Spaces:
Running
Running
| import gradio as gr | |
| from openai import OpenAI | |
| import os | |
| # Retrieve the access token from the environment variable | |
| ACCESS_TOKEN = os.getenv("HF_TOKEN") | |
| print("Access token loaded.") | |
| # Initialize the OpenAI client with the Hugging Face Inference API endpoint | |
| client = OpenAI( | |
| base_url="https://api-inference.huggingface.co/v1/", | |
| api_key=ACCESS_TOKEN, | |
| ) | |
| print("OpenAI client initialized.") | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| frequency_penalty, | |
| seed, | |
| custom_model, | |
| selected_model | |
| ): | |
| """ | |
| Handles the chatbot response generation. | |
| """ | |
| print(f"Received message: {message}") | |
| print(f"History: {history}") | |
| print(f"System message: {system_message}") | |
| print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") | |
| print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}") | |
| print(f"Custom model: {custom_model}") | |
| print(f"Selected model: {selected_model}") | |
| # Convert seed to None if -1 (meaning random) | |
| if seed == -1: | |
| seed = None | |
| # Construct the messages array required by the API | |
| messages = [{"role": "system", "content": system_message}] | |
| # Add conversation history to the context | |
| for val in history: | |
| user_part = val[0] | |
| assistant_part = val[1] | |
| if user_part: | |
| messages.append({"role": "user", "content": user_part}) | |
| print(f"Added user message to context: {user_part}") | |
| if assistant_part: | |
| messages.append({"role": "assistant", "content": assistant_part}) | |
| print(f"Added assistant message to context: {assistant_part}") | |
| # Append the latest user message | |
| messages.append({"role": "user", "content": message}) | |
| # Determine which model to use | |
| model_to_use = ( | |
| custom_model.strip() | |
| if custom_model.strip() != "" | |
| else selected_model.strip() | |
| ) | |
| print(f"Model selected for inference: {model_to_use}") | |
| # Start with an empty string to build the response as tokens stream in | |
| response = "" | |
| print("Sending request to OpenAI API.") | |
| # Make the streaming request to the HF Inference API via openai-like client | |
| for message_chunk in client.chat.completions.create( | |
| model=model_to_use, | |
| max_tokens=max_tokens, | |
| stream=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| frequency_penalty=frequency_penalty, | |
| seed=seed, | |
| messages=messages, | |
| ): | |
| # Extract the token text from the response chunk | |
| token_text = message_chunk.choices[0].delta.content | |
| print(f"Received token: {token_text}") | |
| response += token_text | |
| yield response | |
| print("Completed response generation.") | |
| # Predefined list of placeholder models for the Featured Models accordion | |
| models_list = [ | |
| "meta-llama/Llama-3.3-70B-Instruct", | |
| "bigscience/bloom-7b1", | |
| "EleutherAI/gpt-neo-2.7B", | |
| "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5", | |
| "HuggingFace/distilgpt2", | |
| ] | |
| # Function to filter models based on search input | |
| def filter_models(search_term): | |
| filtered_models = [m for m in models_list if search_term.lower() in m.lower()] | |
| return gr.update(choices=filtered_models) | |
| # Create a Chatbot component with a specified height | |
| chatbot = gr.Chatbot(height=600) | |
| print("Chatbot interface created.") | |
| # Create the Gradio ChatInterface | |
| # Added "Featured Models" accordion and integrated filtering | |
| demo = gr.Interface( | |
| fn=respond, | |
| inputs=[ | |
| gr.Textbox(value="", label="System message"), | |
| gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"), | |
| gr.Slider( | |
| minimum=-2.0, | |
| maximum=2.0, | |
| value=0.0, | |
| step=0.1, | |
| label="Frequency Penalty" | |
| ), | |
| gr.Slider( | |
| minimum=-1, | |
| maximum=65535, # Arbitrary upper limit for demonstration | |
| value=-1, | |
| step=1, | |
| label="Seed (-1 for random)" | |
| ), | |
| gr.Textbox( | |
| value="", | |
| label="Custom Model", | |
| info="(Optional) Provide a custom Hugging Face model path. This will override the default model if not empty.", | |
| ), | |
| # Add Featured Models accordion | |
| gr.Accordion("Featured Models", open=True, children=[ | |
| gr.Textbox(label="Filter Models", placeholder="Search for a featured model...", lines=1).change( | |
| filter_models, inputs=["value"], outputs="choices" | |
| ), | |
| gr.Radio( | |
| label="Select a featured model", | |
| value="meta-llama/Llama-3.3-70B-Instruct", | |
| choices=models_list, | |
| elem_id="model-radio", | |
| ) | |
| ]), | |
| ], | |
| outputs=gr.Chatbot(height=600), | |
| theme="Nymbo/Nymbo_Theme", | |
| ) | |
| print("Gradio interface initialized.") | |
| if __name__ == "__main__": | |
| print("Launching the demo application.") | |
| demo.launch() |