ydshieh
commited on
Commit
·
cd04261
1
Parent(s):
cb8dbda
Update
Browse files
app.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
| 3 |
import numpy as np
|
| 4 |
import os
|
| 5 |
import requests
|
|
@@ -9,6 +9,90 @@ from PIL import Image
|
|
| 9 |
from transformers import AutoProcessor, AutoModelForVision2Seq
|
| 10 |
import cv2
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
def is_overlapping(rect1, rect2):
|
| 14 |
x1, y1, x2, y2 = rect1
|
|
@@ -62,12 +146,20 @@ def draw_entity_boxes_on_image(image, entities, show=False, save_path=None):
|
|
| 62 |
text_offset_original = text_height - base_height
|
| 63 |
text_spaces = 3
|
| 64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
for entity_name, (start, end), bboxes in entities:
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
| 67 |
orig_x1, orig_y1, orig_x2, orig_y2 = int(x1_norm * image_w), int(y1_norm * image_h), int(x2_norm * image_w), int(y2_norm * image_h)
|
|
|
|
| 68 |
# draw bbox
|
| 69 |
# random color
|
| 70 |
-
color = tuple(np.random.randint(0, 255, size=3).tolist())
|
| 71 |
new_image = cv2.rectangle(new_image, (orig_x1, orig_y1), (orig_x2, orig_y2), color, box_line)
|
| 72 |
|
| 73 |
l_o, r_o = box_line // 2 + box_line % 2, box_line // 2 + box_line % 2 + 1
|
|
@@ -131,6 +223,12 @@ def main():
|
|
| 131 |
|
| 132 |
def generate_predictions(image_input, text_input, do_sample, sampling_topp, sampling_temperature):
|
| 133 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
if text_input == "Brief":
|
| 135 |
text_input = "<grounding>An image of"
|
| 136 |
elif text_input == "Detailed":
|
|
@@ -156,7 +254,29 @@ def main():
|
|
| 156 |
|
| 157 |
annotated_image = draw_entity_boxes_on_image(image_input, entities, show=True)
|
| 158 |
|
| 159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
|
| 161 |
term_of_use = """
|
| 162 |
### Terms of use
|
|
@@ -191,7 +311,7 @@ def main():
|
|
| 191 |
label="Generated Description",
|
| 192 |
combine_adjacent=False,
|
| 193 |
show_legend=True,
|
| 194 |
-
).style(color_map=
|
| 195 |
|
| 196 |
with gr.Row():
|
| 197 |
with gr.Column():
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import random
|
| 3 |
import numpy as np
|
| 4 |
import os
|
| 5 |
import requests
|
|
|
|
| 9 |
from transformers import AutoProcessor, AutoModelForVision2Seq
|
| 10 |
import cv2
|
| 11 |
|
| 12 |
+
colors = [
|
| 13 |
+
(255, 255, 0),
|
| 14 |
+
(255, 0, 255),
|
| 15 |
+
(0, 255, 255),
|
| 16 |
+
|
| 17 |
+
(255, 0, 0),
|
| 18 |
+
(0, 255, 0),
|
| 19 |
+
(0, 0, 255),
|
| 20 |
+
|
| 21 |
+
(255, 128, 0),
|
| 22 |
+
(255, 0, 128),
|
| 23 |
+
(0, 255, 128),
|
| 24 |
+
|
| 25 |
+
(128, 255, 0),
|
| 26 |
+
(128, 0, 255),
|
| 27 |
+
(0, 128, 255),
|
| 28 |
+
|
| 29 |
+
(255, 128, 128),
|
| 30 |
+
(128, 255, 128),
|
| 31 |
+
(128, 128, 255),
|
| 32 |
+
|
| 33 |
+
(128, 255, 255),
|
| 34 |
+
(255, 128, 255),
|
| 35 |
+
(255, 255, 128),
|
| 36 |
+
|
| 37 |
+
(255, 128, 64),
|
| 38 |
+
(255, 64, 128),
|
| 39 |
+
(64, 255, 128),
|
| 40 |
+
|
| 41 |
+
(128, 255, 64),
|
| 42 |
+
(128, 64, 255),
|
| 43 |
+
(64, 128, 255),
|
| 44 |
+
|
| 45 |
+
(255, 64, 64),
|
| 46 |
+
(64, 255, 64),
|
| 47 |
+
(64, 64, 255),
|
| 48 |
+
|
| 49 |
+
(64, 255, 255),
|
| 50 |
+
(255, 64, 255),
|
| 51 |
+
(255, 255, 64),
|
| 52 |
+
|
| 53 |
+
(128, 64, 64),
|
| 54 |
+
(64, 128, 64),
|
| 55 |
+
(64, 64, 128),
|
| 56 |
+
|
| 57 |
+
(64, 128, 128),
|
| 58 |
+
(128, 64, 128),
|
| 59 |
+
(128, 128, 64),
|
| 60 |
+
|
| 61 |
+
(128, 128, 0),
|
| 62 |
+
(128, 0, 128),
|
| 63 |
+
(0, 128, 128),
|
| 64 |
+
|
| 65 |
+
(128, 0, 0),
|
| 66 |
+
(0, 128, 0),
|
| 67 |
+
(0, 0, 128),
|
| 68 |
