Spaces:
Running
Running
| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| import os | |
| import json | |
| import base64 | |
| from PIL import Image | |
| import io | |
| ACCESS_TOKEN = os.getenv("HF_TOKEN") | |
| print("Access token loaded.") | |
| # Function to encode image to base64 | |
| def encode_image(image_path): | |
| if not image_path: | |
| print("No image path provided") | |
| return None | |
| try: | |
| print(f"Encoding image from path: {image_path}") | |
| # If it's already a PIL Image | |
| if isinstance(image_path, Image.Image): | |
| image = image_path | |
| else: | |
| # Try to open the image file | |
| image = Image.open(image_path) | |
| # Convert to RGB if image has an alpha channel (RGBA) | |
| if image.mode == 'RGBA': | |
| image = image.convert('RGB') | |
| # Encode to base64 | |
| buffered = io.BytesIO() | |
| image.save(buffered, format="JPEG") | |
| img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") | |
| print("Image encoded successfully") | |
| return img_str | |
| except Exception as e: | |
| print(f"Error encoding image: {e}") | |
| return None | |
| def respond( | |
| message, | |
| image_files, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| frequency_penalty, | |
| seed, | |
| provider, | |
| custom_api_key, | |
| custom_model, | |
| model_search_term, | |
| selected_model | |
| ): | |
| print(f"Received message: {message}") | |
| print(f"Received {len(image_files) if image_files else 0} images") | |
| print(f"History: {history}") | |
| print(f"System message: {system_message}") | |
| print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") | |
| print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}") | |
| print(f"Selected provider: {provider}") | |
| print(f"Custom API Key provided: {bool(custom_api_key.strip())}") | |
| print(f"Selected model (custom_model): {custom_model}") | |
| print(f"Model search term: {model_search_term}") | |
| print(f"Selected model from radio: {selected_model}") | |
| # Determine which token to use | |
| token_to_use = custom_api_key if custom_api_key.strip() != "" else ACCESS_TOKEN | |
| if custom_api_key.strip() != "": | |
| print("USING CUSTOM API KEY: BYOK token provided by user is being used for authentication") | |
| else: | |
| print("USING DEFAULT API KEY: Environment variable HF_TOKEN is being used for authentication") | |
| # Initialize the Inference Client with the provider and appropriate token | |
| client = InferenceClient(token=token_to_use, provider=provider) | |
| print(f"Hugging Face Inference Client initialized with {provider} provider.") | |
| # Convert seed to None if -1 (meaning random) | |
| if seed == -1: | |
| seed = None | |
| # Prepare messages for the API | |
| user_content = [] | |
| # Add text if there is any | |
| if message and message.strip(): | |
| user_content.append({ | |
| "type": "text", | |
| "text": message | |
| }) | |
| # Add images if any | |
| if image_files and len(image_files) > 0: | |
| for file_path in image_files: | |
| if not file_path: | |
| continue | |
| try: | |
| print(f"Processing image file: {file_path}") | |
| # For direct file paths, no need to encode as base64 | |
| user_content.append({ | |
| "type": "image_url", | |
| "image_url": { | |
| "url": f"file://{file_path}" | |
| } | |
| }) | |
| except Exception as e: | |
| print(f"Error processing image file: {e}") | |
| # If empty content, set to text only | |
| if not user_content: | |
| user_content = "" | |
| # Prepare messages in the format expected by the API | |
| messages = [{"role": "system", "content": system_message}] | |
| print("Initial messages array constructed.") | |
| # Add conversation history to the context | |
| for val in history: | |
| user_msg = val[0] | |
| assistant_msg = val[1] | |
| # Process user message | |
| if user_msg: | |
| if isinstance(user_msg, dict) and "text" in user_msg: | |
| # This is a MultimodalTextbox message | |
| hist_text = user_msg.get("text", "") | |
| hist_files = user_msg.get("files", []) | |
