Spaces:
Running
Running
import gradio as gr | |
from openai import OpenAI | |
import os | |
# Retrieve the access token from the environment variable | |
ACCESS_TOKEN = os.getenv("HF_TOKEN") | |
print("Access token loaded.") | |
# Initialize the OpenAI client with the Hugging Face Inference API endpoint | |
client = OpenAI( | |
base_url="https://api-inference.huggingface.co/v1/", | |
api_key=ACCESS_TOKEN, | |
) | |
print("OpenAI client initialized.") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
frequency_penalty, | |
seed, | |
custom_model, | |
selected_featured_model | |
): | |
""" | |
This function handles the chatbot response. It takes in: | |
- message: the user's new message | |
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg) | |
- system_message: the system prompt | |
- max_tokens: the maximum number of tokens to generate in the response | |
- temperature: sampling temperature | |
- top_p: top-p (nucleus) sampling | |
- frequency_penalty: penalize repeated tokens in the output | |
- seed: a fixed seed for reproducibility; -1 will mean 'random' | |
- custom_model: the user-provided custom model name (if any) | |
- selected_featured_model: the model selected from featured models | |
""" | |
print(f"Received message: {message}") | |
print(f"History: {history}") | |
print(f"System message: {system_message}") | |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") | |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}") | |
print(f"Custom model: {custom_model}") | |
print(f"Selected featured model: {selected_featured_model}") | |
# Convert seed to None if -1 (meaning random) | |
if seed == -1: | |
seed = None | |
# Determine which model to use: either custom_model or selected featured model | |
if custom_model.strip() != "": | |
model_to_use = custom_model.strip() | |
print(f"Using Custom Model: {model_to_use}") | |
else: | |
model_to_use = selected_featured_model | |
print(f"Using Featured Model: {model_to_use}") | |
# Construct the messages array required by the API | |
messages = [{"role": "system", "content": system_message}] | |
# Add conversation history to the context | |
for val in history: | |
user_part = val[0] | |
assistant_part = val[1] | |
if user_part: | |
messages.append({"role": "user", "content": user_part}) | |
print(f"Added user message to context: {user_part}") | |
if assistant_part: | |
messages.append({"role": "assistant", "content": assistant_part}) | |
print(f"Added assistant message to context: {assistant_part}") | |
# Append the latest user message | |
messages.append({"role": "user", "content": message}) | |
# Start with an empty string to build the response as tokens stream in | |
response = "" | |
print("Sending request to OpenAI API.") | |
try: | |
# Make the streaming request to the HF Inference API via openai-like client | |
for message_chunk in client.chat.completions.create( | |
model=model_to_use, # Use either the user-provided custom model or selected featured model | |
max_tokens=max_tokens, | |
stream=True, # Stream the response | |
temperature=temperature, | |
top_p=top_p, | |
frequency_penalty=frequency_penalty, | |
seed=seed, | |
messages=messages, | |
): | |
# Extract the token text from the response chunk | |
token_text = message_chunk.choices[0].delta.content | |
print(f"Received token: {token_text}") | |
response += token_text | |
# Yield the partial response to Gradio so it can display in real-time | |
yield response | |
except Exception as e: | |
print(f"Error during API call: {e}") | |
yield f"An error occurred: {e}" | |
print("Completed response generation.") | |
# Create a Chatbot component with a specified height | |
chatbot = gr.Chatbot(height=600) | |
print("Chatbot interface created.") | |
# Placeholder featured models list | |
FEATURED_MODELS_LIST = [ | |
"gpt-3.5-turbo", | |
"gpt-4", | |
"bert-base-uncased", | |
"facebook/blenderbot-3B", | |
"EleutherAI/gpt-neo-2.7B", | |
"google/flan-t5-xxl", | |
"microsoft/DialoGPT-large", | |
"Salesforce/codegen-16B-multi", | |
"stabilityai/stablelm-tuned-alpha-7b", | |
"bigscience/bloom-560m", | |
] | |
# Define the Gradio Blocks interface | |
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo: | |
gr.Markdown("# Serverless-TextGen-Hub 📝🤖") | |
gr.Markdown( | |
""" | |
Welcome to the **Serverless-TextGen-Hub**! Chat with your favorite models seamlessly. | |
""" | |
