|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
import os |
|
import json |
|
|
|
ACCESS_TOKEN = os.getenv("HF_TOKEN") |
|
print("Access token loaded.") |
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
frequency_penalty, |
|
seed, |
|
custom_model, |
|
provider, |
|
model_search_term, |
|
selected_model |
|
): |
|
print(f"Received message: {message}") |
|
print(f"History: {history}") |
|
print(f"System message: {system_message}") |
|
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") |
|
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}") |
|
print(f"Selected model (custom_model): {custom_model}") |
|
print(f"Selected provider: {provider}") |
|
print(f"Model search term: {model_search_term}") |
|
print(f"Selected model from radio: {selected_model}") |
|
|
|
|
|
|
|
client = InferenceClient(token=ACCESS_TOKEN, provider=provider) |
|
print(f"Hugging Face Inference Client initialized with {provider} provider.") |
|
|
|
|
|
if seed == -1: |
|
seed = None |
|
|
|
|
|
messages = [{"role": "system", "content": system_message}] |
|
print("Initial messages array constructed.") |
|
|
|
|
|
for val in history: |
|
user_part = val[0] |
|
assistant_part = val[1] |
|
if user_part: |
|
messages.append({"role": "user", "content": user_part}) |
|
print(f"Added user message to context: {user_part}") |
|
if assistant_part: |
|
messages.append({"role": "assistant", "content": assistant_part}) |
|
print(f"Added assistant message to context: {assistant_part}") |
|
|
|
|
|
messages.append({"role": "user", "content": message}) |
|
print("Latest user message appended.") |
|
|
|
|
|
model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model |
|
print(f"Model selected for inference: {model_to_use}") |
|
|
|
|
|
response = "" |
|
print(f"Sending request to {provider} provider.") |
|
|
|
|
|
parameters = { |
|
"max_tokens": max_tokens, |
|
"temperature": temperature, |
|
"top_p": top_p, |
|
"frequency_penalty": frequency_penalty, |
|
} |
|
|
|
if seed is not None: |
|
parameters["seed"] = seed |
|
|
|
|
|
try: |
|
|
|
|
|
stream = client.chat_completion( |
|
model=model_to_use, |
|
messages=messages, |
|
stream=True, |
|
**parameters |
|
) |
|
|
|
|
|
for chunk in stream: |
|
if hasattr(chunk, 'choices') and len(chunk.choices) > 0: |
|
|
|
if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'): |
|
token_text = chunk.choices[0].delta.content |
|
if token_text: |
|
print(f"Received token: {token_text}") |
|
response += token_text |
|
yield response |
|
except Exception as e: |
|
print(f"Error during inference: {e}") |
|
response += f"\nError: {str(e)}" |
|
yield response |
|
|
|
print("Completed response generation.") |
|
|
|
|
|
|
|
chatbot = gr.Chatbot(height=600, show_copy_button=True, placeholder="Select a model and begin chatting", layout="panel") |
|
print("Chatbot interface created.") |
|
|
|
|
|
system_message_box = gr.Textbox(value="", placeholder="You are a helpful assistant.", label="System Prompt") |
|
|
|
max_tokens_slider = gr.Slider( |
|
minimum=1, |
|
maximum=4096, |
|
value=512, |
|
step=1, |
|
label="Max tokens" |
|
) |
|
temperature_slider = gr.Slider( |
|
minimum=0.1, |
|
maximum=4.0, |
|
value=0.7, |
|
step=0.1, |
|
label="Temperature" |
|
) |
|
top_p_slider = gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-P" |
|
) |
|
frequency_penalty_slider = gr.Slider( |
|
minimum=-2.0, |
|
maximum=2.0, |
|
value=0.0, |
|
step=0.1, |
|
label="Frequency Penalty" |
|
) |
|
seed_slider = gr.Slider( |
|
minimum=-1, |
|
maximum=65535, |
|
value=-1, |
|
step=1, |
|
label="Seed (-1 for random)" |
|
) |
|
|
|
|
|
custom_model_box = gr.Textbox( |
|
value="", |
|
