_list if search_term.lower() in m.lower()] return gr.update(choices=filtered_models) # Create a Chatbot component with a specified height chatbot = gr.Chatbot(height=600) print("Chatbot interface created.") # Create the Gradio ChatInterface # Added "Featured Models" accordion and integrated filtering demo = gr.Interface( fn=respond, inputs=[ gr.Textbox(value="", label="System message"), gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"), gr.Slider( minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty" ), gr.Slider( minimum=-1, maximum=65535, # Arbitrary upper limit for demonstration value=-1, step=1, label="Seed (-1 for random)" ), gr.Textbox( value="", label="Custom Model", info="(Optional) Provide a custom Hugging Face model path. This will override the default model if not empty.", ), # Add Featured Models accordion gr.Accordion("Featured Models", open=True, children=[ gr.Textbox(label="Filter Models", placeholder="Search for a featured model...", lines=1).change( filter_models, inputs=["value"], outputs="choices" ), gr.Radio( label="Select a featured model", value="meta-llama/Llama-3.3-70B-Instruct", choices=models_list, elem_id="model-radio", ) ]), ], outputs=gr.Chatbot(height=600), theme="Nymbo/Nymbo_Theme", ) print("Gradio interface initialized.") if __name__ == "__main__": print("Launching the demo application.") demo.launch()