Nymbo's picture
Update app.py
27c8b8d verified
raw
history blame
5.17 kB
import gradio as gr
from openai import OpenAI
import os
# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
custom_model,
selected_model
):
"""
Handles the chatbot response generation.
"""
print(f"Received message: {message}")
print(f"History: {history}")
print(f"System message: {system_message}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
print(f"Custom model: {custom_model}")
print(f"Selected model: {selected_model}")
# Convert seed to None if -1 (meaning random)
if seed == -1:
seed = None
# Construct the messages array required by the API
messages = [{"role": "system", "content": system_message}]
# Add conversation history to the context
for val in history:
user_part = val[0]
assistant_part = val[1]
if user_part:
messages.append({"role": "user", "content": user_part})
print(f"Added user message to context: {user_part}")
if assistant_part:
messages.append({"role": "assistant", "content": assistant_part})
print(f"Added assistant message to context: {assistant_part}")
# Append the latest user message
messages.append({"role": "user", "content": message})
# Determine which model to use
model_to_use = (
custom_model.strip()
if custom_model.strip() != ""
else selected_model.strip()
)
print(f"Model selected for inference: {model_to_use}")
# Start with an empty string to build the response as tokens stream in
response = ""
print("Sending request to OpenAI API.")
# Make the streaming request to the HF Inference API via openai-like client
for message_chunk in client.chat.completions.create(
model=model_to_use,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty,
seed=seed,
messages=messages,
):
# Extract the token text from the response chunk
token_text = message_chunk.choices[0].delta.content
print(f"Received token: {token_text}")
response += token_text
yield response
print("Completed response generation.")
# Predefined list of placeholder models for the Featured Models accordion
models_list = [
"meta-llama/Llama-3.3-70B-Instruct",
"bigscience/bloom-7b1",
"EleutherAI/gpt-neo-2.7B",
"OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5",
"HuggingFace/distilgpt2",
]
# Function to filter models based on search input
def filter_models(search_term):
filtered_models = [m for m in models_list if search_term.lower() in m.lower()]
return gr.update(choices=filtered_models)
# Create a Chatbot component with a specified height
chatbot = gr.Chatbot(height=600)
print("Chatbot interface created.")
# Create the Gradio ChatInterface
# Added "Featured Models" accordion and integrated filtering
demo = gr.Interface(
fn=respond,
inputs=[
gr.Textbox(value="", label="System message"),
gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"),
gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Frequency Penalty"
),
gr.Slider(
minimum=-1,
maximum=65535, # Arbitrary upper limit for demonstration
value=-1,
step=1,
label="Seed (-1 for random)"
),
gr.Textbox(
value="",
label="Custom Model",
info="(Optional) Provide a custom Hugging Face model path. This will override the default model if not empty.",
),
# Add Featured Models accordion
gr.Accordion("Featured Models", open=True, children=[
gr.Textbox(label="Filter Models", placeholder="Search for a featured model...", lines=1).change(
filter_models, inputs=["value"], outputs="choices"
),
gr.Radio(
label="Select a featured model",
value="meta-llama/Llama-3.3-70B-Instruct",
choices=models_list,
elem_id="model-radio",
)
]),
],
outputs=gr.Chatbot(height=600),
theme="Nymbo/Nymbo_Theme",
)
print("Gradio interface initialized.")
if __name__ == "__main__":
print("Launching the demo application.")
demo.launch()