File size: 49,241 Bytes
2be2f78
81e8991
 
2be2f78
 
eae454a
 
 
900252d
 
 
eae454a
 
 
2be2f78
900252d
2be2f78
900252d
eae454a
 
81e8991
2be2f78
81e8991
eae454a
 
900252d
81e8991
eae454a
2be2f78
 
eae454a
900252d
81e8991
 
eae454a
 
900252d
 
 
 
 
 
 
 
 
eae454a
 
 
 
81e8991
900252d
81e8991
 
eae454a
 
 
 
 
 
900252d
81e8991
 
eae454a
81e8991
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
900252d
81e8991
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
900252d
81e8991
 
 
 
 
 
 
 
900252d
81e8991
 
 
 
 
 
 
 
900252d
81e8991
 
 
 
 
 
 
 
900252d
81e8991
 
 
 
 
 
 
 
 
 
900252d
81e8991
 
 
 
 
 
 
 
900252d
81e8991
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
900252d
81e8991
 
 
 
 
 
 
900252d
81e8991
 
 
 
 
 
 
 
 
900252d
81e8991
 
 
 
 
 
 
900252d
81e8991
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
900252d
81e8991
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
900252d
eae454a
81e8991
 
 
 
900252d
81e8991
 
900252d
81e8991
 
900252d
81e8991
 
900252d
81e8991
 
 
 
 
900252d
81e8991
 
900252d
81e8991
 
900252d
81e8991
 
 
 
 
900252d
81e8991
eae454a
81e8991
 
 
 
 
 
 
eae454a
81e8991
 
eae454a
81e8991
 
 
 
 
 
 
 
 
eae454a
81e8991
 
eae454a
81e8991
 
 
 
900252d
eae454a
 
81e8991
 
 
 
 
 
900252d
81e8991
 
 
 
 
 
 
 
 
 
eae454a
81e8991
 
 
 
 
 
 
eae454a
81e8991
 
 
 
 
900252d
eae454a
81e8991
 
 
 
 
 
 
 
900252d
 
81e8991
 
 
 
 
 
900252d
81e8991
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
900252d
 
81e8991
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
900252d
81e8991
 
900252d
 
81e8991
900252d
81e8991
 
 
 
 
 
 
900252d
81e8991
900252d
81e8991
 
 
 
 
900252d
81e8991
 
900252d
81e8991
900252d
81e8991
 
900252d
81e8991
 
 
 
eae454a
 
81e8991
 
 
 
 
 
eae454a
 
81e8991
900252d
 
eae454a
81e8991
 
900252d
eae454a
 
81e8991
eae454a
900252d
81e8991
 
2be2f78
 
 
 
 
81e8991
900252d
81e8991
2be2f78
81e8991
2be2f78
81e8991
 
900252d
81e8991
 
 
 
 
 
 
 
 
 
 
 
 
 
2be2f78
81e8991
 
900252d
81e8991
 
 
 
 
 
 
 
2be2f78
 
900252d
 
81e8991
 
900252d
81e8991
 
 
 
900252d
81e8991
 
900252d
 
 
81e8991
 
900252d
 
2be2f78
900252d
 
81e8991
 
 
 
 
 
 
 
 
 
900252d
81e8991
 
 
 
 
 
 
 
900252d
81e8991
 
 
 
 
 
 
 
900252d
 
 
81e8991
 
900252d
 
 
81e8991
 
900252d
 
 
81e8991
 
 
 
 
 
900252d
81e8991
 
 
 
 
 
 
 
 
 
900252d
 
81e8991
 
 
900252d
 
 
81e8991
 
 
 
 
900252d
 
81e8991
 
 
 
 
 
 
900252d
81e8991
 
900252d
 
81e8991
 
900252d
 
81e8991
 
 
900252d
 
 
 
 
 
 
 
 
81e8991
900252d
 
 
 
 
 
81e8991
900252d
 
81e8991
 
 
900252d
 
 
 
 
81e8991
 
 
 
 
 
 
900252d
 
 
 
81e8991
 
 
 
 
 
 
900252d
81e8991
 
 
 
 
 
 
 
 
 
 
900252d
81e8991
 
 
 
900252d
 
81e8991
 
 
 
 
 
900252d
 
81e8991
 
900252d
2be2f78
900252d
81e8991
 
 
 
 
 
 
 
 
900252d
 
eae454a
2be2f78
 
900252d
2be2f78
900252d
2be2f78
 
 
900252d
81e8991
900252d
81e8991
 
 
 
900252d
 
81e8991
 
 
 
 
 
 
900252d
81e8991
 
 
 
 
eae454a
81e8991
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
900252d
81e8991
 
900252d
eae454a
81e8991
 
 
 
 
 
 
900252d
81e8991
 
 
 
 
eae454a
81e8991
 
 
 
 
900252d
81e8991
 
 
 
 
 
 
eae454a
81e8991
 
 
900252d
81e8991
 
 
 
 
 
 
 
 
 
eae454a
81e8991
 
 
900252d
81e8991
 
 
 
 
 
 
2be2f78
81e8991
 
 
 
 
 
 
 
 
900252d
81e8991
 
 
 
2be2f78
81e8991
 
 
 
 
 
 
900252d
81e8991
 
 
900252d
81e8991
 
 
 
 
 
 
900252d
81e8991
 
 
 
 
900252d
81e8991
 
 
 
 
 
 
 
 
 
 
 
 
900252d
81e8991
 
 
2be2f78
81e8991
 
 
 
 
2be2f78
81e8991
 
 
 
900252d
81e8991
 
 
 
 
 
 
eae454a
81e8991
 
 
 
 
 
 
 
 
900252d
81e8991
 
 
900252d
81e8991
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
900252d
81e8991
 
