Nymbo's picture
Update app.py
a8fc89d verified
raw
history blame
16.1 kB
import gradio as gr
from openai import OpenAI
import os
# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
custom_model
):
"""
This function handles the chatbot response. It takes in:
- message: the user's new message
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg)
- system_message: the system prompt
- max_tokens: the maximum number of tokens to generate in the response
- temperature: sampling temperature
- top_p: top-p (nucleus) sampling
- frequency_penalty: penalize repeated tokens in the output
- seed: a fixed seed for reproducibility; -1 will mean 'random'
- custom_model: the final model name in use, which may be set by selecting from the Featured Models radio or by typing a custom model
"""
print(f"Received message: {message}")
print(f"History: {history}")
print(f"System message: {system_message}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
print(f"Selected model (custom_model): {custom_model}")
# Convert seed to None if -1 (meaning random)
if seed == -1:
seed = None
# Construct the messages array required by the API
messages = [{"role": "system", "content": system_message}]
print("Initial messages array constructed.")
# Add conversation history to the context
for val in history:
user_part = val[0] # Extract user message from the tuple
assistant_part = val[1] # Extract assistant message from the tuple
if user_part:
messages.append({"role": "user", "content": user_part}) # Append user message
print(f"Added user message to context: {user_part}")
if assistant_part:
messages.append({"role": "assistant", "content": assistant_part}) # Append assistant message
print(f"Added assistant message to context: {assistant_part}")
# Append the latest user message
messages.append({"role": "user", "content": message})
print("Latest user message appended.")
# If user provided a model, use that; otherwise, fall back to a default model
model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct"
print(f"Model selected for inference: {model_to_use}")
# Start with an empty string to build the response as tokens stream in
response = ""
print("Sending request to OpenAI API.")
# Make the streaming request to the HF Inference API via openai-like client
for message_chunk in client.chat.completions.create(
model=model_to_use, # Use either the user-provided or default model
max_tokens=max_tokens, # Maximum tokens for the response
stream=True, # Enable streaming responses
temperature=temperature, # Adjust randomness in response
top_p=top_p, # Control diversity in response generation
frequency_penalty=frequency_penalty, # Penalize repeated phrases
seed=seed, # Set random seed for reproducibility
messages=messages, # Contextual conversation messages
):
# Extract the token text from the response chunk
token_text = message_chunk.choices[0].delta.content
print(f"Received token: {token_text}")
response += token_text
# Yield the partial response to Gradio so it can display in real-time
yield response
print("Completed response generation.")
# -------------------------
# GRADIO UI CONFIGURATION
# -------------------------
# Create a Chatbot component with a specified height
chatbot = gr.Chatbot(height=600) # Define the height of the chatbot interface
print("Chatbot interface created.")
# Create textboxes and sliders for system prompt, tokens, and other parameters
system_message_box = gr.Textbox(value="", label="System message") # Input box for system message
max_tokens_slider = gr.Slider(
minimum=1, # Minimum allowable tokens
maximum=4096, # Maximum allowable tokens
value=512, # Default value
step=1, # Increment step size
label="Max new tokens" # Slider label
)
temperature_slider = gr.Slider(
minimum=0.1, # Minimum temperature
maximum=4.0, # Maximum temperature
value=0.7, # Default value
step=0.1, # Increment step size
label="Temperature" # Slider label
)
top_p_slider = gr.Slider(
minimum=0.1, # Minimum top-p value
maximum=1.0, # Maximum top-p value
value=0.95, # Default value
step=0.05, # Increment step size
label="Top-P" # Slider label
)
frequency_penalty_slider = gr.Slider(
minimum=-2.0, # Minimum penalty
maximum=2.0, # Maximum penalty
value=0.0, # Default value
step=0.1, # Increment step size
label="Frequency Penalty" # Slider label
)
seed_slider = gr.Slider(
minimum=-1, # -1 for random seed
maximum=65535, # Maximum seed value
value=-1, # Default value
step=1, # Increment step size
label="Seed (-1 for random)" # Slider label
)
# The custom_model_box is what the respond function sees as "custom_model"
custom_model_box = gr.Textbox(
value="", # Default value
label="Custom Model", # Label for the textbox
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model." # Additional info
)
# Define a function that updates the custom model box when a featured model is selected
def set_custom_model_from_radio(selected):
"""
This function will get triggered whenever someone picks a model from the 'Featured Models' radio.