| hist_content = [] | |
| if hist_text: | |
| hist_content.append({ | |
| "type": "text", | |
| "text": hist_text | |
| }) | |
| for hist_file in hist_files: | |
| if hist_file: | |
| hist_content.append({ | |
| "type": "image_url", | |
| "image_url": { | |
| "url": f"file://{hist_file}" | |
| } | |
| }) | |
| if hist_content: | |
| messages.append({"role": "user", "content": hist_content}) | |
| else: | |
| # Regular text message | |
| messages.append({"role": "user", "content": user_msg}) | |
| # Process assistant message | |
| if assistant_msg: | |
| messages.append({"role": "assistant", "content": assistant_msg}) | |
| # Append the latest user message | |
| messages.append({"role": "user", "content": user_content}) | |
| print(f"Latest user message appended (content type: {type(user_content)})") | |
| # Determine which model to use, prioritizing custom_model if provided | |
| model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model | |
| print(f"Model selected for inference: {model_to_use}") | |
| # Start with an empty string to build the response as tokens stream in | |
| response = "" | |
| print(f"Sending request to {provider} provider.") | |
| # Prepare parameters for the chat completion request | |
| parameters = { | |
| "max_tokens": max_tokens, | |
| "temperature": temperature, | |
| "top_p": top_p, | |
| "frequency_penalty": frequency_penalty, | |
| } | |
| if seed is not None: | |
| parameters["seed"] = seed | |
| # Use the InferenceClient for making the request | |
| try: | |
| # Create a generator for the streaming response | |
| stream = client.chat_completion( | |
| model=model_to_use, | |
| messages=messages, | |
| stream=True, | |
| **parameters | |
| ) | |
| print("Received tokens: ", end="", flush=True) | |
| # Process the streaming response | |
| for chunk in stream: | |
| if hasattr(chunk, 'choices') and len(chunk.choices) > 0: | |
| # Extract the content from the response | |
| if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'): | |
| token_text = chunk.choices[0].delta.content | |
| if token_text: | |
| print(token_text, end="", flush=True) | |
| response += token_text | |
| yield response | |
| print() | |
| except Exception as e: | |
| print(f"Error during inference: {e}") | |
| response += f"\nError: {str(e)}" | |
| yield response | |
| print("Completed response generation.") | |
| # Function to validate provider selection based on BYOK | |
| def validate_provider(api_key, provider): | |
| if not api_key.strip() and provider != "hf-inference": | |
| return gr.update(value="hf-inference") | |
| return gr.update(value=provider) | |
| # GRADIO UI | |
| with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo: | |
| # Create the chatbot component | |
| chatbot = gr.Chatbot( | |
| height=600, | |
| show_copy_button=True, | |
| placeholder="Select a model and begin chatting", | |
| layout="panel" | |
| ) | |
| print("Chatbot interface created.") | |
| # Multimodal textbox for messages (combines text and file uploads) | |
| msg = gr.MultimodalTextbox( | |
| placeholder="Type a message or upload images...", | |
| show_label=False, | |
| container=False, | |
| scale=12, | |
| file_types=["image"], | |
| file_count="multiple", | |
| sources=["upload"] | |
| ) | |
| # Note: We're removing the separate submit button since MultimodalTextbox has its own | |
| # Create accordion for settings | |
| with gr.Accordion("Settings", open=False): | |
| # System message | |
| system_message_box = gr.Textbox( | |
| value="You are a helpful AI assistant that can understand images and text.", | |
| placeholder="You are a helpful assistant.", | |
| label="System Prompt" | |
| ) | |
| # Generation parameters | |
| with gr.Row(): | |
| with gr.Column(): | |
| max_tokens_slider = gr.Slider( | |
| minimum=1, | |
| maximum=4096, | |
| value=512, | |
| step=1, | |
| label="Max tokens" | |
| ) | |
| temperature_slider = gr.Slider( | |
| minimum=0.1, | |
| maximum=4.0, | |
| value=0.7, | |
| step=0.1, | |
| label="Temperature" | |
| ) | |