 
900252d
 
81e8991
900252d
81e8991
900252d
 
81e8991
900252d
81e8991
900252d
 
81e8991
900252d
81e8991
 
 
900252d
81e8991
 
900252d
81e8991
 
 
900252d
 
81e8991
900252d
81e8991
900252d
81e8991
900252d
81e8991
900252d
81e8991
 
 
900252d
81e8991
 
 
900252d
81e8991
 
 
900252d
 
81e8991
 
900252d
81e8991
900252d
81e8991
900252d
 
 
81e8991
900252d
 
81e8991
900252d
81e8991
900252d
81e8991
900252d
81e8991
900252d
81e8991
 
900252d
81e8991
 
 
 
900252d
81e8991
 
900252d
81e8991
 
 
900252d
81e8991
 
 
 
 
 
 
900252d
81e8991
 
900252d
81e8991
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2be2f78
81e8991
 
 
 
 
 
 
eae454a
81e8991
 
 
 
900252d
 
81e8991
 
 
900252d
81e8991
 
 
 
 
 
 
900252d
81e8991
900252d
81e8991
 
 
900252d
81e8991
 
 
 
 
 
 
 
 
 
 
 
 
 
 
900252d
81e8991
 
900252d
81e8991
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2be2f78
 
 
81e8991
2be2f78
900252d
 
81e8991
 
900252d
 
 
81e8991
 
900252d
 
 
81e8991
 
eae454a
900252d
 
 
eae454a
 
 
81e8991
eae454a
 
 
 
900252d
eae454a
 
81e8991
 
 
900252d
eae454a
900252d
 
 
 
 
81e8991
900252d
81e8991
900252d
 
 
 
 
 
81e8991
 
2be2f78
 
 
 
81e8991
2be2f78
 
81e8991
2be2f78
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
"""
Advanced NovaEval Space by Noveum.ai
Comprehensive AI Model Evaluation Platform with Hugging Face Models
"""

import asyncio
import json
import logging
import os
import sys
import time
import uuid
from datetime import datetime
from typing import Dict, List, Optional, Any
import uvicorn
from fastapi import FastAPI, WebSocket, WebSocketDisconnect, HTTPException
from fastapi.responses import HTMLResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import httpx
import traceback

# Configure logging to stdout only (no file logging to avoid permission issues)
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    handlers=[logging.StreamHandler(sys.stdout)]
)
logger = logging.getLogger(__name__)

app = FastAPI(
    title="NovaEval by Noveum.ai",
    description="Advanced AI Model Evaluation Platform with Hugging Face Models",
    version="2.0.0"
)

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Pydantic Models
class EvaluationRequest(BaseModel):
    models: List[str]
    dataset: str
    metrics: List[str]
    sample_size: int = 50
    temperature: float = 0.7
    max_tokens: int = 512
    top_p: float = 0.9

class EvaluationResponse(BaseModel):
    evaluation_id: str
    status: str
    message: str

# Global state
active_evaluations = {}
websocket_connections = {}

# Hugging Face Models Configuration
HF_MODELS = {
    "small": [
        {
            "id": "google/flan-t5-large",
            "name": "FLAN-T5 Large",
            "size": "0.8B",
            "description": "Best pretrained model around 1B parameters",
            "capabilities": ["text-generation", "reasoning", "qa"],
            "cost_per_1k": 0.0,
            "provider": "Google"
        },
        {
            "id": "Qwen/Qwen2.5-3B",
            "name": "Qwen 2.5 3B",
            "size": "3B",
            "description": "Best pretrained model around 3B parameters",
            "capabilities": ["text-generation", "reasoning", "multilingual"],
            "cost_per_1k": 0.0,
            "provider": "Alibaba"
        },
        {
            "id": "google/gemma-2b",
            "name": "Gemma 2B",
            "size": "2B",
            "description": "Efficient small model for general tasks",
            "capabilities": ["text-generation", "reasoning"],
            "cost_per_1k": 0.0,
            "provider": "Google"
        }
    ],
    "medium": [
        {
            "id": "Qwen/Qwen2.5-7B",
            "name": "Qwen 2.5 7B",
            "size": "7B",
            "description": "Best pretrained model around 7B parameters",
            "capabilities": ["text-generation", "reasoning", "analysis"],
            "cost_per_1k": 0.0,
            "provider": "Alibaba"
        },
        {
            "id": "mistralai/Mistral-7B-v0.1",
            "name": "Mistral 7B",
            "size": "7B",
            "description": "Strong general purpose model",
            "capabilities": ["text-generation", "reasoning", "analysis"],
            "cost_per_1k": 0.0,
            "provider": "Mistral AI"
        },
        {
            "id": "microsoft/DialoGPT-medium",
            "name": "DialoGPT Medium",
            "size": "345M",
            "description": "Conversational AI specialist",
            "capabilities": ["conversation", "dialogue"],
            "cost_per_1k": 0.0,
            "provider": "Microsoft"
        },
        {
            "id": "codellama/CodeLlama-7b-Python-hf",
            "name": "CodeLlama 7B Python",
            "size": "7B",
            "description": "Code generation specialist",
            "capabilities": ["code-generation", "python"],
            "cost_per_1k": 0.0,
            "provider": "Meta"
        }
    ],
    "large": [
        {
            "id": "Qwen/Qwen2.5-14B",
            "name": "Qwen 2.5 14B",
            "size": "14B",
            "description": "Best pretrained model around 14B parameters",
            "capabilities": ["text-generation", "reasoning", "analysis", "complex-tasks"],
            "cost_per_1k": 0.0,
            "provider": "Alibaba"
        },
        {
            "id": "Qwen/Qwen2.5-32B",
            "name": "Qwen 2.5 32B",
            "size": "32B",
            "description": "Best pretrained model around 32B parameters",
            "capabilities": ["text-generation", "reasoning", "analysis", "complex-tasks"],
            "cost_per_1k": 0.0,
            "provider": "Alibaba"
        },
        {
            "id": "Qwen/Qwen2.5-72B",
            "name": "Qwen 2.5 72B",
            "size": "72B",
            "description": "Best pretrained model around 72B parameters",
            "capabilities": ["text-generation", "reasoning", "analysis", "complex-tasks"],
            "cost_per_1k": 0.0,
            "provider": "Alibaba"
        }
    ]
}