We will update the Custom Model text box with that selection automatically.
"""
print(f"Featured model selected: {selected}") # Log selected model
return selected
# Create the main ChatInterface object
demo = gr.ChatInterface(
fn=respond, # The function to handle responses
additional_inputs=[
system_message_box, # System message input
max_tokens_slider, # Max tokens slider
temperature_slider, # Temperature slider
top_p_slider, # Top-P slider
frequency_penalty_slider, # Frequency penalty slider
seed_slider, # Seed slider
custom_model_box # Custom model input
],
fill_height=True, # Allow the chatbot to fill the container height
chatbot=chatbot, # Chatbot UI component
theme="Nymbo/Nymbo_Theme", # Theme for the interface
)
print("ChatInterface object created.")
# -----------
# ADDING THE "FEATURED MODELS" ACCORDION
# -----------
with demo:
with gr.Accordion("Featured Models", open=False): # Collapsible section for featured models
model_search_box = gr.Textbox(
label="Filter Models", # Label for the search box
placeholder="Search for a featured model...", # Placeholder text
lines=1 # Single-line input
)
print("Model search box created.")
# Sample list of popular text models
models_list = [
"meta-llama/Llama-3.3-70B-Instruct",
"meta-llama/Llama-3.2-3B-Instruct",
"meta-llama/Llama-3.2-1B-Instruct",
"meta-llama/Llama-3.1-8B-Instruct",
"NousResearch/Hermes-3-Llama-3.1-8B",
"google/gemma-2-27b-it",
"google/gemma-2-9b-it",
"google/gemma-2-2b-it",
"mistralai/Mistral-Nemo-Instruct-2407",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-7B-Instruct-v0.3",
"Qwen/Qwen2.5-72B-Instruct",
"Qwen/QwQ-32B-Preview",
"PowerInfer/SmallThinker-3B-Preview",
"HuggingFaceTB/SmolLM2-1.7B-Instruct",
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"microsoft/Phi-3.5-mini-instruct",
]
print("Models list initialized.")
featured_model_radio = gr.Radio(
label="Select a model below", # Label for the radio buttons
choices=models_list, # List of available models
value="meta-llama/Llama-3.3-70B-Instruct", # Default selection
interactive=True # Allow user interaction
)
print("Featured models radio button created.")
# Filter function for the radio button list
def filter_models(search_term):
print(f"Filtering models with search term: {search_term}") # Log the search term
filtered = [m for m in models_list if search_term.lower() in m.lower()] # Filter models by search term
print(f"Filtered models: {filtered}") # Log filtered models
return gr.update(choices=filtered)
# Update the radio list when the search box value changes
model_search_box.change(
fn=filter_models, # Function to filter models
inputs=model_search_box, # Input: search box value
outputs=featured_model_radio # Output: update radio button list
)
print("Model search box change event linked.")
# Update the custom model textbox when a featured model is selected
featured_model_radio.change(
fn=set_custom_model_from_radio, # Function to set custom model
inputs=featured_model_radio, # Input: selected model
outputs=custom_model_box # Output: update custom model textbox
)
print("Featured model radio button change event linked.")