+
|
| 69 |
+
(64, 64, 0),
|
| 70 |
+
(64, 0, 64),
|
| 71 |
+
(0, 64, 64),
|
| 72 |
+
|
| 73 |
+
(64, 0, 0),
|
| 74 |
+
(0, 64, 0),
|
| 75 |
+
(0, 0, 64),
|
| 76 |
+
|
| 77 |
+
(255, 64, 0),
|
| 78 |
+
(255, 0, 64),
|
| 79 |
+
(0, 255, 64),
|
| 80 |
+
|
| 81 |
+
(64, 255, 0),
|
| 82 |
+
(64, 0, 255),
|
| 83 |
+
(0, 64, 255),
|
| 84 |
+
|
| 85 |
+
(128, 64, 0),
|
| 86 |
+
(128, 0, 64),
|
| 87 |
+
(0, 128, 64),
|
| 88 |
+
|
| 89 |
+
(64, 128, 0),
|
| 90 |
+
(128, 0, 255),
|
| 91 |
+
(0, 64, 128),
|
| 92 |
+
]
|
| 93 |
+
|
| 94 |
+
color_map = {f"color_id_{color_id}": "red" for color_id, color in enumerate(colors)}
|
| 95 |
+
|
| 96 |
|
| 97 |
def is_overlapping(rect1, rect2):
|
| 98 |
x1, y1, x2, y2 = rect1
|
|
|
|
| 146 |
text_offset_original = text_height - base_height
|
| 147 |
text_spaces = 3
|
| 148 |
|
| 149 |
+
# num_bboxes = sum(len(x[-1]) for x in entities)
|
| 150 |
+
used_colors = colors # random.sample(colors, k=num_bboxes)
|
| 151 |
+
|
| 152 |
+
color_id = -1
|
| 153 |
for entity_name, (start, end), bboxes in entities:
|
| 154 |
+
color_id += 1
|
| 155 |
+
for bbox_id, (x1_norm, y1_norm, x2_norm, y2_norm) in enumerate(bboxes):
|
| 156 |
+
if start is None and bbox_id > 0:
|
| 157 |
+
color_id += 1
|
| 158 |
orig_x1, orig_y1, orig_x2, orig_y2 = int(x1_norm * image_w), int(y1_norm * image_h), int(x2_norm * image_w), int(y2_norm * image_h)
|
| 159 |
+
|
| 160 |
# draw bbox
|
| 161 |
# random color
|
| 162 |
+
color = used_colors[bbox_id] # tuple(np.random.randint(0, 255, size=3).tolist())
|
| 163 |
new_image = cv2.rectangle(new_image, (orig_x1, orig_y1), (orig_x2, orig_y2), color, box_line)
|
| 164 |
|
| 165 |
l_o, r_o = box_line // 2 + box_line % 2, box_line // 2 + box_line % 2 + 1
|
|
|
|
| 223 |
|
| 224 |
def generate_predictions(image_input, text_input, do_sample, sampling_topp, sampling_temperature):
|
| 225 |
|
| 226 |
+
user_image_path = "/tmp/user_input_test_image.jpg"
|
| 227 |
+
# This will be of `.jpg` format
|
| 228 |
+
image_input.save(user_image_path)
|
| 229 |
+
# This might give different results from the original argument `image_input`
|
| 230 |
+
image_input = Image.open(user_image_path)
|
| 231 |
+
|
| 232 |
if text_input == "Brief":
|
| 233 |
text_input = "<grounding>An image of"
|
| 234 |
elif text_input == "Detailed":
|
|
|
|
| 254 |
|
| 255 |
annotated_image = draw_entity_boxes_on_image(image_input, entities, show=True)
|
| 256 |
|
| 257 |
+
color_id = -1
|
| 258 |
+
entity_info = []
|
| 259 |
+
for entity_name, (start, end), bboxes in entities:
|
| 260 |
+
color_id += 1
|
| 261 |
+
for bbox_id, _ in enumerate(bboxes):
|
| 262 |
+
if start is None and bbox_id > 0:
|
| 263 |
+
color_id += 1
|
| 264 |
+
if start is not None:
|
| 265 |
+
entity_info.append(((start, end), color_id))
|
| 266 |
+
|
| 267 |
+
colored_text = []
|
| 268 |
+
prev_start = 0
|
| 269 |
+
end = 0
|
| 270 |
+
for idx, ((start, end), color_id) in enumerate(entity_info):
|
| 271 |
+
if start > prev_start:
|
| 272 |
+
colored_text.append((processed_text[prev_start:start], None))
|
| 273 |
+
colored_text.append((processed_text[start:end], f"color_id_{color_id}"))
|
| 274 |
+
prev_start = start
|
| 275 |
+
|
| 276 |
+
if end < len(processed_text):
|
| 277 |
+
colored_text.append((processed_text[end:len(processed_text)], None))
|
| 278 |
+
|
| 279 |
+
return annotated_image, colored_text
|
| 280 |
|
| 281 |
term_of_use = """
|
| 282 |
### Terms of use
|
|
|
|
| 311 |
label="Generated Description",
|
| 312 |
combine_adjacent=False,
|
| 313 |
show_legend=True,
|
| 314 |
+
).style(color_map=color_map)
|
| 315 |
|
| 316 |
with gr.Row():
|
| 317 |
with gr.Column():
|