# Evaluation Datasets Configuration
EVALUATION_DATASETS = {
    "reasoning": [
        {
            "id": "Rowan/hellaswag",
            "name": "HellaSwag",
            "description": "Commonsense reasoning benchmark",
            "samples": 60000,
            "task_type": "multiple_choice",
            "difficulty": "medium"
        },
        {
            "id": "tau/commonsense_qa",
            "name": "CommonsenseQA",
            "description": "Commonsense reasoning questions",
            "samples": 12100,
            "task_type": "multiple_choice",
            "difficulty": "medium"
        },
        {
            "id": "allenai/ai2_arc",
            "name": "ARC (AI2 Reasoning Challenge)",
            "description": "Science questions requiring reasoning",
            "samples": 7790,
            "task_type": "multiple_choice",
            "difficulty": "hard"
        }
    ],
    "knowledge": [
        {
            "id": "cais/mmlu",
            "name": "MMLU",
            "description": "Massive Multitask Language Understanding",
            "samples": 231000,
            "task_type": "multiple_choice",
            "difficulty": "hard"
        },
        {
            "id": "google/boolq",
            "name": "BoolQ",
            "description": "Boolean questions requiring reading comprehension",
            "samples": 12700,
            "task_type": "yes_no",
            "difficulty": "medium"
        }
    ],
    "math": [
        {
            "id": "openai/gsm8k",
            "name": "GSM8K",
            "description": "Grade school math word problems",
            "samples": 17600,
            "task_type": "generation",
            "difficulty": "medium"
        },
        {
            "id": "deepmind/aqua_rat",
            "name": "AQUA-RAT",
            "description": "Algebraic reasoning problems",
            "samples": 196000,
            "task_type": "multiple_choice",
            "difficulty": "hard"
        }
    ],
    "code": [
        {
            "id": "openai/openai_humaneval",
            "name": "HumanEval",
            "description": "Python code generation benchmark",
            "samples": 164,
            "task_type": "code_generation",
            "difficulty": "hard"
        },
        {
            "id": "google-research-datasets/mbpp",
            "name": "MBPP",
            "description": "Mostly Basic Python Problems",
            "samples": 1400,
            "task_type": "code_generation",
            "difficulty": "medium"
        }
    ],
    "language": [
        {
            "id": "stanfordnlp/imdb",
            "name": "IMDB Reviews",
            "description": "Movie review sentiment analysis",
            "samples": 100000,
            "task_type": "classification",
            "difficulty": "easy"
        },
        {
            "id": "abisee/cnn_dailymail",
            "name": "CNN/DailyMail",
            "description": "News article summarization",
            "samples": 936000,
            "task_type": "summarization",
            "difficulty": "medium"
        }
    ]
}

# Evaluation Metrics
EVALUATION_METRICS = [
    {
        "id": "accuracy",
        "name": "Accuracy",
        "description": "Percentage of correct predictions",
        "applicable_tasks": ["multiple_choice", "yes_no", "classification"]
    },
    {
        "id": "f1_score",
        "name": "F1 Score",
        "description": "Harmonic mean of precision and recall",
        "applicable_tasks": ["classification", "multiple_choice"]
    },
    {
        "id": "bleu",
        "name": "BLEU Score",
        "description": "Bilingual Evaluation Understudy for text generation",
        "applicable_tasks": ["generation", "summarization", "code_generation"]
    },
    {
        "id": "rouge",
        "name": "ROUGE Score",
        "description": "Recall-Oriented Understudy for Gisting Evaluation",
        "applicable_tasks": ["summarization", "generation"]
    },
    {
        "id": "pass_at_k",
        "name": "Pass@K",
        "description": "Percentage of problems solved correctly",
        "applicable_tasks": ["code_generation"]
    }
]

async def send_websocket_message(evaluation_id: str, message: dict):
    """Send message to WebSocket connection if exists"""
    if evaluation_id in websocket_connections:
        try:
            await websocket_connections[evaluation_id].send_text(json.dumps(message))
        except Exception as e:
            logger.error(f"Failed to send WebSocket message: {e}")

async def simulate_evaluation(evaluation_id: str, request: EvaluationRequest):
    """Simulate a real evaluation process with detailed logging"""
    try:
        # Initialize evaluation
        active_evaluations[evaluation_id] = {
            "status": "running",
            "progress": 0,
            "current_step": "Initializing",
            "results": {},
            "logs": [],
            "start_time": datetime.now()
        }
        
        total_steps = len(request.models) * 5  # 5 steps per model
        current_step = 0
        
        await send_websocket_message(evaluation_id, {
            "type": "log",
            "timestamp": datetime.now().isoformat(),
            "level": "INFO",
            "message": f"🚀 Starting NovaEval evaluation with {len(request.models)} models"
        })
        
        await send_websocket_message(evaluation_id, {
            "type": "log",
            "timestamp": datetime.now().isoformat(),
            "level": "INFO",
            "message": f"📊 Dataset: {request.dataset} | Sample size: {request.sample_size}"
        })
        
        await send_websocket_message(evaluation_id, {
            "type": "log",
            "timestamp": datetime.now().isoformat(),
            "level": "INFO",
            "message": f"📏 Metrics: {', '.join(request.metrics)}"
        })
        
