Spaces:
				
			
			
	
			
			
		Build error
		
	
	
	
			
			
	
	
	
	
		
		
		Build error
		
	Upload 3 files (#8)
Browse files- Upload 3 files (b5ef021ecf5f1ea021b86966f96c777b8ca6430e)
Co-authored-by: John Smith <[email protected]>
- README.md +12 -12
- app.py +219 -158
- externalmod.py +105 -24
    	
        README.md
    CHANGED
    
    | @@ -1,13 +1,13 @@ | |
| 1 | 
            -
            ---
         | 
| 2 | 
            -
            title: Huggingface Diffusion
         | 
| 3 | 
            -
            emoji: 🛕🛕
         | 
| 4 | 
            -
            colorFrom: green
         | 
| 5 | 
            -
            colorTo: blue
         | 
| 6 | 
            -
            sdk: gradio
         | 
| 7 | 
            -
            sdk_version: 4. | 
| 8 | 
            -
            app_file: app.py
         | 
| 9 | 
            -
            pinned: true
         | 
| 10 | 
            -
            short_description: Compare 909+ AI Art Models 6 at a time!
         | 
| 11 | 
            -
            ---
         | 
| 12 | 
            -
             | 
| 13 | 
             
            Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
         | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            title: Huggingface Diffusion
         | 
| 3 | 
            +
            emoji: 🛕🛕
         | 
| 4 | 
            +
            colorFrom: green
         | 
| 5 | 
            +
            colorTo: blue
         | 
| 6 | 
            +
            sdk: gradio
         | 
| 7 | 
            +
            sdk_version: 4.42.0
         | 
| 8 | 
            +
            app_file: app.py
         | 
| 9 | 
            +
            pinned: true
         | 
| 10 | 
            +
            short_description: Compare 909+ AI Art Models 6 at a time!
         | 
| 11 | 
            +
            ---
         | 
| 12 | 
            +
             | 
| 13 | 
             
            Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
         | 
    	
        app.py
    CHANGED
    
    | @@ -1,158 +1,219 @@ | |
| 1 | 
            -
            import gradio as gr
         | 
| 2 | 
            -
            from  | 
| 3 | 
            -
            from  | 
| 4 | 
            -
             | 
| 5 | 
            -
            import  | 
| 6 | 
            -
            from threading import RLock
         | 
| 7 | 
            -
            lock = RLock()
         | 
| 8 | 
            -
             | 
| 9 | 
            -
             | 
| 10 | 
            -
             | 
| 11 | 
            -
             | 
| 12 | 
            -
                
