Spaces:
Running
Running
import gradio as gr | |
from openai import OpenAI | |
import os | |
# Retrieve the access token from the environment variable | |
ACCESS_TOKEN = os.getenv("HF_TOKEN") | |
print("Access token loaded.") | |
# Initialize the OpenAI client with the Hugging Face Inference API endpoint | |
client = OpenAI( | |
base_url="https://api-inference.huggingface.co/v1/", | |
api_key=ACCESS_TOKEN, | |
) | |
print("OpenAI client initialized.") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
frequency_penalty, | |
seed, | |
custom_model | |
): | |
""" | |
Respond function for ChatInterface. | |
""" | |
print(f"Received message: {message}") | |
print(f"History: {history}") | |
print(f"System message: {system_message}") | |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") | |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}") | |
print(f"Selected model (custom_model): {custom_model}") | |
if seed == -1: | |
seed = None | |
# Construct the messages array | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
user_part = val[0] | |
assistant_part = val[1] | |
if user_part: | |
messages.append({"role": "user", "content": user_part}) | |
if assistant_part: | |
messages.append({"role": "assistant", "content": assistant_part}) | |
messages.append({"role": "user", "content": message}) | |
# If user provided a model, use it; else use default | |
model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct" | |
response = "" | |
for message_chunk in client.chat.completions.create( | |
model=model_to_use, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
frequency_penalty=frequency_penalty, | |
seed=seed, | |
messages=messages, | |
): | |
token_text = message_chunk.choices[0].delta.content | |
response += token_text | |
yield response | |
# ------------------------- | |
# GRADIO UI CONFIGURATION | |
# ------------------------- | |
# Create a Chatbot component | |
chatbot = gr.Chatbot( | |
height=600, | |
show_copy_button=True, | |
placeholder="Select a model and begin chatting", | |
likeable=True, | |
layout="panel" | |
) | |
# Create textboxes/sliders for system prompt, tokens, etc. | |
system_message_box = gr.Textbox(value="", label="System message") | |
max_tokens_slider = gr.Slider(1, 4096, value=512, step=1, label="Max new tokens") | |
temperature_slider = gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature") | |
top_p_slider = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-P") | |
frequency_penalty_slider = gr.Slider(-2.0, 2.0, value=0.0, step=0.1, label="Frequency Penalty") | |
seed_slider = gr.Slider(-1, 65535, value=-1, step=1, label="Seed (-1 for random)") | |
custom_model_box = gr.Textbox(value="", label="Custom Model", | |
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.") | |
def set_custom_model_from_radio(selected): | |
""" | |
Update the Custom Model textbox when a featured model is selected. | |
""" | |
print(f"Featured model selected: {selected}") | |
return selected | |
# Create a user textbox that we can reference | |
# This will become our "Message" input inside the ChatInterface | |
user_textbox = gr.MultimodalTextbox() | |
# No 'examples' here—because we want to keep the user's parameters unchanged | |
demo = gr.ChatInterface( | |
fn=respond, | |
additional_inputs=[ | |
system_message_box, | |
max_tokens_slider, | |
temperature_slider, | |
top_p_slider, | |
frequency_penalty_slider, | |
seed_slider, | |
custom_model_box | |
], | |
fill_height=True, | |
chatbot=chatbot, | |
textbox=user_textbox, | |
multimodal=True, | |
concurrency_limit=20, | |
theme="Nymbo/Nymbo_Theme", | |
# No examples parameter used | |
cache_examples=False | |
) | |
print("ChatInterface object created.") | |
with demo: | |
# Featured models accordion | |
with gr.Accordion("Featured Models", open=False): | |
model_search_box = gr.Textbox( | |
label="Filter Models", | |
placeholder="Search for a featured model...", | |
lines=1 | |
) | |
models_list = [ | |
"meta-llama/Llama-3.3-70B-Instruct", | |
"meta-llama/Llama-3.2-3B-Instruct", | |
"meta-llama/Llama-3.2-1B-Instruct", | |
"meta-llama/Llama-3.1-8B-Instruct", | |
"NousResearch/Hermes-3-Llama-3.1-8B", | |
"google/gemma-2-27b-it", | |
"google/gemma-2-9b-it", | |
"google/gemma-2-2b-it", | |
"mistralai/Mistral-Nemo-Instruct-2407", | |
"mistralai/Mixtral-8x7B-Instruct-v0.1", | |
"mistralai/Mistral-7B-Instruct-v0.3", | |
"Qwen/Qwen2.5-72B-Instruct", | |
"Qwen/QwQ-32B-Preview", | |
"PowerInfer/SmallThinker-3B-Preview", | |
"HuggingFaceTB/SmolLM2-1.7B-Instruct", | |
"TinyLlama/TinyLlama-1.1B-Chat-v1.0", | |
"microsoft/Phi-3.5-mini-instruct", | |
] | |
featured_model_radio = gr.Radio( | |
label="Select a model below", | |
choices=models_list, | |
value="meta-llama/Llama-3.3-70B-Instruct", | |
interactive=True | |
) | |
def filter_models(search_term): | |
filtered = [m for m in models_list if search_term.lower() in m.lower()] | |
return gr.update(choices=filtered) | |
model_search_box.change( | |
fn=filter_models, | |
inputs=model_search_box, | |
outputs=featured_model_radio | |
) | |
featured_model_radio.change( | |
fn=set_custom_model_from_radio, | |
inputs=featured_model_radio, | |
outputs=custom_model_box | |
) | |
# Example Prompts accordion | |
with gr.Accordion("Example Prompts", open=False): | |
ex1_btn = gr.Button("Example 1: 'Howdy, partner!'") | |
ex2_btn = gr.Button("Example 2: 'What's your model name and who trained you?'") | |
ex3_btn = gr.Button("Example 3: 'How many R's in Strawberry?'") | |
# Helper function that returns an update for user_textbox | |
def load_example(example_text): | |
return gr.update(value=example_text) | |
ex1_btn.click(fn=lambda: load_example("Howdy, partner!"), | |
inputs=[], | |
outputs=user_textbox) | |
ex2_btn.click(fn=lambda: load_example("What's your model name and who trained you?"), | |
inputs=[], | |
outputs=user_textbox) | |
ex3_btn.click(fn=lambda: load_example("How many R's are there in the word Strawberry?"), | |
inputs=[], | |
outputs=user_textbox) | |
print("Gradio interface initialized.") | |
if __name__ == "__main__": | |
print("Launching the demo application.") | |
demo.launch() |