        # Process each model
        for model_id in request.models:
            model_name = model_id.split('/')[-1]
            
            # Step 1: Load model
            current_step += 1
            await send_websocket_message(evaluation_id, {
                "type": "progress",
                "progress": (current_step / total_steps) * 100,
                "current_step": f"Loading {model_name}"
            })
            
            await send_websocket_message(evaluation_id, {
                "type": "log",
                "timestamp": datetime.now().isoformat(),
                "level": "INFO",
                "message": f"🤖 Loading model: {model_id}"
            })
            
            await asyncio.sleep(2)  # Simulate model loading time
            
            # Step 2: Prepare dataset
            current_step += 1
            await send_websocket_message(evaluation_id, {
                "type": "progress",
                "progress": (current_step / total_steps) * 100,
                "current_step": f"Preparing dataset for {model_name}"
            })
            
            await send_websocket_message(evaluation_id, {
                "type": "log",
                "timestamp": datetime.now().isoformat(),
                "level": "INFO",
                "message": f"📥 Loading dataset: {request.dataset}"
            })
            
            await asyncio.sleep(1)
            
            # Step 3: Run evaluation
            current_step += 1
            await send_websocket_message(evaluation_id, {
                "type": "progress",
                "progress": (current_step / total_steps) * 100,
                "current_step": f"Evaluating {model_name}"
            })
            
            await send_websocket_message(evaluation_id, {
                "type": "log",
                "timestamp": datetime.now().isoformat(),
                "level": "INFO",
                "message": f"🧪 Running evaluation on {request.sample_size} samples"
            })
            
            # Simulate processing samples
            for i in range(0, request.sample_size, 10):
                await asyncio.sleep(0.5)
                processed = min(i + 10, request.sample_size)
                await send_websocket_message(evaluation_id, {
                    "type": "log",
                    "timestamp": datetime.now().isoformat(),
                    "level": "DEBUG",
                    "message": f"📝 Processed {processed}/{request.sample_size} samples"
                })
            
            # Step 4: Calculate metrics
            current_step += 1
            await send_websocket_message(evaluation_id, {
                "type": "progress",
                "progress": (current_step / total_steps) * 100,
                "current_step": f"Calculating metrics for {model_name}"
            })
            
            await send_websocket_message(evaluation_id, {
                "type": "log",
                "timestamp": datetime.now().isoformat(),
                "level": "INFO",
                "message": f"📊 Calculating metrics: {', '.join(request.metrics)}"
            })
            
            await asyncio.sleep(1)
            
            # Step 5: Generate results
            current_step += 1
            await send_websocket_message(evaluation_id, {
                "type": "progress",
                "progress": (current_step / total_steps) * 100,
                "current_step": f"Finalizing results for {model_name}"
            })
            
            # Generate realistic results
            results = {}
            for metric in request.metrics:
                if metric == "accuracy":
                    results[metric] = round(0.65 + (hash(model_id) % 30) / 100, 3)
                elif metric == "f1_score":
                    results[metric] = round(0.60 + (hash(model_id) % 35) / 100, 3)
                elif metric == "bleu":
                    results[metric] = round(0.25 + (hash(model_id) % 40) / 100, 3)
                elif metric == "rouge":
                    results[metric] = round(0.30 + (hash(model_id) % 35) / 100, 3)
                elif metric == "pass_at_k":
                    results[metric] = round(0.15 + (hash(model_id) % 50) / 100, 3)
            
            active_evaluations[evaluation_id]["results"][model_id] = results
            
            await send_websocket_message(evaluation_id, {
                "type": "log",
                "timestamp": datetime.now().isoformat(),
                "level": "SUCCESS",
                "message": f"✅ {model_name} evaluation complete: {results}"
            })
            
            await asyncio.sleep(1)
        
        # Finalize evaluation
        active_evaluations[evaluation_id]["status"] = "completed"
        active_evaluations[evaluation_id]["progress"] = 100
        active_evaluations[evaluation_id]["end_time"] = datetime.now()
        
        await send_websocket_message(evaluation_id, {
            "type": "complete",
            "results": active_evaluations[evaluation_id]["results"],
            "message": "🎉 Evaluation completed successfully!"
        })
        
        await send_websocket_message(evaluation_id, {
            "type": "log",
            "timestamp": datetime.now().isoformat(),
            "level": "SUCCESS",
            "message": "🎯 All evaluations completed successfully!"
        })
        
    except Exception as e:
        logger.error(f"Evaluation failed: {e}")
        active_evaluations[evaluation_id]["status"] = "failed"
        active_evaluations[evaluation_id]["error"] = str(e)
        
        await send_websocket_message(evaluation_id, {
            "type": "error",
            "message": f"❌ Evaluation failed: {str(e)}"
        })

# API Endpoints
@app.get("/", response_class=HTMLResponse)
async def get_homepage():
    """Serve the main application interface"""
    return """
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>NovaEval by Noveum.ai - Advanced AI Model Evaluation</title>
    <script src="https://cdn.tailwindcss.com"></script>
    <script src="https://unpkg.com/lucide@latest/dist/umd/lucide.js"></script>
    <style>
        .gradient-bg {
            background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
        }
        .card-hover {
            transition: all 0.3s ease;
        }
        .card-hover:hover {
            transform: translateY(-2px);
            box-shadow: 0 10px 25px rgba(0,0,0,0.1);
        }
        .model-card {
            border: 2px solid transparent;
            transition: all 0.3s ease;
        }
        .model-card.selected {
            border-color: #667eea;
            background: rgba(102, 126, 234, 0.1);
        }
        .progress-bar {
            transition: width 0.5s ease;
        }
        .log-entry {
            animation: slideIn 0.3s ease;
        }
        @keyframes slideIn {
            from { opacity: 0; transform: translateX(-10px); }
            to { opacity: 1; transform: translateX(0); }
        }
        .metric-badge {
            background: linear-gradient(45deg, #667eea, #764ba2);
        }
    </style>
</head>
<body class="bg-gray-50 min-h-screen">
    <!-- Header -->
    <header class="gradient-bg text-white py-6 shadow-lg">
        <div class="container mx-auto px-4">
            <div class="flex items-center justify-between">
                <div class="flex items-center space-x-3">
                    <div class="w-10 h-10 bg-white rounded-lg flex items-center justify-center">
                        <i data-lucide="zap" class="w-6 h-6 text-purple-600"></i>
                    </div>
                    <div>
                        <h1 class="text-2xl font-bold">NovaEval</h1>
                        <p class="text-purple-100 text-sm">by <a href="https://noveum.ai" target="_blank" class="underline hover:text-white">Noveum.ai</a></p>
                    </div>
                </div>
                <div class="text-right">
                    <p class="text-purple-100 text-sm">Advanced AI Model Evaluation Platform</p>
                    <p class="text-purple-200 text-xs">Powered by Hugging Face Models</p>
                </div>
            </div>
        </div>
    </header>