         | 
| 13 | 
            -
                 | 
| 14 | 
            -
             | 
| 15 | 
            -
             | 
| 16 | 
            -
             | 
| 17 | 
            -
             | 
| 18 | 
            -
             | 
| 19 | 
            -
                             | 
| 20 | 
            -
             | 
| 21 | 
            -
             | 
| 22 | 
            -
             | 
| 23 | 
            -
             | 
| 24 | 
            -
             | 
| 25 | 
            -
             | 
| 26 | 
            -
             | 
| 27 | 
            -
             | 
| 28 | 
            -
             | 
| 29 | 
            -
             | 
| 30 | 
            -
             | 
| 31 | 
            -
             | 
| 32 | 
            -
             | 
| 33 | 
            -
             | 
| 34 | 
            -
            def  | 
| 35 | 
            -
                 | 
| 36 | 
            -
             | 
| 37 | 
            -
             | 
| 38 | 
            -
             | 
| 39 | 
            -
             | 
| 40 | 
            -
                 | 
| 41 | 
            -
             | 
| 42 | 
            -
             | 
| 43 | 
            -
             | 
| 44 | 
            -
             | 
| 45 | 
            -
                 | 
| 46 | 
            -
                 | 
| 47 | 
            -
             | 
| 48 | 
            -
             | 
| 49 | 
            -
             | 
| 50 | 
            -
             | 
| 51 | 
            -
             | 
| 52 | 
            -
                 | 
| 53 | 
            -
             | 
| 54 | 
            -
                 | 
| 55 | 
            -
             | 
| 56 | 
            -
             | 
| 57 | 
            -
             | 
| 58 | 
            -
             | 
| 59 | 
            -
                 | 
| 60 | 
            -
             | 
| 61 | 
            -
             | 
| 62 | 
            -
             | 
| 63 | 
            -
             | 
| 64 | 
            -
             | 
| 65 | 
            -
             | 
| 66 | 
            -
             | 
| 67 | 
            -
                     | 
| 68 | 
            -
             | 
| 69 | 
            -
                     | 
| 70 | 
            -
             | 
| 71 | 
            -
             | 
| 72 | 
            -
                     | 
| 73 | 
            -
                     | 
| 74 | 
            -
                     | 
| 75 | 
            -
                 | 
| 76 | 
            -
                     | 
| 77 | 
            -
             | 
| 78 | 
            -
             | 
| 79 | 
            -
             | 
| 80 | 
            -
             | 
| 81 | 
            -
             | 
| 82 | 
            -
             | 
| 83 | 
            -
             | 
| 84 | 
            -
                 | 
| 85 | 
            -
             | 
| 86 | 
            -
             | 
| 87 | 
            -
             | 
| 88 | 
            -
                 | 
| 89 | 
            -
             | 
| 90 | 
            -
                     | 
| 91 | 
            -
             | 
| 92 | 
            -
                     | 
| 93 | 
            -
             | 
| 94 | 
            -
                     | 
| 95 | 
            -
             | 
| 96 | 
            -
             | 
| 97 | 
            -
             | 
| 98 | 
            -
             | 
| 99 | 
            -
                 | 
| 100 | 
            -
             | 
| 101 | 
            -
             | 
| 102 | 
            -
             | 
| 103 | 
            -
             | 
| 104 | 
            -
             | 
| 105 | 
            -
             | 
| 106 | 
            -
            . | 
| 107 | 
            -
            . | 
| 108 | 
            -
            . | 
| 109 | 
            -
             | 
| 110 | 
            -
             | 
| 111 | 
            -
             | 
| 112 | 
            -
             | 
| 113 | 
            -
             | 
| 114 | 
            -
             | 
| 115 | 
            -
             | 
| 116 | 
            -
                     | 
| 117 | 
            -
             | 
| 118 | 
            -
             | 
| 119 | 
            -
                 | 
| 120 | 
            -
             | 
| 121 | 
            -
             | 
| 122 | 
            -
             | 
| 123 | 
            -
             | 
| 124 | 
            -
                             | 
| 125 | 
            -
                             | 
| 126 | 
            -
             | 
| 127 | 
            -
             | 
| 128 | 
            -
             | 
| 129 | 
            -
             | 
| 130 | 
            -
             | 
| 131 | 
            -
             | 
| 132 | 
            -
             | 
| 133 | 
            -
             | 
| 134 | 
            -
             | 
| 135 | 
            -
             | 
| 136 | 
            -
             | 
| 137 | 
            -
             | 
| 138 | 
            -
             | 
| 139 | 
            -
             | 
| 140 | 
            -
             | 
| 141 | 
            -
             | 
| 142 | 
            -
             | 
| 143 | 
            -
             | 
| 144 | 
            -
                         | 
| 145 | 
            -
             | 
| 146 | 
            -
             | 
| 147 | 
            -
             | 
| 148 | 
            -
             | 
| 149 | 
            -
             | 
| 150 | 
            -
             | 
| 151 | 
            -
             | 
| 152 | 
            -
             | 
| 153 | 
            -
             | 
| 154 | 
            -
             | 
| 155 | 
            -
             | 
| 156 | 
            -
             | 
| 157 | 
            -
             | 
| 158 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import gradio as gr
         | 
| 2 | 
            +
            from all_models import models
         | 
| 3 | 
            +
            from externalmod import gr_Interface_load, save_image, randomize_seed
         | 
| 4 | 
            +
            import asyncio
         | 
| 5 | 
            +
            import os
         | 
| 6 | 
            +
            from threading import RLock
         | 
| 7 | 
            +
            lock = RLock()
         | 
| 8 | 
            +
            HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
         | 
| 9 | 
            +
             | 
| 10 | 
            +
             | 
| 11 | 
            +
            def load_fn(models):
         | 
| 12 | 
            +
                global models_load
         | 
| 13 | 
            +
                models_load = {}
         | 
| 14 | 
            +
                for model in models:
         | 
| 15 | 
            +
                    if model not in models_load.keys():
         | 
| 16 | 
            +
                        try:
         | 
| 17 | 
            +
                            m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
         | 
| 18 | 
            +
                        except Exception as error:
         | 
| 19 | 
            +
                            print(error)
         | 
| 20 | 
            +
                            m = gr.Interface(lambda: None, ['text'], ['image'])
         | 
| 21 | 
            +
                        models_load.update({model: m})
         | 
| 22 | 
            +
             | 
| 23 | 
            +
             | 
| 24 | 
            +
            load_fn(models)
         | 
| 25 | 
            +
             | 
| 26 | 
            +
             | 
| 27 | 
            +
            num_models = 6
         | 
| 28 | 
            +
            max_images = 6
         | 
| 29 | 
            +
            inference_timeout = 300
         | 
| 30 | 
            +
            default_models = models[:num_models]
         | 
| 31 | 
            +
            MAX_SEED = 2**32-1
         | 
| 32 | 
            +
             | 
| 33 | 
            +
             | 
| 34 | 
            +
            def extend_choices(choices):
         | 
| 35 | 
            +
                return choices[:num_models] + (num_models - len(choices[:num_models])) * ['NA']
         | 
| 36 | 
            +
             | 
| 37 | 
            +
             | 
| 38 | 
            +
            def update_imgbox(choices):
         | 
| 39 | 
            +
                choices_plus = extend_choices(choices[:num_models])
         | 
| 40 | 
            +
                return [gr.Image(None, label=m, visible=(m!='NA')) for m in choices_plus]
         | 
| 41 | 
            +
             | 
| 42 | 
            +
             | 
| 43 | 
            +
            def random_choices():
         | 
| 44 | 
            +
                import random
         | 
| 45 | 
            +
                random.seed()
         | 
| 46 | 