| top_p_slider = gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.95, | |
| step=0.05, | |
| label="Top-P" | |
| ) | |
| with gr.Column(): | |
| frequency_penalty_slider = gr.Slider( | |
| minimum=-2.0, | |
| maximum=2.0, | |
| value=0.0, | |
| step=0.1, | |
| label="Frequency Penalty" | |
| ) | |
| seed_slider = gr.Slider( | |
| minimum=-1, | |
| maximum=65535, | |
| value=-1, | |
| step=1, | |
| label="Seed (-1 for random)" | |
| ) | |
| # Provider selection | |
| providers_list = [ | |
| "hf-inference", # Default Hugging Face Inference | |
| "cerebras", # Cerebras provider | |
| "together", # Together AI | |
| "sambanova", # SambaNova | |
| "novita", # Novita AI | |
| "cohere", # Cohere | |
| "fireworks-ai", # Fireworks AI | |
| "hyperbolic", # Hyperbolic | |
| "nebius", # Nebius | |
| ] | |
| provider_radio = gr.Radio( | |
| choices=providers_list, | |
| value="hf-inference", | |
| label="Inference Provider", | |
| info="[View all models here](https://huggingface.co/models?inference_provider=all&sort=trending)" | |
| ) | |
| # New BYOK textbox | |
| byok_textbox = gr.Textbox( | |
| value="", | |
| label="BYOK (Bring Your Own Key)", | |
| info="Enter a custom Hugging Face API key here. When empty, only 'hf-inference' provider can be used.", | |
| placeholder="Enter your Hugging Face API token", | |
| type="password" # Hide the API key for security | |
| ) | |
| # Custom model box | |
| custom_model_box = gr.Textbox( | |
| value="", | |
| label="Custom Model", | |
| info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.", | |
| placeholder="meta-llama/Llama-3.3-70B-Instruct" | |
| ) | |
| # Model search | |
| model_search_box = gr.Textbox( | |
| label="Filter Models", | |
| placeholder="Search for a featured model...", | |
| lines=1 | |
| ) | |
| # Featured models list | |
| # Updated to include multimodal models | |
| models_list = [ | |
| # Multimodal models | |
| "meta-llama/Llama-3.3-70B-Vision", | |
| "Alibaba-NLP/NephilaV-16B-Chat", | |
| "mistralai/Mistral-Large-Vision-2407", | |
| "OpenGVLab/InternVL-Chat-V1-5", | |
| "microsoft/Phi-3.5-vision-instruct", | |
| "Qwen/Qwen2.5-VL-7B-Instruct", | |
| "liuhaotian/llava-v1.6-mistral-7b", | |
| # Standard text models | |
| "meta-llama/Llama-3.3-70B-Instruct", | |
| "meta-llama/Llama-3.1-70B-Instruct", | |
| "meta-llama/Llama-3.0-70B-Instruct", | |
| "meta-llama/Llama-3.2-3B-Instruct", | |
| "meta-llama/Llama-3.2-1B-Instruct", | |
| "meta-llama/Llama-3.1-8B-Instruct", | |
| "NousResearch/Hermes-3-Llama-3.1-8B", | |
| "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", | |
| "mistralai/Mistral-Nemo-Instruct-2407", | |
| "mistralai/Mixtral-8x7B-Instruct-v0.1", | |
| "mistralai/Mistral-7B-Instruct-v0.3", | |
| "mistralai/Mistral-7B-Instruct-v0.2", | |
| "Qwen/Qwen3-235B-A22B", | |
| "Qwen/Qwen3-32B", | |
| "Qwen/Qwen2.5-72B-Instruct", | |
| "Qwen/Qwen2.5-3B-Instruct", | |
| "Qwen/Qwen2.5-0.5B-Instruct", | |
| "Qwen/QwQ-32B", | |
| "Qwen/Qwen2.5-Coder-32B-Instruct", | |
| "microsoft/Phi-3.5-mini-instruct", | |
| "microsoft/Phi-3-mini-128k-instruct", | |
| "microsoft/Phi-3-mini-4k-instruct", | |
| ] | |
| featured_model_radio = gr.Radio( | |
| label="Select a model below", | |
| choices=models_list, | |
| value="meta-llama/Llama-3.3-70B-Vision", # Default to a multimodal model | |
| interactive=True | |
| ) | |
| gr.Markdown("[View all multimodal models](https://huggingface.co/models?pipeline_tag=image-to-text&sort=trending)") | |
| # Chat history state | |
| chat_history = gr.State([]) | |
| # Function to filter models | |
| def filter_models(search_term): | |
| print(f"Filtering models with search term: {search_term}") | |
| filtered = [m for m in models_list if search_term.lower() in m.lower()] | |
| print(f"Filtered models: {filtered}") | |
| return gr.update(choices=filtered) | |
| # Function to set custom model from radio | |
| def set_custom_model_from_radio(selected): | |
| print(f"Featured model selected: {selected}") | |
| return selected | |
| # Function for the chat interface | |