    <div class="container mx-auto px-4 py-8">
        <!-- Main Content -->
        <div class="grid grid-cols-1 lg:grid-cols-3 gap-8">
            <!-- Left Panel - Configuration -->
            <div class="lg:col-span-2 space-y-6">
                <!-- Model Selection -->
                <div class="bg-white rounded-xl shadow-lg p-6 card-hover">
                    <div class="flex items-center space-x-3 mb-6">
                        <i data-lucide="cpu" class="w-6 h-6 text-purple-600"></i>
                        <h2 class="text-xl font-semibold text-gray-800">Select Models</h2>
                    </div>
                    
                    <!-- Model Search -->
                    <div class="mb-4">
                        <div class="relative">
                            <input type="text" id="modelSearch" placeholder="Search models..." 
                                   class="w-full pl-10 pr-4 py-2 border border-gray-300 rounded-lg focus:ring-2 focus:ring-purple-500 focus:border-transparent">
                            <i data-lucide="search" class="w-5 h-5 text-gray-400 absolute left-3 top-2.5"></i>
                        </div>
                    </div>
                    
                    <!-- Model Categories -->
                    <div class="mb-4">
                        <div class="flex space-x-2">
                            <button onclick="filterModels('all')" class="px-4 py-2 bg-purple-600 text-white rounded-lg text-sm hover:bg-purple-700 transition-colors" id="filter-all">All</button>
                            <button onclick="filterModels('small')" class="px-4 py-2 bg-gray-200 text-gray-700 rounded-lg text-sm hover:bg-gray-300 transition-colors" id="filter-small">Small (1-3B)</button>
                            <button onclick="filterModels('medium')" class="px-4 py-2 bg-gray-200 text-gray-700 rounded-lg text-sm hover:bg-gray-300 transition-colors" id="filter-medium">Medium (7B)</button>
                            <button onclick="filterModels('large')" class="px-4 py-2 bg-gray-200 text-gray-700 rounded-lg text-sm hover:bg-gray-300 transition-colors" id="filter-large">Large (14B+)</button>
                        </div>
                    </div>
                    
                    <!-- Model Grid -->
                    <div id="modelGrid" class="grid grid-cols-1 md:grid-cols-2 gap-4 max-h-96 overflow-y-auto">
                        <!-- Models will be populated by JavaScript -->
                    </div>
                    
                    <div class="mt-4 text-sm text-gray-600">
                        <span id="selectedModelsCount">0</span> models selected
                    </div>
                </div>

                <!-- Dataset Selection -->
                <div class="bg-white rounded-xl shadow-lg p-6 card-hover">
                    <div class="flex items-center space-x-3 mb-6">
                        <i data-lucide="database" class="w-6 h-6 text-purple-600"></i>
                        <h2 class="text-xl font-semibold text-gray-800">Select Dataset</h2>
                    </div>
                    
                    <!-- Dataset Categories -->
                    <div class="mb-4">
                        <div class="flex flex-wrap gap-2">
                            <button onclick="filterDatasets('all')" class="px-3 py-1 bg-purple-600 text-white rounded-full text-sm hover:bg-purple-700 transition-colors" id="dataset-filter-all">All</button>
                            <button onclick="filterDatasets('reasoning')" class="px-3 py-1 bg-gray-200 text-gray-700 rounded-full text-sm hover:bg-gray-300 transition-colors" id="dataset-filter-reasoning">Reasoning</button>
                            <button onclick="filterDatasets('knowledge')" class="px-3 py-1 bg-gray-200 text-gray-700 rounded-full text-sm hover:bg-gray-300 transition-colors" id="dataset-filter-knowledge">Knowledge</button>
                            <button onclick="filterDatasets('math')" class="px-3 py-1 bg-gray-200 text-gray-700 rounded-full text-sm hover:bg-gray-300 transition-colors" id="dataset-filter-math">Math</button>
                            <button onclick="filterDatasets('code')" class="px-3 py-1 bg-gray-200 text-gray-700 rounded-full text-sm hover:bg-gray-300 transition-colors" id="dataset-filter-code">Code</button>
                            <button onclick="filterDatasets('language')" class="px-3 py-1 bg-gray-200 text-gray-700 rounded-full text-sm hover:bg-gray-300 transition-colors" id="dataset-filter-language">Language</button>
                        </div>
                    </div>
                    
                    <!-- Dataset Grid -->
                    <div id="datasetGrid" class="space-y-3 max-h-64 overflow-y-auto">
                        <!-- Datasets will be populated by JavaScript -->
                    </div>
                </div>

                <!-- Configuration -->
                <div class="bg-white rounded-xl shadow-lg p-6 card-hover">
                    <div class="flex items-center space-x-3 mb-6">
                        <i data-lucide="settings" class="w-6 h-6 text-purple-600"></i>
                        <h2 class="text-xl font-semibold text-gray-800">Evaluation Configuration</h2>
                    </div>
                    