            +
                return random.choices(models, k=num_models)
         | 
| 47 | 
            +
             | 
| 48 | 
            +
             | 
| 49 | 
            +
            # https://huggingface.co/docs/api-inference/detailed_parameters
         | 
| 50 | 
            +
            # https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
         | 
| 51 | 
            +
            async def infer(model_str, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1, timeout=inference_timeout):
         | 
| 52 | 
            +
                kwargs = {}
         | 
| 53 | 
            +
                if height > 0: kwargs["height"] = height
         | 
| 54 | 
            +
                if width > 0: kwargs["width"] = width
         | 
| 55 | 
            +
                if steps > 0: kwargs["num_inference_steps"] = steps
         | 
| 56 | 
            +
                if cfg > 0: cfg = kwargs["guidance_scale"] = cfg
         | 
| 57 | 
            +
                if seed == -1: kwargs["seed"] = randomize_seed()
         | 
| 58 | 
            +
                else: kwargs["seed"] = seed
         | 
| 59 | 
            +
                task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn,
         | 
| 60 | 
            +
                                           prompt=prompt, negative_prompt=nprompt, **kwargs, token=HF_TOKEN))
         | 
| 61 | 
            +
                await asyncio.sleep(0)
         | 
| 62 | 
            +
                try:
         | 
| 63 | 
            +
                    result = await asyncio.wait_for(task, timeout=timeout)
         | 
| 64 | 
            +
                except asyncio.TimeoutError as e:
         | 
| 65 | 
            +
                    print(e)
         | 
| 66 | 
            +
                    print(f"Task timed out: {model_str}")
         | 
| 67 | 
            +
                    if not task.done(): task.cancel()
         | 
| 68 | 
            +
                    result = None
         | 
| 69 | 
            +
                    raise Exception(f"Task timed out: {model_str}") from e
         | 
| 70 | 
            +
                except Exception as e:
         | 
| 71 | 
            +
                    print(e)
         | 
| 72 | 
            +
                    if not task.done(): task.cancel()
         | 
| 73 | 
            +
                    result = None
         | 
| 74 | 
            +
                    raise Exception() from e
         | 
| 75 | 
            +
                if task.done() and result is not None and not isinstance(result, tuple):
         | 
| 76 | 
            +
                    with lock:
         | 
| 77 | 
            +
                        png_path = "image.png"
         | 
| 78 | 
            +
                        image = save_image(result, png_path, model_str, prompt, nprompt, height, width, steps, cfg, seed)
         | 
| 79 | 
            +
                    return image
         | 
| 80 | 
            +
                return None
         | 
| 81 | 
            +
             | 
| 82 | 
            +
             | 
| 83 | 
            +
            def gen_fn(model_str, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1):
         | 
| 84 | 
            +
                try:
         | 
| 85 | 
            +
                    loop = asyncio.new_event_loop()
         | 
| 86 | 
            +
                    result = loop.run_until_complete(infer(model_str, prompt, nprompt,
         | 
| 87 | 
            +
                                                     height, width, steps, cfg, seed, inference_timeout))
         | 
| 88 | 
            +
                except (Exception, asyncio.CancelledError) as e:
         | 
| 89 | 
            +
                    print(e)
         | 
| 90 | 
            +
                    print(f"Task aborted: {model_str}")
         | 
| 91 | 
            +
                    result = None
         | 
| 92 | 
            +
                    raise gr.Error(f"Task aborted: {model_str}, Error: {e}")
         | 
| 93 | 
            +
                finally:
         | 
| 94 | 
            +
                    loop.close()
         | 
| 95 | 
            +
                return result
         | 
| 96 | 
            +
             | 
| 97 | 
            +
             | 
| 98 | 
            +
            def add_gallery(image, model_str, gallery):
         | 
| 99 | 
            +
                if gallery is None: gallery = []
         | 
| 100 | 
            +
                with lock:
         | 
| 101 | 
            +
                    if image is not None: gallery.insert(0, (image, model_str))
         | 
| 102 | 
            +
                return gallery
         | 
| 103 | 
            +
             | 
| 104 | 
            +
             | 
| 105 | 
            +
            CSS="""
         | 
| 106 | 
            +
            .gradio-container { max-width: 1200px; margin: 0 auto; !important; }
         | 
| 107 | 
            +
            .output { width=112px; height=112px; max_width=112px; max_height=112px; !important; }
         | 
| 108 | 
            +
            .gallery { min_width=512px; min_height=512px; max_height=1024px; !important; }
         | 
| 109 | 
            +
            .guide { text-align: center; !important; }
         | 
| 110 | 
            +
            """
         | 
| 111 | 
            +
             | 
| 112 | 
            +
             | 
| 113 | 
            +
            with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=CSS) as demo:
         | 
| 114 | 
            +
                gr.HTML(
         | 
| 115 | 
            +
                """
         | 
| 116 | 
            +
                    <div>
         | 
| 117 | 
            +
                    <p> <center>For simultaneous generations without hidden queue check out <a href="https://huggingface.co/spaces/Yntec/ToyWorld">Toy World</a>! For more options like single model x6 check out <a href="https://huggingface.co/spaces/John6666/Diffusion80XX4sg">Diffusion80XX4sg</a> by John6666!</center>
         | 
| 118 | 
            +
                    </p></div>
         | 
| 119 | 
            +
                """
         | 
| 120 | 
            +
            )  
         | 
| 121 | 
            +
                with gr.Tab('Huggingface Diffusion'):
         | 
| 122 | 
            +
                    with gr.Column(scale=2):
         | 
| 123 | 
            +
                        with gr.Group():
         | 
| 124 | 
            +
                            txt_input = gr.Textbox(label='Your prompt:', lines=4)
         | 
| 125 | 
            +
                            neg_input = gr.Textbox(label='Negative prompt:', lines=1)
         | 
| 126 | 
            +
                            with gr.Accordion("Advanced", open=False, visible=True):
         | 
| 127 | 
            +
                                with gr.Row():
         | 
| 128 | 
            +
                                    width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
         | 
| 129 | 
            +
                                    height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
         | 
| 130 | 
            +
                                with gr.Row():
         | 
| 131 | 
            +
                                    steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
         | 
| 132 | 
            +
                                    cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
         | 
| 133 | 
            +
                                    seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
         | 
| 134 | 
            +
                                    seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary")
         | 
| 135 | 
            +
                                    seed_rand.click(randomize_seed, None, [seed], queue=False)
         | 
| 136 | 
            +
                        with gr.Row():
         | 
| 137 | 
            +
                            gen_button = gr.Button(f'Generate up to {int(num_models)} images in up to 3 minutes total', variant='primary', scale=3)
         | 
| 138 | 
            +
                            random_button = gr.Button(f'Random {int(num_models)} 🎲', variant='secondary', scale=1)
         | 
| 139 | 
            +
                            #stop_button = gr.Button('Stop', variant='stop', interactive=False, scale=1)
         | 
| 140 | 
            +
                            #gen_button.click(lambda: gr.update(interactive=True), None, stop_button)
         | 
| 141 | 
            +
                        gr.Markdown("Scroll down to see more images and select models.", elem_classes="guide")
         | 
| 142 | 
            +
             | 