# -----------
# ADDING THE "INFORMATION" TAB
# -----------
with gr.Tab("Information"):
with gr.Row():
# Accordion for Featured Models
with gr.Accordion("Featured Models", open=False):
gr.HTML(
"""
<table style="width:100%; text-align:center; margin:auto;">
<tr>
<th>Model Name</th>
<th>Typography</th>
<th>Notes</th>
</tr>
<tr>
<td>meta-llama/Llama-3.3-70B-Instruct</td>
<td>✅</td>
<td></td>
</tr>
<tr>
<td>meta-llama/Llama-3.2-3B-Instruct</td>
<td>✅</td>
<td></td>
</tr>
<tr>
<td>meta-llama/Llama-3.2-1B-Instruct</td>
<td>✅</td>
<td></td>
</tr>
<tr>
<td>meta-llama/Llama-3.1-8B-Instruct</td>
<td>✅</td>
<td></td>
</tr>
<tr>
<td>NousResearch/Hermes-3-Llama-3.1-8B</td>
<td>✅</td>
<td></td>
</tr>
<tr>
<td>google/gemma-2-27b-it</td>
<td>✅</td>
<td></td>
</tr>
<tr>
<td>google/gemma-2-9b-it</td>
<td>✅</td>
<td></td>
</tr>
<tr>
<td>google/gemma-2-2b-it</td>
<td>✅</td>
<td></td>
</tr>
<tr>
<td>mistralai/Mistral-Nemo-Instruct-2407</td>
<td>✅</td>
<td></td>
</tr>
<tr>
<td>mistralai/Mixtral-8x7B-Instruct-v0.1</td>
<td>✅</td>
<td></td>
</tr>
<tr>
<td>mistralai/Mistral-7B-Instruct-v0.3</td>
<td>✅</td>
<td></td>
</tr>
<tr>
<td>Qwen/Qwen2.5-72B-Instruct</td>
<td>✅</td>
<td></td>
</tr>
<tr>
<td>Qwen/QwQ-32B-Preview</td>
<td>✅</td>
<td></td>
</tr>
<tr>
<td>PowerInfer/SmallThinker-3B-Preview</td>
<td>✅</td>
<td></td>
</tr>
<tr>
<td>HuggingFaceTB/SmolLM2-1.7B-Instruct</td>
<td>✅</td>
<td></td>
</tr>
<tr>
<td>TinyLlama/TinyLlama-1.1B-Chat-v1.0</td>
<td>✅</td>
<td></td>
</tr>
<tr>
<td>microsoft/Phi-3.5-mini-instruct</td>
<td>✅</td>
<td></td>
</tr>
</table>
"""
)
# Accordion for Parameters Overview
with gr.Accordion("Parameters Overview", open=False):
gr.Markdown(
"""
## System Message
###### This box is for setting the initial context or instructions for the AI. It helps guide the AI on how to respond to your inputs.
## Max New Tokens
###### This slider allows you to specify the maximum number of tokens (words or parts of words) the AI can generate in a single response. The default value is 512, and the maximum is 4096.
## Temperature
###### Temperature controls the randomness of the AI's responses. A higher temperature makes the responses more creative and varied, while a lower temperature makes them more predictable and focused. The default value is 0.7.
## Top-P (Nucleus Sampling)
###### Top-P sampling is another way to control the diversity of the AI's responses. It ensures that the AI only considers the most likely tokens up to a cumulative probability of P. The default value is 0.95.
## Frequency Penalty
###### This penalty discourages the AI from repeating the same tokens (words or phrases) in its responses. A higher penalty reduces repetition. The default value is 0.0.
## Seed
###### The seed is a number that ensures the reproducibility of the AI's responses. If you set a specific seed, the AI will generate the same response every time for the same input. If you set it to -1, the AI will generate a random seed each time.
## Custom Model
###### You can specify a custom Hugging Face model path here. This will override any selected featured model. This is optional and allows you to use models not listed in the featured models.
### Remember, these settings are all about giving you control over the text generation process. Feel free to experiment and see what each one does. And if you're ever in doubt, the default settings are a great place to start. Happy creating!
"""
)
print("Gradio interface initialized.")
if __name__ == "__main__":
print("Launching the demo application.")
demo.launch()