) | |
with gr.Row(): | |
# Chatbot component | |
chatbot_component = gr.Chatbot(height=600) | |
with gr.Row(): | |
# System message input | |
system_message = gr.Textbox( | |
value="You are a helpful assistant.", | |
label="System Message", | |
placeholder="Enter system message here...", | |
lines=2, | |
) | |
with gr.Row(): | |
# User message input | |
user_message = gr.Textbox( | |
label="Your Message", | |
placeholder="Type your message here...", | |
lines=2, | |
) | |
# Run button | |
run_button = gr.Button("Send", variant="primary") | |
with gr.Row(): | |
# Additional settings | |
with gr.Column(scale=1): | |
max_tokens = gr.Slider( | |
minimum=1, | |
maximum=4096, | |
value=512, | |
step=1, | |
label="Max New Tokens", | |
) | |
temperature = gr.Slider( | |
minimum=0.1, | |
maximum=4.0, | |
value=0.7, | |
step=0.1, | |
label="Temperature", | |
) | |
top_p = gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-P", | |
) | |
frequency_penalty = gr.Slider( | |
minimum=-2.0, | |
maximum=2.0, | |
value=0.0, | |
step=0.1, | |
label="Frequency Penalty", | |
) | |
seed = gr.Slider( | |
minimum=-1, | |
maximum=65535, # Arbitrary upper limit for demonstration | |
value=-1, | |
step=1, | |
label="Seed (-1 for random)", | |
) | |
custom_model = gr.Textbox( | |
value="", | |
label="Custom Model", | |
info="(Optional) Provide a custom Hugging Face model path. This will override the selected featured model if not empty.", | |
placeholder="e.g., meta-llama/Llama-3.3-70B-Instruct", | |
) | |
with gr.Accordion("Featured Models", open=True): | |
with gr.Column(): | |
model_search = gr.Textbox( | |
label="Filter Models", | |
placeholder="Search for a featured model...", | |
lines=1, | |
) | |
featured_model = gr.Radio( | |
label="Select a model below", | |
value=FEATURED_MODELS_LIST[0], | |
choices=FEATURED_MODELS_LIST, | |
interactive=True, | |
) | |
# Function to filter featured models based on search input | |
def filter_featured_models(search_term): | |
if not search_term: | |
return gr.update(choices=FEATURED_MODELS_LIST, value=FEATURED_MODELS_LIST[0]) | |
filtered = [model for model in FEATURED_MODELS_LIST if search_term.lower() in model.lower()] | |
if not filtered: | |
return gr.update(choices=[], value=None) | |
return gr.update(choices=filtered, value=filtered[0]) | |
# Update featured_model choices based on search | |
model_search.change( | |
fn=filter_featured_models, | |
inputs=model_search, | |
outputs=featured_model, | |
) | |
# Function to handle the chatbot response | |
def handle_response(message, history, system_msg, max_tok, temp, tp, freq_pen, sd, custom_mod, selected_feat_mod): | |
# Append user message to history | |
history = history or [] | |
history.append((message, None)) | |
# Generate response using the respond function | |
response = respond( | |
message=message, | |
history=history, | |
system_message=system_msg, | |
max_tokens=max_tok, | |
temperature=temp, | |
top_p=tp, | |
frequency_penalty=freq_pen, | |
seed=sd, | |
custom_model=custom_mod, | |
selected_featured_model=selected_feat_mod, | |
) | |
return response, history + [(message, response)] | |
# Handle button click | |
run_button.click( | |
fn=handle_response, | |
inputs=[ | |
user_message, | |
chatbot_component, # history | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
frequency_penalty, | |
seed, | |
custom_model, | |
featured_model, | |
], | |
outputs=[ | |
chatbot_component, | |
chatbot_component, # Updated history | |
], | |
) | |
# Allow pressing Enter to send the message | |
user_message.submit( | |
fn=handle_response, | |
inputs=[ | |
user_message, | |
chatbot_component, # history | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
frequency_penalty, | |
seed, | |
custom_model, | |
featured_model, | |
], | |
outputs=[ | |
chatbot_component, | |
chatbot_component, # Updated history | |
], | |
) | |
# Custom CSS to enhance the UI | |
demo.load(lambda: None, None, None, _js=""" | |
() => { | |
const style = document.createElement('style'); | |
style.innerHTML = ` | |
footer {visibility: hidden !important;} | |
.gradio-container {background-color: #f9f9f9;} | |
`; | |
document.head.appendChild(style); | |
} | |
""") | |
print("Launching Gradio interface...") # Debug log | |
# Launch the Gradio interface without showing the API or sharing externally | |
demo.launch(show_api=False, share=False) |