| 143 | 
            +
                    with gr.Column(scale=1):
         | 
| 144 | 
            +
                        with gr.Group():
         | 
| 145 | 
            +
                            with gr.Row():
         | 
| 146 | 
            +
                                output = [gr.Image(label=m, show_download_button=True, elem_classes="output",
         | 
| 147 | 
            +
                                          interactive=False, min_width=80, show_share_button=False, format="png",
         | 
| 148 | 
            +
                                          visible=True) for m in default_models]
         | 
| 149 | 
            +
                                current_models = [gr.Textbox(m, visible=False) for m in default_models]
         | 
| 150 | 
            +
             | 
| 151 | 
            +
                    with gr.Column(scale=2):
         | 
| 152 | 
            +
                        gallery = gr.Gallery(label="Output", show_download_button=True, elem_classes="gallery",
         | 
| 153 | 
            +
                                            interactive=False, show_share_button=True, container=True, format="png",
         | 
| 154 | 
            +
                                            preview=True, object_fit="cover", columns=2, rows=2) 
         | 
| 155 | 
            +
             | 
| 156 | 
            +
                    for m, o in zip(current_models, output):
         | 
| 157 | 
            +
                        gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fn,
         | 
| 158 | 
            +
                                          inputs=[m, txt_input, neg_input, height, width, steps, cfg, seed], outputs=[o],
         | 
| 159 | 
            +
                                          concurrency_limit=None, queue=False) # Be sure to delete ", queue=False" when activating the stop button
         | 
| 160 | 
            +
                        o.change(add_gallery, [o, m, gallery], [gallery])
         | 
| 161 | 
            +
                        #stop_button.click(lambda: gr.update(interactive=False), None, stop_button, cancels=[gen_event])
         | 
| 162 | 
            +
             | 
| 163 | 
            +
                    with gr.Column(scale=4):
         | 
| 164 | 
            +
                        with gr.Accordion('Model selection'):
         | 
| 165 | 
            +
                            model_choice = gr.CheckboxGroup(models, label = f'Choose up to {int(num_models)} different models from the {len(models)} available!', value=default_models, interactive=True)
         | 
| 166 | 
            +
                            model_choice.change(update_imgbox, model_choice, output)
         | 
| 167 | 
            +
                            model_choice.change(extend_choices, model_choice, current_models)
         | 
| 168 | 
            +
                            random_button.click(random_choices, None, model_choice)
         | 
| 169 | 
            +
             | 
| 170 | 
            +
                with gr.Tab('Single model'):
         | 
| 171 | 
            +
                    with gr.Column(scale=2):
         | 
| 172 | 
            +
                        model_choice2 = gr.Dropdown(models, label='Choose model', value=models[0])
         | 
| 173 | 
            +
                        with gr.Group():
         | 
| 174 | 
            +
                            txt_input2 = gr.Textbox(label='Your prompt:', lines=4)
         | 
| 175 | 
            +
                            neg_input2 = gr.Textbox(label='Negative prompt:', lines=1)
         | 
| 176 | 
            +
                            with gr.Accordion("Advanced", open=False, visible=True):
         | 
| 177 | 
            +
                                with gr.Row():
         | 
| 178 | 
            +
                                    width2 = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
         | 
| 179 | 
            +
                                    height2 = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
         | 
| 180 | 
            +
                                with gr.Row():
         | 
| 181 | 
            +
                                    steps2 = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
         | 
| 182 | 
            +
                                    cfg2 = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
         | 
| 183 | 
            +
                                    seed2 = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
         | 
| 184 | 
            +
                                    seed_rand2 = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary")
         | 
| 185 | 
            +
                                    seed_rand2.click(randomize_seed, None, [seed2], queue=False)
         | 
| 186 | 
            +
                        num_images = gr.Slider(1, max_images, value=max_images, step=1, label='Number of images')
         | 
| 187 | 
            +
                        with gr.Row():
         | 
| 188 | 
            +
                            gen_button2 = gr.Button('Generate', variant='primary', scale=2)
         | 
| 189 | 
            +
                            #stop_button2 = gr.Button('Stop', variant='stop', interactive=False, scale=1)
         | 
| 190 | 
            +
                            #gen_button2.click(lambda: gr.update(interactive=True), None, stop_button2)
         | 
| 191 | 
            +
             | 
| 192 | 
            +
                    with gr.Column(scale=1):
         | 
| 193 | 
            +
                        with gr.Group():
         | 
| 194 | 
            +
                            with gr.Row():
         | 
| 195 | 
            +
                                output2 = [gr.Image(label='', show_download_button=True, elem_classes="output",
         | 
| 196 | 
            +
                                           interactive=False, min_width=80, visible=True, format="png",
         | 
| 197 | 
            +
                                           show_share_button=False, show_label=False) for _ in range(max_images)]
         | 
| 198 | 
            +
             | 
| 199 | 
            +
                    with gr.Column(scale=2):
         | 
| 200 | 
            +
                        gallery2 = gr.Gallery(label="Output", show_download_button=True, elem_classes="gallery",
         | 
| 201 | 
            +
                                            interactive=False, show_share_button=True, container=True, format="png",
         | 
| 202 | 
            +
                                            preview=True, object_fit="cover", columns=2, rows=2) 
         | 
| 203 | 
            +
             | 
| 204 | 
            +
                    for i, o in enumerate(output2):
         | 
| 205 | 
            +
                        img_i = gr.Number(i, visible=False)
         | 
| 206 | 
            +
                        num_images.change(lambda i, n: gr.update(visible = (i < n)), [img_i, num_images], o, queue=False)
         | 
| 207 | 
            +
                        gen_event2 = gr.on(triggers=[gen_button2.click, txt_input2.submit],
         | 
| 208 | 
            +
                                           fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5: gen_fn(m, t1, t2, n1, n2, n3, n4, n5) if (i < n) else None,
         | 
| 209 | 
            +
                                           inputs=[img_i, num_images, model_choice2, txt_input2, neg_input2,
         | 
| 210 | 
            +
                                                   height2, width2, steps2, cfg2, seed2], outputs=[o],
         | 
| 211 | 
            +
                                                   concurrency_limit=None, queue=False)  # Be sure to delete ", queue=False" when activating the stop button
         | 
| 212 | 
            +
                        o.change(add_gallery, [o, model_choice2, gallery2], [gallery2])
         | 
| 213 | 
            +
                        #stop_button2.click(lambda: gr.update(interactive=False), None, stop_button2, cancels=[gen_event2])
         | 
| 214 | 
            +
             | 
| 215 | 
            +
                gr.Markdown("Based on the [TestGen](https://huggingface.co/spaces/derwahnsinn/TestGen) Space by derwahnsinn, the [SpacIO](https://huggingface.co/spaces/RdnUser77/SpacIO_v1) Space by RdnUser77 and Omnibus's Maximum Multiplier!")
         | 
| 216 | 
            +
             | 
| 217 | 
            +
            demo.queue(default_concurrency_limit=200, max_size=200)
         | 
| 218 | 
            +
            demo.launch(show_api=False, max_threads=400)
         | 
| 219 | 
            +
            # https://github.com/gradio-app/gradio/issues/6339
         | 
    	