| def user(user_message, history): | |
| # Debug logging for troubleshooting | |
| print(f"User message received: {user_message}") | |
| # Skip if message is empty (no text and no files) | |
| if not user_message or (not user_message.get("text") and not user_message.get("files")): | |
| print("Empty message, skipping") | |
| return history | |
| # Extract data from the MultimodalTextbox | |
| text_content = user_message.get("text", "").strip() | |
| file_paths = user_message.get("files", []) | |
| print(f"Text content: {text_content}") | |
| print(f"Files: {file_paths}") | |
| # Process the message | |
| if file_paths and len(file_paths) > 0: | |
| # We have files - create a multimodal message | |
| file_path = file_paths[0] # For simplicity, use the first file | |
| print(f"Using file: {file_path}") | |
| # Add the message with both text and file as separate components | |
| history.append([user_message, None]) # Keep the original format for processing | |
| else: | |
| # Text-only message | |
| history.append([{"text": text_content, "files": []}, None]) | |
| return history | |
| # Define bot response function | |
| def bot(history, system_msg, max_tokens, temperature, top_p, freq_penalty, seed, provider, api_key, custom_model, search_term, selected_model): | |
| # Check if history is valid | |
| if not history or len(history) == 0: | |
| print("No history to process") | |
| return history | |
| # Extract the last user message | |
| user_message = history[-1][0] | |
| print(f"Processing user message: {user_message}") | |
| # Get text and files from the message | |
| if isinstance(user_message, dict) and "text" in user_message: | |
| text_content = user_message.get("text", "") | |
| image_files = user_message.get("files", []) | |
| else: | |
| text_content = "" | |
| image_files = [] | |
| # Process message through respond function | |
| history[-1][1] = "" | |
| for response in respond( | |
| text_content, | |
| image_files, | |
| history[:-1], | |
| system_msg, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| freq_penalty, | |
| seed, | |
| provider, | |
| api_key, | |
| custom_model, | |
| search_term, | |
| selected_model | |
| ): | |
| history[-1][1] = response | |
| yield history | |
| # Event handlers - only using the MultimodalTextbox's built-in submit functionality | |
| msg.submit( | |
| user, | |
| [msg, chatbot], | |
| [chatbot], | |
| queue=False | |
| ).then( | |
| bot, | |
| [chatbot, system_message_box, max_tokens_slider, temperature_slider, top_p_slider, | |
| frequency_penalty_slider, seed_slider, provider_radio, byok_textbox, custom_model_box, | |
| model_search_box, featured_model_radio], | |
| [chatbot] | |
| ).then( | |
| lambda: {"text": "", "files": []}, # Clear inputs after submission | |
| None, | |
| [msg] | |
| ) | |
| # Connect the model filter to update the radio choices | |
| model_search_box.change( | |
| fn=filter_models, | |
| inputs=model_search_box, | |
| outputs=featured_model_radio | |
| ) | |
| print("Model search box change event linked.") | |
| # Connect the featured model radio to update the custom model box | |
| featured_model_radio.change( | |
| fn=set_custom_model_from_radio, | |
| inputs=featured_model_radio, | |
| outputs=custom_model_box | |
| ) | |
| print("Featured model radio button change event linked.") | |
| # Connect the BYOK textbox to validate provider selection | |
| byok_textbox.change( | |
| fn=validate_provider, | |
| inputs=[byok_textbox, provider_radio], | |
| outputs=provider_radio | |
| ) | |
| print("BYOK textbox change event linked.") | |
| # Also validate provider when the radio changes to ensure consistency | |
| provider_radio.change( | |
| fn=validate_provider, | |
| inputs=[byok_textbox, provider_radio], | |
| outputs=provider_radio | |
| ) | |
| print("Provider radio button change event linked.") | |
| print("Gradio interface initialized.") | |
| if __name__ == "__main__": | |
| print("Launching the demo application.") | |
| demo.launch(show_api=True) |