Nymbo's picture
Update app.py
e7683ca verified
raw
history blame
10.2 kB
import gradio as gr
from openai import OpenAI
import os
# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
custom_model,
selected_featured_model
):
"""
This function handles the chatbot response. It takes in:
- message: the user's new message
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg)
- system_message: the system prompt
- max_tokens: the maximum number of tokens to generate in the response
- temperature: sampling temperature
- top_p: top-p (nucleus) sampling
- frequency_penalty: penalize repeated tokens in the output
- seed: a fixed seed for reproducibility; -1 will mean 'random'
- custom_model: the user-provided custom model name (if any)
- selected_featured_model: the model selected from featured models
"""
print(f"Received message: {message}")
print(f"History: {history}")
print(f"System message: {system_message}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
print(f"Custom model: {custom_model}")
print(f"Selected featured model: {selected_featured_model}")
# Convert seed to None if -1 (meaning random)
if seed == -1:
seed = None
# Determine which model to use: either custom_model or selected featured model
if custom_model.strip() != "":
model_to_use = custom_model.strip()
print(f"Using Custom Model: {model_to_use}")
else:
model_to_use = selected_featured_model
print(f"Using Featured Model: {model_to_use}")
# Construct the messages array required by the API
messages = [{"role": "system", "content": system_message}]
# Add conversation history to the context
for val in history:
user_part = val[0]
assistant_part = val[1]
if user_part:
messages.append({"role": "user", "content": user_part})
print(f"Added user message to context: {user_part}")
if assistant_part:
messages.append({"role": "assistant", "content": assistant_part})
print(f"Added assistant message to context: {assistant_part}")
# Append the latest user message
messages.append({"role": "user", "content": message})
# Start with an empty string to build the response as tokens stream in
response = ""
print("Sending request to OpenAI API.")
try:
# Make the streaming request to the HF Inference API via openai-like client
for message_chunk in client.chat.completions.create(
model=model_to_use, # Use either the user-provided custom model or selected featured model
max_tokens=max_tokens,
stream=True, # Stream the response
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty,
seed=seed,
messages=messages,
):
# Extract the token text from the response chunk
token_text = message_chunk.choices[0].delta.content
print(f"Received token: {token_text}")
response += token_text
# Yield the partial response to Gradio so it can display in real-time
yield response
except Exception as e:
print(f"Error during API call: {e}")
yield f"An error occurred: {e}"
print("Completed response generation.")
# Create a Chatbot component with a specified height
chatbot = gr.Chatbot(height=600)
print("Chatbot interface created.")
# Placeholder featured models list
FEATURED_MODELS_LIST = [
"gpt-3.5-turbo",
"gpt-4",
"bert-base-uncased",
"facebook/blenderbot-3B",
"EleutherAI/gpt-neo-2.7B",
"google/flan-t5-xxl",
"microsoft/DialoGPT-large",
"Salesforce/codegen-16B-multi",
"stabilityai/stablelm-tuned-alpha-7b",
"bigscience/bloom-560m",
]
# Define the Gradio Blocks interface
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
gr.Markdown("# Serverless-TextGen-Hub 📝🤖")
gr.Markdown(
"""
Welcome to the **Serverless-TextGen-Hub**! Chat with your favorite models seamlessly.
"""
)
with gr.Row():
# Chatbot component
chatbot_component = gr.Chatbot(height=600)
with gr.Row():
# System message input
system_message = gr.Textbox(
value="You are a helpful assistant.",
label="System Message",
placeholder="Enter system message here...",
lines=2,
)
with gr.Row():
# User message input
user_message = gr.Textbox(
label="Your Message",
placeholder="Type your message here...",
lines=2,
)
# Run button
run_button = gr.Button("Send", variant="primary")
with gr.Row():
# Additional settings
with gr.Column(scale=1):
max_tokens = gr.Slider(
minimum=1,
maximum=4096,
value=512,
step=1,
label="Max New Tokens",
)
temperature = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature",
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-P",
)
frequency_penalty = gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Frequency Penalty",
)
seed = gr.Slider(
minimum=-1,
maximum=65535, # Arbitrary upper limit for demonstration
value=-1,
step=1,
label="Seed (-1 for random)",
)
custom_model = gr.Textbox(
value="",
label="Custom Model",
info="(Optional) Provide a custom Hugging Face model path. This will override the selected featured model if not empty.",
placeholder="e.g., meta-llama/Llama-3.3-70B-Instruct",
)
with gr.Accordion("Featured Models", open=True):
with gr.Column():
model_search = gr.Textbox(
label="Filter Models",
placeholder="Search for a featured model...",
lines=1,
)
featured_model = gr.Radio(
label="Select a model below",
value=FEATURED_MODELS_LIST[0],
choices=FEATURED_MODELS_LIST,
interactive=True,
)
# Function to filter featured models based on search input
def filter_featured_models(search_term):
if not search_term:
return gr.update(choices=FEATURED_MODELS_LIST, value=FEATURED_MODELS_LIST[0])
filtered = [model for model in FEATURED_MODELS_LIST if search_term.lower() in model.lower()]
if not filtered:
return gr.update(choices=[], value=None)
return gr.update(choices=filtered, value=filtered[0])
# Update featured_model choices based on search
model_search.change(
fn=filter_featured_models,
inputs=model_search,
outputs=featured_model,
)
# Function to handle the chatbot response
def handle_response(message, history, system_msg, max_tok, temp, tp, freq_pen, sd, custom_mod, selected_feat_mod):
# Append user message to history
history = history or []
history.append((message, None))
# Generate response using the respond function
response = respond(
message=message,
history=history,
system_message=system_msg,
max_tokens=max_tok,
temperature=temp,
top_p=tp,
frequency_penalty=freq_pen,
seed=sd,
custom_model=custom_mod,
selected_featured_model=selected_feat_mod,
)
return response, history + [(message, response)]
# Handle button click
run_button.click(
fn=handle_response,
inputs=[
user_message,
chatbot_component, # history
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
custom_model,
featured_model,
],
outputs=[
chatbot_component,
chatbot_component, # Updated history
],
)
# Allow pressing Enter to send the message
user_message.submit(
fn=handle_response,
inputs=[
user_message,
chatbot_component, # history
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
custom_model,
featured_model,
],
outputs=[
chatbot_component,
chatbot_component, # Updated history
],
)
# Custom CSS to enhance the UI
demo.load(lambda: None, None, None, _js="""
() => {
const style = document.createElement('style');
style.innerHTML = `
footer {visibility: hidden !important;}
.gradio-container {background-color: #f9f9f9;}
`;
document.head.appendChild(style);
}
""")
print("Launching Gradio interface...") # Debug log
# Launch the Gradio interface without showing the API or sharing externally
demo.launch(show_api=False, share=False)