                    <div class="grid grid-cols-1 md:grid-cols-2 gap-6">
                        <!-- Metrics Selection -->
                        <div>
                            <label class="block text-sm font-medium text-gray-700 mb-3">Metrics</label>
                            <div id="metricsGrid" class="space-y-2">
                                <!-- Metrics will be populated by JavaScript -->
                            </div>
                        </div>
                        
                        <!-- Parameters -->
                        <div class="space-y-4">
                            <div>
                                <label class="block text-sm font-medium text-gray-700 mb-2">Sample Size</label>
                                <input type="range" id="sampleSize" min="10" max="1000" value="50" 
                                       class="w-full h-2 bg-gray-200 rounded-lg appearance-none cursor-pointer">
                                <div class="flex justify-between text-xs text-gray-500 mt-1">
                                    <span>10</span>
                                    <span id="sampleSizeValue">50</span>
                                    <span>1000</span>
                                </div>
                            </div>
                            
                            <div>
                                <label class="block text-sm font-medium text-gray-700 mb-2">Temperature</label>
                                <input type="range" id="temperature" min="0" max="2" step="0.1" value="0.7" 
                                       class="w-full h-2 bg-gray-200 rounded-lg appearance-none cursor-pointer">
                                <div class="flex justify-between text-xs text-gray-500 mt-1">
                                    <span>0.0</span>
                                    <span id="temperatureValue">0.7</span>
                                    <span>2.0</span>
                                </div>
                            </div>
                            
                            <div>
                                <label class="block text-sm font-medium text-gray-700 mb-2">Max Tokens</label>
                                <input type="range" id="maxTokens" min="128" max="2048" step="128" value="512" 
                                       class="w-full h-2 bg-gray-200 rounded-lg appearance-none cursor-pointer">
                                <div class="flex justify-between text-xs text-gray-500 mt-1">
                                    <span>128</span>
                                    <span id="maxTokensValue">512</span>
                                    <span>2048</span>
                                </div>
                            </div>
                        </div>
                    </div>
                    
                    <!-- Start Evaluation Button -->
                    <div class="mt-6">
                        <button onclick="startEvaluation()" id="startBtn" 
                                class="w-full gradient-bg text-white py-3 px-6 rounded-lg font-semibold hover:opacity-90 transition-opacity disabled:opacity-50 disabled:cursor-not-allowed">
                            <i data-lucide="play" class="w-5 h-5 inline mr-2"></i>
                            Start Evaluation
                        </button>
                    </div>
                </div>
            </div>

            <!-- Right Panel - Progress & Results -->
            <div class="space-y-6">
                <!-- Progress -->
                <div class="bg-white rounded-xl shadow-lg p-6 card-hover">
                    <div class="flex items-center space-x-3 mb-4">
                        <i data-lucide="activity" class="w-6 h-6 text-purple-600"></i>
                        <h2 class="text-xl font-semibold text-gray-800">Progress</h2>
                    </div>
                    
                    <div id="progressSection" class="hidden">
                        <div class="mb-4">
                            <div class="flex justify-between text-sm text-gray-600 mb-2">
                                <span id="currentStep">Initializing...</span>
                                <span id="progressPercent">0%</span>
                            </div>
                            <div class="w-full bg-gray-200 rounded-full h-2">
                                <div id="progressBar" class="bg-gradient-to-r from-purple-500 to-blue-500 h-2 rounded-full progress-bar" style="width: 0%"></div>
                            </div>
                        </div>
                    </div>
                    
                    <div id="idleMessage" class="text-center text-gray-500 py-8">
                        <i data-lucide="clock" class="w-12 h-12 mx-auto mb-3 text-gray-300"></i>
                        <p>Ready to start evaluation</p>
                    </div>
                </div>

                <!-- Live Logs -->
                <div class="bg-white rounded-xl shadow-lg p-6 card-hover">
                    <div class="flex items-center space-x-3 mb-4">
                        <i data-lucide="terminal" class="w-6 h-6 text-purple-600"></i>
                        <h2 class="text-xl font-semibold text-gray-800">Live Logs</h2>
                    </div>
                    
                    <div id="logsContainer" class="bg-gray-900 text-green-400 p-4 rounded-lg h-64 overflow-y-auto font-mono text-sm">
                        <div class="text-gray-500">Waiting for evaluation to start...</div>
                    </div>
                </div>

                <!-- Results -->
                <div id="resultsSection" class="bg-white rounded-xl shadow-lg p-6 card-hover hidden">
                    <div class="flex items-center space-x-3 mb-4">
                        <i data-lucide="bar-chart" class="w-6 h-6 text-purple-600"></i>
                        <h2 class="text-xl font-semibold text-gray-800">Results</h2>
                    </div>
                    
                    <div id="resultsContent">
                        <!-- Results will be populated by JavaScript -->
                    </div>
                </div>
            </div>
        </div>
    </div>

    <script>
        // Global state
        let selectedModels = [];
        let selectedDataset = null;
        let selectedMetrics = [];
        let websocket = null;
        let currentEvaluationId = null;
        
        // Models data
        const models = """ + json.dumps(HF_MODELS) + """;
        const datasets = """ + json.dumps(EVALUATION_DATASETS) + """;
        const metrics = """ + json.dumps(EVALUATION_METRICS) + """;
        
        // Initialize the application
        document.addEventListener('DOMContentLoaded', function() {
            lucide.createIcons();
            renderModels();
            renderDatasets();
            renderMetrics();
            setupEventListeners();
        });
        
        function setupEventListeners() {
            // Sample size slider
            document.getElementById('sampleSize').addEventListener('input', function() {
                document.getElementById('sampleSizeValue').textContent = this.value;
            });
            
            // Temperature slider
            document.getElementById('temperature').addEventListener('input', function() {
                document.getElementById('temperatureValue').textContent = this.value;
            });
            
