Spaces:
Running
Running
File size: 10,735 Bytes
038f313 77298b9 7de1759 038f313 880ced6 e13eb1b 038f313 e13eb1b 038f313 e13eb1b 038f313 77298b9 7de1759 038f313 3a64d68 98674ca 77298b9 038f313 e13eb1b 52ad57a 7de1759 10ffb1d 7de1759 e13eb1b 10ffb1d 7de1759 f7c4208 7de1759 52ad57a 038f313 7de1759 77298b9 e7683ca 77298b9 7de1759 77298b9 7de1759 77298b9 7de1759 77298b9 7de1759 f7c4208 77298b9 7de1759 542c2ac e13eb1b f7c4208 7de1759 77298b9 7de1759 77298b9 7de1759 77298b9 7de1759 e7683ca 8696822 77298b9 7de1759 77298b9 7de1759 10ffb1d e7683ca 7de1759 e7683ca 10ffb1d 7de1759 77298b9 7de1759 77298b9 7de1759 77298b9 e7683ca 7de1759 e7683ca 7de1759 e7683ca 7de1759 e7683ca 10ffb1d 7de1759 10ffb1d 7de1759 e7683ca 7de1759 77298b9 7de1759 77298b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
import gradio as gr
from openai import OpenAI
import os
# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")
def respond(
user_message,
chat_history,
system_msg,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
featured_model,
custom_model
):
"""
This function handles the chatbot response. It takes in:
- user_message: the user's newly typed message
- chat_history: the list of (user, assistant) message pairs
- system_msg: the system instruction or system-level context
- max_tokens: the maximum number of tokens to generate
- temperature: sampling temperature
- top_p: top-p (nucleus) sampling
- frequency_penalty: penalize repeated tokens in the output
- seed: a fixed seed for reproducibility; -1 means 'random'
- featured_model: the chosen model name from 'Featured Models' radio
- custom_model: the optional custom model that overrides the featured one if provided
"""
print(f"Received user message: {user_message}")
print(f"System message: {system_msg}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}, Freq-Penalty: {frequency_penalty}, Seed: {seed}")
print(f"Featured model: {featured_model}")
print(f"Custom model: {custom_model}")
# Convert the seed to None if user set it to -1 (meaning random)
if seed == -1:
seed = None
# Decide which model to actually use
# If custom_model is non-empty, use that; otherwise use the chosen featured_model
model_to_use = custom_model.strip() if custom_model.strip() != "" else featured_model
# Provide a default fallback if for some reason both are empty
if model_to_use.strip() == "":
model_to_use = "meta-llama/Llama-3.3-70B-Instruct"
print(f"Model selected for inference: {model_to_use}")
# Construct the conversation history in the format required by HF's Inference API
messages = []
if system_msg.strip():
messages.append({"role": "system", "content": system_msg.strip()})
# Add the conversation history
for user_text, assistant_text in chat_history:
if user_text:
messages.append({"role": "user", "content": user_text})
if assistant_text:
messages.append({"role": "assistant", "content": assistant_text})
# Add the new user message to the conversation
messages.append({"role": "user", "content": user_message})
# We'll build the response token-by-token in a streaming loop
response_so_far = ""
print("Sending request to the Hugging Face Inference API...")
# Make the streaming request to the HF Inference API
try:
for resp_chunk in client.chat.completions.create(
model=model_to_use,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty,
seed=seed,
messages=messages,
):
token_text = resp_chunk.choices[0].delta.content
response_so_far += token_text
# We yield back the updated message to display partial progress in the chatbot
yield response_so_far
except Exception as e:
# If there's an error, let's at least show it in the chat
error_text = f"[ERROR] {str(e)}"
print(error_text)
yield response_so_far + "\n\n" + error_text
print("Completed response generation.")
#
# BUILDING THE GRADIO INTERFACE BELOW
#
# List of featured models; adjust or replace these placeholders with real text-generation models
models_list = [
"meta-llama/Llama-3.3-70B-Instruct",
"meta-llama/Llama-2-13B-chat-hf",
"bigscience/bloom",
"openlm-research/open_llama_7b",
"facebook/opt-6.7b",
"google/flan-t5-xxl",
]
def filter_models(search_term):
"""Filters the models_list by the given search_term and returns an update for the Radio component."""
filtered = [m for m in models_list if search_term.lower() in m.lower()]
return gr.update(choices=filtered)
with gr.Blocks(theme="Nymbo/Nymbo_Theme_5") as demo:
gr.Markdown("# Serverless-TextGen-Hub (Enhanced)")
gr.Markdown("**A comprehensive UI for text generation with a featured-models dropdown and a custom override**.")