        externalmod.py
    CHANGED
    
    | @@ -9,7 +9,7 @@ import re | |
| 9 | 
             
            import tempfile
         | 
| 10 | 
             
            import warnings
         | 
| 11 | 
             
            from pathlib import Path
         | 
| 12 | 
            -
            from typing import TYPE_CHECKING, Callable
         | 
| 13 |  | 
| 14 | 
             
            import httpx
         | 
| 15 | 
             
            import huggingface_hub
         | 
| @@ -33,11 +33,15 @@ if TYPE_CHECKING: | |
| 33 | 
             
                from gradio.interface import Interface
         | 
| 34 |  | 
| 35 |  | 
|  | |
|  | |
|  | |
|  | |
| 36 | 
             
            @document()
         | 
| 37 | 
             
            def load(
         | 
| 38 | 
             
                name: str,
         | 
| 39 | 
             
                src: str | None = None,
         | 
| 40 | 
            -
                hf_token: str | None = None,
         | 
| 41 | 
             
                alias: str | None = None,
         | 
| 42 | 
             
                **kwargs,
         | 
| 43 | 
             
            ) -> Blocks:
         | 
| @@ -48,7 +52,7 @@ def load( | |
| 48 | 
             
                Parameters:
         | 
| 49 | 
             
                    name: the name of the model (e.g. "gpt2" or "facebook/bart-base") or space (e.g. "flax-community/spanish-gpt2"), can include the `src` as prefix (e.g. "models/facebook/bart-base")
         | 
| 50 | 
             
                    src: the source of the model: `models` or `spaces` (or leave empty if source is provided as a prefix in `name`)
         | 
| 51 | 
            -
                    hf_token: optional access token for loading private Hugging Face Hub models or spaces. Find your token here: https://huggingface.co/settings/tokens.  Warning: only provide  | 
| 52 | 
             
                    alias: optional string used as the name of the loaded model instead of the default name (only applies if loading a Space running Gradio 2.x)
         | 
| 53 | 
             
                Returns:
         | 
| 54 | 
             
                    a Gradio Blocks object for the given model
         | 
| @@ -65,7 +69,7 @@ def load( | |
| 65 | 
             
            def load_blocks_from_repo(
         | 
| 66 | 
             
                name: str,
         | 
| 67 | 
             
                src: str | None = None,
         | 
| 68 | 
            -
                hf_token: str | None = None,
         | 
| 69 | 
             
                alias: str | None = None,
         | 
| 70 | 
             
                **kwargs,
         | 
| 71 | 
             
            ) -> Blocks:
         | 
| @@ -89,7 +93,7 @@ def load_blocks_from_repo( | |
| 89 | 
             
                if src.lower() not in factory_methods:
         | 
| 90 | 
             
                    raise ValueError(f"parameter: src must be one of {factory_methods.keys()}")
         | 
| 91 |  | 
| 92 | 
            -
                if hf_token is not None:
         | 
| 93 | 
             
                    if Context.hf_token is not None and Context.hf_token != hf_token:
         | 
| 94 | 
             
                        warnings.warn(
         | 
| 95 | 
             
                            """You are loading a model/Space with a different access token than the one you used to load a previous model/Space. This is not recommended, as it may cause unexpected behavior."""
         | 
| @@ -100,12 +104,16 @@ def load_blocks_from_repo( | |
| 100 | 
             
                return blocks
         | 
| 101 |  | 
| 102 |  | 
| 103 | 
            -
            def from_model( | 
|  | |
|  | |
| 104 | 
             
                model_url = f"https://huggingface.co/{model_name}"
         | 
| 105 | 
             
                api_url = f"https://api-inference.huggingface.co/models/{model_name}"
         | 
| 106 | 
             
                print(f"Fetching model from: {model_url}")
         | 
| 107 |  | 
| 108 | 
            -
                headers =  | 
|  | |
|  | |
| 109 | 
             
                response = httpx.request("GET", api_url, headers=headers)
         | 
| 110 | 
             
                if response.status_code != 200:
         | 
| 111 | 
             
                    raise ModelNotFoundError(
         | 
| @@ -115,7 +123,7 @@ def from_model(model_name: str, hf_token: str | None, alias: str | None, **kwarg | |
| 115 |  | 
| 116 | 
             
                headers["X-Wait-For-Model"] = "true"
         | 
| 117 | 
             
                client = huggingface_hub.InferenceClient(
         | 
| 118 | 
            -
                    model=model_name, headers=headers, token=hf_token,
         | 
| 119 | 
             
                )
         | 
| 120 |  | 
| 121 | 
             
                # For tasks that are not yet supported by the InferenceClient
         | 
| @@ -365,10 +373,14 @@ def from_model(model_name: str, hf_token: str | None, alias: str | None, **kwarg | |
| 365 | 
             
                else:
         | 
| 366 | 
             
                    raise ValueError(f"Unsupported pipeline type: {p}")
         | 
| 367 |  | 
| 368 | 
            -
                def query_huggingface_inference_endpoints(*data):
         | 
| 369 | 
             
                    if preprocess is not None:
         | 
| 370 | 
             
                        data = preprocess(*data)
         | 
| 371 | 
            -
                     | 
|  | |
|  | |
|  | |
|  | |
| 372 | 
             
                    if postprocess is not None:
         | 
| 373 | 
             
                        data = postprocess(data)  # type: ignore
         | 
| 374 | 
             
                    return data
         | 
| @@ -380,7 +392,7 @@ def from_model(model_name: str, hf_token: str | None, alias: str | None, **kwarg | |
| 380 | 
             