label="Custom Model", |
|
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.", |
|
placeholder="meta-llama/Llama-3.3-70B-Instruct" |
|
) |
|
|
|
|
|
providers_list = [ |
|
"hf-inference", |
|
"cerebras", |
|
"together", |
|
"sambanova", |
|
"replicate", |
|
"fal-ai", |
|
"novita", |
|
"black-forest-labs", |
|
"cohere", |
|
"fireworks-ai", |
|
"hyperbolic", |
|
"nebius", |
|
"openai" |
|
] |
|
|
|
provider_dropdown = gr.Dropdown( |
|
choices=providers_list, |
|
value="hf-inference", |
|
label="Inference Provider", |
|
info="Select which inference provider to use. Uses your Hugging Face PRO credits." |
|
) |
|
|
|
|
|
model_search_box = gr.Textbox( |
|
label="Filter Models", |
|
placeholder="Search for a featured model...", |
|
lines=1 |
|
) |
|
|
|
models_list = [ |
|
"meta-llama/Llama-3.3-70B-Instruct", |
|
"meta-llama/Llama-3.1-70B-Instruct", |
|
"meta-llama/Llama-3.0-70B-Instruct", |
|
"meta-llama/Llama-3.2-3B-Instruct", |
|
"meta-llama/Llama-3.2-1B-Instruct", |
|
"meta-llama/Llama-3.1-8B-Instruct", |
|
"NousResearch/Hermes-3-Llama-3.1-8B", |
|
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", |
|
"mistralai/Mistral-Nemo-Instruct-2407", |
|
"mistralai/Mixtral-8x7B-Instruct-v0.1", |
|
"mistralai/Mistral-7B-Instruct-v0.3", |
|
"mistralai/Mistral-7B-Instruct-v0.2", |
|
"Qwen/Qwen3-235B-A22B", |
|
"Qwen/Qwen3-32B", |
|
"Qwen/Qwen2.5-72B-Instruct", |
|
"Qwen/Qwen2.5-3B-Instruct", |
|
"Qwen/Qwen2.5-0.5B-Instruct", |
|
"Qwen/QwQ-32B", |
|
"Qwen/Qwen2.5-Coder-32B-Instruct", |
|
"microsoft/Phi-3.5-mini-instruct", |
|
"microsoft/Phi-3-mini-128k-instruct", |
|
"microsoft/Phi-3-mini-4k-instruct", |
|
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B", |
|
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", |
|
"HuggingFaceH4/zephyr-7b-beta", |
|
"HuggingFaceTB/SmolLM2-360M-Instruct", |
|
"tiiuae/falcon-7b-instruct", |
|
"01-ai/Yi-1.5-34B-Chat", |
|
] |
|
|
|
featured_model_radio = gr.Radio( |
|
label="Select a model below", |
|
choices=models_list, |
|
value="meta-llama/Llama-3.3-70B-Instruct", |
|
interactive=True |
|
) |
|
|
|
def filter_models(search_term): |
|
print(f"Filtering models with search term: {search_term}") |
|
filtered = [m for m in models_list if search_term.lower() in m.lower()] |
|
print(f"Filtered models: {filtered}") |
|
return gr.update(choices=filtered) |
|
|
|
def set_custom_model_from_radio(selected): |
|
""" |
|
This function will get triggered whenever someone picks a model from the 'Featured Models' radio. |
|
We will update the Custom Model text box with that selection automatically. |
|
""" |
|
print(f"Featured model selected: {selected}") |
|
return selected |
|
|
|
|
|
demo = gr.ChatInterface( |
|
fn=respond, |
|
additional_inputs=[ |
|
system_message_box, |
|
max_tokens_slider, |
|
temperature_slider, |
|
top_p_slider, |
|
frequency_penalty_slider, |
|
seed_slider, |
|
custom_model_box, |
|
provider_dropdown, |
|
model_search_box, |
|
featured_model_radio |
|
], |
|
fill_height=True, |
|
chatbot=chatbot, |
|
theme="Nymbo/Nymbo_Theme", |
|
) |
|
print("ChatInterface object created.") |
|
|
|
with demo: |
|
|
|
model_search_box.change( |
|
fn=filter_models, |
|
inputs=model_search_box, |
|
outputs=featured_model_radio |
|
) |
|
print("Model search box change event linked.") |
|
|
|
|
|
featured_model_radio.change( |
|
fn=set_custom_model_from_radio, |
|
inputs=featured_model_radio, |
|
outputs=custom_model_box |
|
) |
|
print("Featured model radio button change event linked.") |
|
|
|
print("Gradio interface initialized.") |
|
|
|
if __name__ == "__main__": |
|
print("Launching the demo application.") |
|
demo.launch(show_api=True) |