Nymbo's picture
Update app.py
30153c5 verified
raw
history blame
6.84 kB
import gradio as gr
from openai import OpenAI
import os
# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
custom_model
):
"""
Respond function for ChatInterface.
"""
print(f"Received message: {message}")
print(f"History: {history}")
print(f"System message: {system_message}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
print(f"Selected model (custom_model): {custom_model}")
if seed == -1:
seed = None
# Construct the messages array
messages = [{"role": "system", "content": system_message}]
for val in history:
user_part = val[0]
assistant_part = val[1]
if user_part:
messages.append({"role": "user", "content": user_part})
if assistant_part:
messages.append({"role": "assistant", "content": assistant_part})
messages.append({"role": "user", "content": message})
# If user provided a model, use it; else use default
model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct"
response = ""
for message_chunk in client.chat.completions.create(
model=model_to_use,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty,
seed=seed,
messages=messages,
):
token_text = message_chunk.choices[0].delta.content
response += token_text
yield response
# -------------------------
# GRADIO UI CONFIGURATION
# -------------------------
# Create a Chatbot component
chatbot = gr.Chatbot(
height=600,
show_copy_button=True,
placeholder="Select a model and begin chatting",
likeable=True,
layout="panel"
)
# Create textboxes/sliders for system prompt, tokens, etc.
system_message_box = gr.Textbox(value="", label="System message")
max_tokens_slider = gr.Slider(1, 4096, value=512, step=1, label="Max new tokens")
temperature_slider = gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature")
top_p_slider = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-P")
frequency_penalty_slider = gr.Slider(-2.0, 2.0, value=0.0, step=0.1, label="Frequency Penalty")
seed_slider = gr.Slider(-1, 65535, value=-1, step=1, label="Seed (-1 for random)")
custom_model_box = gr.Textbox(value="", label="Custom Model",
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.")
def set_custom_model_from_radio(selected):
"""
Update the Custom Model textbox when a featured model is selected.
"""
print(f"Featured model selected: {selected}")
return selected
# Create a user textbox that we can reference
# This will become our "Message" input inside the ChatInterface
user_textbox = gr.MultimodalTextbox()
# No 'examples' here—because we want to keep the user's parameters unchanged
demo = gr.ChatInterface(
fn=respond,
additional_inputs=[
system_message_box,
max_tokens_slider,
temperature_slider,
top_p_slider,
frequency_penalty_slider,
seed_slider,
custom_model_box
],
fill_height=True,
chatbot=chatbot,
textbox=user_textbox,
multimodal=True,
concurrency_limit=20,
theme="Nymbo/Nymbo_Theme",
# No examples parameter used
cache_examples=False
)
print("ChatInterface object created.")
with demo:
# Featured models accordion
with gr.Accordion("Featured Models", open=False):
model_search_box = gr.Textbox(
label="Filter Models",
placeholder="Search for a featured model...",
lines=1
)
models_list = [
"meta-llama/Llama-3.3-70B-Instruct",
"meta-llama/Llama-3.2-3B-Instruct",
"meta-llama/Llama-3.2-1B-Instruct",
"meta-llama/Llama-3.1-8B-Instruct",
"NousResearch/Hermes-3-Llama-3.1-8B",
"google/gemma-2-27b-it",
"google/gemma-2-9b-it",
"google/gemma-2-2b-it",
"mistralai/Mistral-Nemo-Instruct-2407",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-7B-Instruct-v0.3",
"Qwen/Qwen2.5-72B-Instruct",
"Qwen/QwQ-32B-Preview",
"PowerInfer/SmallThinker-3B-Preview",
"HuggingFaceTB/SmolLM2-1.7B-Instruct",
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"microsoft/Phi-3.5-mini-instruct",
]
featured_model_radio = gr.Radio(
label="Select a model below",
choices=models_list,
value="meta-llama/Llama-3.3-70B-Instruct",
interactive=True
)
def filter_models(search_term):
filtered = [m for m in models_list if search_term.lower() in m.lower()]
return gr.update(choices=filtered)
model_search_box.change(
fn=filter_models,
inputs=model_search_box,
outputs=featured_model_radio
)
featured_model_radio.change(
fn=set_custom_model_from_radio,
inputs=featured_model_radio,
outputs=custom_model_box
)
# Example Prompts accordion
with gr.Accordion("Example Prompts", open=False):
ex1_btn = gr.Button("Example 1: 'Howdy, partner!'")
ex2_btn = gr.Button("Example 2: 'What's your model name and who trained you?'")
ex3_btn = gr.Button("Example 3: 'How many R's in Strawberry?'")
# Helper function that returns an update for user_textbox
def load_example(example_text):
return gr.update(value=example_text)
ex1_btn.click(fn=lambda: load_example("Howdy, partner!"),
inputs=[],
outputs=user_textbox)
ex2_btn.click(fn=lambda: load_example("What's your model name and who trained you?"),
inputs=[],
outputs=user_textbox)
ex3_btn.click(fn=lambda: load_example("How many R's are there in the word Strawberry?"),
inputs=[],
outputs=user_textbox)
print("Gradio interface initialized.")
if __name__ == "__main__":
print("Launching the demo application.")
demo.launch()