                    "inputs": inputs,
         | 
| 381 | 
             
                    "outputs": outputs,
         | 
| 382 | 
             
                    "title": model_name,
         | 
| 383 | 
            -
             | 
| 384 | 
             
                }
         | 
| 385 |  | 
| 386 | 
             
                kwargs = dict(interface_info, **kwargs)
         | 
| @@ -391,19 +403,12 @@ def from_model(model_name: str, hf_token: str | None, alias: str | None, **kwarg | |
| 391 | 
             
            def from_spaces(
         | 
| 392 | 
             
                space_name: str, hf_token: str | None, alias: str | None, **kwargs
         | 
| 393 | 
             
            ) -> Blocks:
         | 
| 394 | 
            -
                client = Client(
         | 
| 395 | 
            -
                    space_name,
         | 
| 396 | 
            -
                    hf_token=hf_token,
         | 
| 397 | 
            -
                    download_files=False,
         | 
| 398 | 
            -
                    _skip_components=False,
         | 
| 399 | 
            -
                )
         | 
| 400 | 
            -
             | 
| 401 | 
             
                space_url = f"https://huggingface.co/spaces/{space_name}"
         | 
| 402 |  | 
| 403 | 
             
                print(f"Fetching Space from: {space_url}")
         | 
| 404 |  | 
| 405 | 
             
                headers = {}
         | 
| 406 | 
            -
                if hf_token  | 
| 407 | 
             
                    headers["Authorization"] = f"Bearer {hf_token}"
         | 
| 408 |  | 
| 409 | 
             
                iframe_url = (
         | 
| @@ -440,8 +445,7 @@ def from_spaces( | |
| 440 | 
             
                            "Blocks or Interface locally. You may find this Guide helpful: "
         | 
| 441 | 
             
                            "https://gradio.app/using_blocks_like_functions/"
         | 
| 442 | 
             
                        )
         | 
| 443 | 
            -
                     | 
| 444 | 
            -
                        return from_spaces_blocks(space=space_name, hf_token=hf_token)
         | 
| 445 |  | 
| 446 |  | 
| 447 | 
             
            def from_spaces_blocks(space: str, hf_token: str | None) -> Blocks:
         | 
| @@ -486,7 +490,7 @@ def from_spaces_interface( | |
| 486 | 
             
                config = external_utils.streamline_spaces_interface(config)
         | 
| 487 | 
             
                api_url = f"{iframe_url}/api/predict/"
         | 
| 488 | 
             
                headers = {"Content-Type": "application/json"}
         | 
| 489 | 
            -
                if hf_token  | 
| 490 | 
             
                    headers["Authorization"] = f"Bearer {hf_token}"
         | 
| 491 |  | 
| 492 | 
             
                # The function should call the API with preprocessed data
         | 
| @@ -526,6 +530,83 @@ def gr_Interface_load( | |
| 526 | 
             
                src: str | None = None,
         | 
| 527 | 
             
                hf_token: str | None = None,
         | 
| 528 | 
             
                alias: str | None = None,
         | 
| 529 | 
            -
                **kwargs,
         | 
| 530 | 
             
            ) -> Blocks:
         | 
| 531 | 
            -
                 | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 9 | 
             
            import tempfile
         | 
| 10 | 
             
            import warnings
         | 
| 11 | 
             
            from pathlib import Path
         | 
| 12 | 
            +
            from typing import TYPE_CHECKING, Callable, Literal
         | 
| 13 |  | 
| 14 | 
             
            import httpx
         | 
| 15 | 
             
            import huggingface_hub
         | 
|  | |
| 33 | 
             
                from gradio.interface import Interface
         | 
| 34 |  | 
| 35 |  | 
| 36 | 
            +
            HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
         | 
| 37 | 
            +
            server_timeout = 600
         | 
| 38 | 
            +
             | 
| 39 | 
            +
             | 
| 40 | 
             
            @document()
         | 
| 41 | 
             
            def load(
         | 
| 42 | 
             
                name: str,
         | 
| 43 | 
             
                src: str | None = None,
         | 
| 44 | 
            +
                hf_token: str | Literal[False] | None = None,
         | 
| 45 | 
             
                alias: str | None = None,
         | 
| 46 | 
             
                **kwargs,
         | 
| 47 | 
             
            ) -> Blocks:
         | 
|  | |
| 52 | 
             
                Parameters:
         | 
| 53 | 
             
                    name: the name of the model (e.g. "gpt2" or "facebook/bart-base") or space (e.g. "flax-community/spanish-gpt2"), can include the `src` as prefix (e.g. "models/facebook/bart-base")
         | 
| 54 | 
             
                    src: the source of the model: `models` or `spaces` (or leave empty if source is provided as a prefix in `name`)
         | 
| 55 | 
            +
                    hf_token: optional access token for loading private Hugging Face Hub models or spaces. Will default to the locally saved token if not provided. Pass `token=False` if you don't want to send your token to the server. Find your token here: https://huggingface.co/settings/tokens.  Warning: only provide a token if you are loading a trusted private Space as it can be read by the Space you are loading.
         | 
| 56 | 
             
                    alias: optional string used as the name of the loaded model instead of the default name (only applies if loading a Space running Gradio 2.x)
         | 
| 57 | 
             