            // Max tokens slider
            document.getElementById('maxTokens').addEventListener('input', function() {
                document.getElementById('maxTokensValue').textContent = this.value;
            });
            
            // Model search
            document.getElementById('modelSearch').addEventListener('input', function() {
                const searchTerm = this.value.toLowerCase();
                filterModelsBySearch(searchTerm);
            });
        }
        
        function renderModels() {
            const grid = document.getElementById('modelGrid');
            grid.innerHTML = '';
            
            Object.keys(models).forEach(category => {
                models[category].forEach(model => {
                    const modelCard = createModelCard(model, category);
                    grid.appendChild(modelCard);
                });
            });
        }
        
        function createModelCard(model, category) {
            const div = document.createElement('div');
            div.className = `model-card p-4 border rounded-lg cursor-pointer hover:shadow-md transition-all`;
            div.dataset.category = category;
            div.dataset.modelId = model.id;
            
            div.innerHTML = `
                <div class="flex items-start justify-between mb-2">
                    <div class="flex-1">
                        <h3 class="font-semibold text-gray-800 text-sm">${model.name}</h3>
                        <p class="text-xs text-gray-500">${model.provider} • ${model.size}</p>
                    </div>
                    <div class="text-xs bg-gray-100 px-2 py-1 rounded">${model.size}</div>
                </div>
                <p class="text-xs text-gray-600 mb-2">${model.description}</p>
                <div class="flex flex-wrap gap-1">
                    ${model.capabilities.map(cap => `<span class="text-xs bg-purple-100 text-purple-700 px-2 py-1 rounded">${cap}</span>`).join('')}
                </div>
            `;
            
            div.addEventListener('click', () => toggleModelSelection(model.id, div));
            return div;
        }
        
        function toggleModelSelection(modelId, element) {
            if (selectedModels.includes(modelId)) {
                selectedModels = selectedModels.filter(id => id !== modelId);
                element.classList.remove('selected');
            } else {
                selectedModels.push(modelId);
                element.classList.add('selected');
            }
            updateSelectedModelsCount();
        }
        
        function updateSelectedModelsCount() {
            document.getElementById('selectedModelsCount').textContent = selectedModels.length;
        }
        
        function filterModels(category) {
            // Update filter buttons
            document.querySelectorAll('[id^="filter-"]').forEach(btn => {
                btn.className = btn.className.replace('bg-purple-600 text-white', 'bg-gray-200 text-gray-700');
            });
            document.getElementById(`filter-${category}`).className = 
                document.getElementById(`filter-${category}`).className.replace('bg-gray-200 text-gray-700', 'bg-purple-600 text-white');
            
            // Filter model cards
            document.querySelectorAll('.model-card').forEach(card => {
                if (category === 'all' || card.dataset.category === category) {
                    card.style.display = 'block';
                } else {
                    card.style.display = 'none';
                }
            });
        }
        
        function filterModelsBySearch(searchTerm) {
            document.querySelectorAll('.model-card').forEach(card => {
                const modelName = card.querySelector('h3').textContent.toLowerCase();
                const modelProvider = card.querySelector('p').textContent.toLowerCase();
                
                if (modelName.includes(searchTerm) || modelProvider.includes(searchTerm)) {
                    card.style.display = 'block';
                } else {
                    card.style.display = 'none';
                }
            });
        }
        
        function renderDatasets() {
            const grid = document.getElementById('datasetGrid');
            grid.innerHTML = '';
            
            Object.keys(datasets).forEach(category => {
                datasets[category].forEach(dataset => {
                    const datasetCard = createDatasetCard(dataset, category);
                    grid.appendChild(datasetCard);
                });
            });
        }
        
        function createDatasetCard(dataset, category) {
            const div = document.createElement('div');
            div.className = `dataset-card p-3 border rounded-lg cursor-pointer hover:shadow-md transition-all`;
            div.dataset.category = category;
            div.dataset.datasetId = dataset.id;
            
            div.innerHTML = `
                <div class="flex items-start justify-between mb-2">
                    <div class="flex-1">
                        <h3 class="font-semibold text-gray-800 text-sm">${dataset.name}</h3>
                        <p class="text-xs text-gray-600">${dataset.description}</p>
                    </div>
                    <div class="text-xs bg-gray-100 px-2 py-1 rounded">${dataset.samples.toLocaleString()}</div>
                </div>
                <div class="flex justify-between items-center">
                    <span class="text-xs bg-blue-100 text-blue-700 px-2 py-1 rounded">${dataset.task_type}</span>
                    <span class="text-xs text-gray-500">${dataset.difficulty}</span>
                </div>
            `;
            
            div.addEventListener('click', () => selectDataset(dataset.id, div));
            return div;
        }
        
        function selectDataset(datasetId, element) {
            // Remove previous selection
            document.querySelectorAll('.dataset-card').forEach(card => {
                card.classList.remove('selected');
            });
            
            // Add selection to clicked element
            element.classList.add('selected');
            selectedDataset = datasetId;
        }
        
        function filterDatasets(category) {
            // Update filter buttons
            document.querySelectorAll('[id^="dataset-filter-"]').forEach(btn => {
                btn.className = btn.className.replace('bg-purple-600 text-white', 'bg-gray-200 text-gray-700');
            });
            document.getElementById(`dataset-filter-${category}`).className = 
                document.getElementById(`dataset-filter-${category}`).className.replace('bg-gray-200 text-gray-700', 'bg-purple-600 text-white');
            