# We keep track of the conversation in a Gradio state variable (list of tuples)
chat_history = gr.State([])
# Tabs for organization
with gr.Tab("Basic Settings"):
with gr.Row():
with gr.Column(elem_id="prompt-container"):
# System Message
system_msg = gr.Textbox(
label="System message",
placeholder="Enter system-level instructions or context here.",
lines=2
)
# Accordion for featured models
with gr.Accordion("Featured Models", open=True):
model_search = gr.Textbox(
label="Filter Models",
placeholder="Search for a featured model...",
lines=1
)
# The radio that lists our featured models
model_radio = gr.Radio(
label="Select a featured model below",
choices=models_list,
value=models_list[0], # default
interactive=True
)
# Link the search box to update the model_radio choices
model_search.change(filter_models, inputs=model_search, outputs=model_radio)
# Custom Model
custom_model_box = gr.Textbox(
label="Custom Model (Optional)",
info="If provided, overrides the featured model above. e.g. 'meta-llama/Llama-3.3-70B-Instruct'",
placeholder="Your huggingface.co/username/model_name path"
)
with gr.Tab("Advanced Settings"):
with gr.Row():
max_tokens_slider = gr.Slider(
minimum=1,
maximum=4096,
value=512,
step=1,
label="Max new tokens"
)
temperature_slider = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature"
)
top_p_slider = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-P"
)
with gr.Row():
freq_penalty_slider = gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Frequency Penalty"
)
seed_slider = gr.Slider(
minimum=-1,
maximum=65535,
value=-1,
step=1,
label="Seed (-1 for random)"
)
# Chat interface area: user input -> assistant output
with gr.Row():
chatbot = gr.Chatbot(
label="TextGen Chat",
height=500
)
# The user types a message here
user_input = gr.Textbox(
label="Your message",
placeholder="Type your text prompt here..."
)
# "Send" button triggers our respond() function, updates the chatbot
send_button = gr.Button("Send")
# A Clear Chat button to reset the conversation
clear_button = gr.Button("Clear Chat")
# Define how the Send button updates the state and chatbot
def user_submission(user_text, history):
"""
This function gets called first to add the user's message to the chat.
We return the updated chat_history with the user's message appended,
plus an empty string for the next user input box.
"""
if user_text.strip() == "":
return history, ""
# Append user message to chat
history = history + [(user_text, None)]
return history, ""
send_button.click(
fn=user_submission,
inputs=[user_input, chat_history],
outputs=[chat_history, user_input]
)
# Then we run the respond function (streaming) to generate the assistant message
def bot_response(
history,
system_msg,
max_tokens,
temperature,
top_p,
freq_penalty,
seed,
featured_model,
custom_model
):
"""
This function is called to generate the assistant's response
based on the conversation so far, system message, etc.
We do the streaming here.
"""
if not history:
yield history
# The last user message is in history[-1][0]
user_message = history[-1][0] if history else ""
# We pass everything to respond() generator
bot_stream = respond(
user_message=user_message,
chat_history=history[:-1], # all except the newly appended user message
system_msg=system_msg,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
frequency_penalty=freq_penalty,
seed=seed,
featured_model=featured_model,
custom_model=custom_model
)
partial_text = ""
for partial_text in bot_stream:
# We'll keep updating the last message in the conversation with partial_text
updated_history = history[:-1] + [(history[-1][0], partial_text)]
yield updated_history
send_button.click(
fn=bot_response,
inputs=[
chat_history,
system_msg,
max_tokens_slider,
temperature_slider,
top_p_slider,
freq_penalty_slider,
seed_slider,
model_radio,
custom_model_box
],
outputs=chatbot
)
# Clear chat just resets the state
def clear_chat():
return [], ""
clear_button.click(
fn=clear_chat,
inputs=[],
outputs=[chat_history, user_input]
)
# Launch the application
if __name__ == "__main__":
print("Launching the Serverless-TextGen-Hub with Featured Models & Custom Model override.")
demo.launch() |