                Returns:
         | 
| 58 | 
             
                    a Gradio Blocks object for the given model
         | 
|  | |
| 69 | 
             
            def load_blocks_from_repo(
         | 
| 70 | 
             
                name: str,
         | 
| 71 | 
             
                src: str | None = None,
         | 
| 72 | 
            +
                hf_token: str | Literal[False] | None = None,
         | 
| 73 | 
             
                alias: str | None = None,
         | 
| 74 | 
             
                **kwargs,
         | 
| 75 | 
             
            ) -> Blocks:
         | 
|  | |
| 93 | 
             
                if src.lower() not in factory_methods:
         | 
| 94 | 
             
                    raise ValueError(f"parameter: src must be one of {factory_methods.keys()}")
         | 
| 95 |  | 
| 96 | 
            +
                if hf_token is not None and hf_token is not False:
         | 
| 97 | 
             
                    if Context.hf_token is not None and Context.hf_token != hf_token:
         | 
| 98 | 
             
                        warnings.warn(
         | 
| 99 | 
             
                            """You are loading a model/Space with a different access token than the one you used to load a previous model/Space. This is not recommended, as it may cause unexpected behavior."""
         | 
|  | |
| 104 | 
             
                return blocks
         | 
| 105 |  | 
| 106 |  | 
| 107 | 
            +
            def from_model(
         | 
| 108 | 
            +
                model_name: str, hf_token: str | Literal[False] | None, alias: str | None, **kwargs
         | 
| 109 | 
            +
            ):
         | 
| 110 | 
             
                model_url = f"https://huggingface.co/{model_name}"
         | 
| 111 | 
             
                api_url = f"https://api-inference.huggingface.co/models/{model_name}"
         | 
| 112 | 
             
                print(f"Fetching model from: {model_url}")
         | 
| 113 |  | 
| 114 | 
            +
                headers = (
         | 
| 115 | 
            +
                    {} if hf_token in [False, None] else {"Authorization": f"Bearer {hf_token}"}
         | 
| 116 | 
            +
                )
         | 
| 117 | 
             
                response = httpx.request("GET", api_url, headers=headers)
         | 
| 118 | 
             
                if response.status_code != 200:
         | 
| 119 | 
             
                    raise ModelNotFoundError(
         | 
|  | |
| 123 |  | 
| 124 | 
             
                headers["X-Wait-For-Model"] = "true"
         | 
| 125 | 
             
                client = huggingface_hub.InferenceClient(
         | 
| 126 | 
            +
                    model=model_name, headers=headers, token=hf_token, timeout=server_timeout,
         | 
| 127 | 
             
                )
         | 
| 128 |  | 
| 129 | 
             
                # For tasks that are not yet supported by the InferenceClient
         | 
|  | |
| 373 | 
             
                else:
         | 
| 374 | 
             
                    raise ValueError(f"Unsupported pipeline type: {p}")
         | 
| 375 |  | 
| 376 | 
            +
                def query_huggingface_inference_endpoints(*data, **kwargs):
         | 
| 377 | 
             
                    if preprocess is not None:
         | 
| 378 | 
             
                        data = preprocess(*data)
         | 
| 379 | 
            +
                    try:
         | 
| 380 | 
            +
                        data = fn(*data, **kwargs)  # type: ignore
         | 
| 381 | 
            +
                    except huggingface_hub.utils.HfHubHTTPError as e:
         | 
| 382 | 
            +
                        if "429" in str(e):
         | 
| 383 | 
            +
                            raise TooManyRequestsError() from e
         | 
| 384 | 
             
                    if postprocess is not None:
         | 
| 385 | 
             
                        data = postprocess(data)  # type: ignore
         | 
| 386 | 
             
                    return data
         | 
|  | |
| 392 | 
             
                    "inputs": inputs,
         | 
| 393 | 
             
                    "outputs": outputs,
         | 
| 394 | 
             
                    "title": model_name,
         | 
| 395 | 
            +
                    #"examples": examples,
         | 
| 396 | 
             
                }
         | 
| 397 |  | 
| 398 | 
             
                kwargs = dict(interface_info, **kwargs)
         | 
|  | |
| 403 | 
             
            def from_spaces(
         | 
| 404 | 
             
                space_name: str, hf_token: str | None, alias: str | None, **kwargs
         | 
| 405 | 
             
            ) -> Blocks:
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 406 | 
             
                space_url = f"https://huggingface.co/spaces/{space_name}"
         | 
| 407 |  | 
| 408 | 
             
                print(f"Fetching Space from: {space_url}")
         | 
| 409 |  | 
| 410 | 
             
                headers = {}
         | 
| 411 | 
            +
                if hf_token not in [False, None]:
         | 
| 412 | 
             
                    headers["Authorization"] = f"Bearer {hf_token}"
         | 
| 413 |  | 
| 414 | 
             
                iframe_url = (
         | 
|  | |
| 445 | 
             
                            "Blocks or Interface locally. You may find this Guide helpful: "
         | 
| 446 | 
             
                            "https://gradio.app/using_blocks_like_functions/"
         | 
| 447 | 
             
                        )
         | 
| 448 | 
            +
                    return from_spaces_blocks(space=space_name, hf_token=hf_token)
         | 
|  | |
| 449 |  | 
| 450 |  | 
| 451 | 
             
            def from_spaces_blocks(space: str, hf_token: str | None) -> Blocks:
         | 
|  | |
| 490 | 
             
                config = external_utils.streamline_spaces_interface(config)
         | 
| 491 | 
             
                api_url = f"{iframe_url}/api/predict/"
         | 
| 492 | 
             
                headers = {"Content-Type": "application/json"}
         | 
| 493 | 
            +
                if hf_token not in [False, None]:
         | 
| 494 | 
             
                    headers["Authorization"] = f"Bearer {hf_token}"
         | 
| 495 |  | 
| 496 | 
             
                # The function should call the API with preprocessed data
         | 
|  | |
| 530 | 
             
                src: str | None = None,
         | 
| 531 | 
             
                hf_token: str | None = None,
         | 
| 532 | 
             
                alias: str | None = None,
         | 
| 533 | 
            +
                **kwargs, # ignore
         | 
| 534 | 
             
            ) -> Blocks:
         | 
| 535 | 
            +
                try:
         | 
| 536 | 
            +
                    return load_blocks_from_repo(name, src, hf_token, alias)
         | 
| 537 | 
            +
                except Exception as e:
         | 
| 538 | 
            +
                    print(e)
         | 
| 539 | 
            +
                    return gradio.Interface(lambda: None, ['text'], ['image'])
         | 
| 540 | 
            +
             | 
| 541 | 
            +
             | 
| 542 | 
            +
            def list_uniq(l):
         | 
| 543 | 
            +
                return sorted(set(l), key=l.index)
         | 
| 544 | 
            +
             | 
| 545 | 
            +
             | 
| 546 | 
            +
            def get_status(model_name: str):
         | 
| 547 | 
            +
                from huggingface_hub import AsyncInferenceClient
         | 
| 548 | 
            +
                client = AsyncInferenceClient(token=HF_TOKEN, timeout=10)
         | 
| 549 | 
            +
                return client.get_model_status(model_name)
         | 
| 550 | 
            +
             | 
| 551 | 
            +
             | 
| 552 | 
            +
            def is_loadable(model_name: str, force_gpu: bool = False):
         | 
| 553 | 
            +
                try:
         | 
| 554 | 
            +
                    status = get_status(model_name)
         | 
| 555 | 
            +
                except Exception as e:
         | 
| 556 | 
            +
                    print(e)
         | 
| 557 | 
            +
                    print(f"Couldn't load {model_name}.")
         | 
| 558 | 
            +
                    return False
         | 
| 559 | 
            +
                gpu_state = isinstance(status.compute_type, dict) and "gpu" in status.compute_type.keys()
         | 
| 560 | 
            +
                if status is None or status.state not in ["Loadable", "Loaded"] or (force_gpu and not gpu_state):
         | 
| 561 | 
            +
                    print(f"Couldn't load {model_name}. Model state:'{status.state}', GPU:{gpu_state}")
         | 
| 562 | 
            +
                return status is not None and status.state in ["Loadable", "Loaded"] and (not force_gpu or gpu_state)
         | 
| 563 | 
            +
             | 
| 564 | 
            +
             | 
| 565 | 
            +
            def find_model_list(author: str="", tags: list[str]=[], not_tag="", sort: str="last_modified", limit: int=30, force_gpu=False, check_status=False):
         | 
| 566 | 
            +
                from huggingface_hub import HfApi
         | 
| 567 | 
            +
                api = HfApi(token=HF_TOKEN)
         | 
| 568 | 
            +
                default_tags = ["diffusers"]
         | 
| 569 | 
            +
                if not sort: sort = "last_modified"
         | 
| 570 | 
            +
                limit = limit * 20 if check_status and force_gpu else limit * 5
         | 
| 571 | 
            +
                models = []
         | 
| 572 | 
            +
                try:
         | 
| 573 | 
            +
                    model_infos = api.list_models(author=author, #task="text-to-image",
         | 
| 574 | 
            +
                                                   tags=list_uniq(default_tags + tags), cardData=True, sort=sort, limit=limit)
         | 
| 575 | 
            +
                except Exception as e:
         | 
| 576 | 
            +
                    print(f"Error: Failed to list models.")
         | 
| 577 | 
            +
                    print(e)
         | 
| 578 | 
            +
                    return models
         | 
| 579 | 
            +
                for model in model_infos:
         | 
| 580 | 
            +
                    if not model.private and not model.gated or HF_TOKEN is not None:
         | 
| 581 | 
            +
                       loadable = is_loadable(model.id, force_gpu) if check_status else True
         | 
| 582 | 
            +
                       if not_tag and not_tag in model.tags or not loadable: continue
         | 
| 583 | 
            +
                       models.append(model.id)
         | 
| 584 | 
            +
                       if len(models) == limit: break
         | 
| 585 | 
            +
                return models
         | 
| 586 | 
            +
             | 
| 587 | 
            +
             | 
| 588 | 
            +
            def save_image(image, savefile, modelname, prompt, nprompt, height=0, width=0, steps=0, cfg=0, seed=-1):
         | 
| 589 | 
            +
                from PIL import Image, PngImagePlugin
         | 
| 590 | 
            +
                import json
         | 
| 591 | 
            +
                try:
         | 
| 592 | 
            +
                    metadata = {"prompt": prompt, "negative_prompt": nprompt, "Model": {"Model": modelname.split("/")[-1]}}
         | 
| 593 | 
            +
                    if steps > 0: metadata["num_inference_steps"] = steps
         | 
| 594 | 
            +
                    if cfg > 0: metadata["guidance_scale"] = cfg
         | 
| 595 | 
            +
                    if seed != -1: metadata["seed"] = seed
         | 
| 596 | 
            +
                    if width > 0 and height > 0: metadata["resolution"] = f"{width} x {height}"
         | 
| 597 | 
            +
                    metadata_str = json.dumps(metadata)
         | 
| 598 | 
            +
                    info = PngImagePlugin.PngInfo()
         | 
| 599 | 
            +
                    info.add_text("metadata", metadata_str)
         | 
| 600 | 
            +
                    image.save(savefile, "PNG", pnginfo=info)
         | 
| 601 | 
            +
                    return str(Path(savefile).resolve())
         | 
| 602 | 
            +
                except Exception as e:
         | 
| 603 | 
            +
                    print(f"Failed to save image file: {e}")
         | 
| 604 | 
            +
                    raise Exception(f"Failed to save image file:") from e
         | 
| 605 | 
            +
             | 
| 606 | 
            +
             | 
| 607 | 
            +
            def randomize_seed():
         | 
| 608 | 
            +
                from random import seed, randint
         | 
| 609 | 
            +
                MAX_SEED = 2**32-1
         | 
| 610 | 
            +
                seed()
         | 
| 611 | 
            +
                rseed = randint(0, MAX_SEED)
         | 
| 612 | 
            +
                return rseed
         | 
 
			