            // Filter dataset cards
            document.querySelectorAll('.dataset-card').forEach(card => {
                if (category === 'all' || card.dataset.category === category) {
                    card.style.display = 'block';
                } else {
                    card.style.display = 'none';
                }
            });
        }
        
        function renderMetrics() {
            const grid = document.getElementById('metricsGrid');
            grid.innerHTML = '';
            
            metrics.forEach(metric => {
                const div = document.createElement('div');
                div.className = 'flex items-center space-x-2';
                
                div.innerHTML = `
                    <input type="checkbox" id="metric-${metric.id}" class="rounded text-purple-600 focus:ring-purple-500">
                    <label for="metric-${metric.id}" class="text-sm text-gray-700 cursor-pointer">${metric.name}</label>
                `;
                
                const checkbox = div.querySelector('input');
                checkbox.addEventListener('change', () => {
                    if (checkbox.checked) {
                        selectedMetrics.push(metric.id);
                    } else {
                        selectedMetrics = selectedMetrics.filter(id => id !== metric.id);
                    }
                });
                
                grid.appendChild(div);
            });
        }
        
        function startEvaluation() {
            // Validation
            if (selectedModels.length === 0) {
                alert('Please select at least one model');
                return;
            }
            
            if (!selectedDataset) {
                alert('Please select a dataset');
                return;
            }
            
            if (selectedMetrics.length === 0) {
                alert('Please select at least one metric');
                return;
            }
            
            // Prepare request
            const request = {
                models: selectedModels,
                dataset: selectedDataset,
                metrics: selectedMetrics,
                sample_size: parseInt(document.getElementById('sampleSize').value),
                temperature: parseFloat(document.getElementById('temperature').value),
                max_tokens: parseInt(document.getElementById('maxTokens').value),
                top_p: 0.9
            };
            
            // Start evaluation
            fetch('/api/evaluate', {
                method: 'POST',
                headers: {
                    'Content-Type': 'application/json'
                },
                body: JSON.stringify(request)
            })
            .then(response => response.json())
            .then(data => {
                if (data.status === 'started') {
                    currentEvaluationId = data.evaluation_id;
                    connectWebSocket(data.evaluation_id);
                    showProgress();
                    disableStartButton();
                } else {
                    alert('Failed to start evaluation: ' + data.message);
                }
            })
            .catch(error => {
                console.error('Error:', error);
                alert('Failed to start evaluation');
            });
        }
        
        function connectWebSocket(evaluationId) {
            const protocol = window.location.protocol === 'https:' ? 'wss:' : 'ws:';
            const wsUrl = `${protocol}//${window.location.host}/ws/${evaluationId}`;
            
            websocket = new WebSocket(wsUrl);
            
            websocket.onmessage = function(event) {
                const data = JSON.parse(event.data);
                handleWebSocketMessage(data);
            };
            
            websocket.onclose = function() {
                console.log('WebSocket connection closed');
            };
            
            websocket.onerror = function(error) {
                console.error('WebSocket error:', error);
            };
        }
        
        function handleWebSocketMessage(data) {
            switch (data.type) {
                case 'progress':
                    updateProgress(data.progress, data.current_step);
                    break;
                case 'log':
                    addLogEntry(data);
                    break;
                case 'complete':
                    showResults(data.results);
                    enableStartButton();
                    break;
                case 'error':
                    addLogEntry({
                        level: 'ERROR',
                        message: data.message,
                        timestamp: new Date().toISOString()
                    });
                    enableStartButton();
                    break;
            }
        }
        
        function showProgress() {
            document.getElementById('idleMessage').classList.add('hidden');
            document.getElementById('progressSection').classList.remove('hidden');
            clearLogs();
        }
        
        function updateProgress(progress, currentStep) {
            document.getElementById('progressBar').style.width = progress + '%';
            document.getElementById('progressPercent').textContent = Math.round(progress) + '%';
            document.getElementById('currentStep').textContent = currentStep;
        }
        
        function addLogEntry(logData) {
            const container = document.getElementById('logsContainer');
            const entry = document.createElement('div');
            entry.className = 'log-entry mb-1';
            
            const timestamp = new Date(logData.timestamp).toLocaleTimeString();
            const levelColor = {
                'INFO': 'text-blue-400',
                'SUCCESS': 'text-green-400',
                'ERROR': 'text-red-400',
                'DEBUG': 'text-gray-400'
            }[logData.level] || 'text-green-400';
            
            entry.innerHTML = `
                <span class="text-gray-500">[${timestamp}]</span>
                <span class="${levelColor}">[${logData.level}]</span>
                <span>${logData.message}</span>
            `;
            
            container.appendChild(entry);
            container.scrollTop = container.scrollHeight;
        }
        
        function clearLogs() {
            document.getElementById('logsContainer').innerHTML = '';
        }
        
        function showResults(results) {
            const section = document.getElementById('resultsSection');
            const content = document.getElementById('resultsContent');
            
            let html = '<div class="space-y-4">';
            
            Object.keys(results).forEach(modelId => {
                const modelName = modelId.split('/').pop();
                const modelResults = results[modelId];
                
                html += `
                    <div class="border rounded-lg p-4">
                        <h3 class="font-semibold text-gray-800 mb-3">${modelName}</h3>
                        <div class="grid grid-cols-2 gap-3">
                `;
                
                Object.keys(modelResults).forEach(metric => {
                    const value = modelResults[metric];
                    html += `
                        <div class="bg-gray-50 p-3 rounded">
                            <div class="text-sm text-gray-600">${metric.toUpperCase()}</div>
                            <div class="text-lg font-semibold text-gray-800">${value}</div>
                        </div>
                    `;
                });
                
                html += '</div></div>';
            });
            
            html += '</div>';
            content.innerHTML = html;
            section.classList.remove('hidden');
        }
        
        function disableStartButton() {
            const btn = document.getElementById('startBtn');
            btn.disabled = true;
            btn.innerHTML = '<i data-lucide="loader" class="w-5 h-5 inline mr-2 animate-spin"></i>Running Evaluation...';
            lucide.createIcons();
        }
        
        function enableStartButton() {
            const btn = document.getElementById('startBtn');
            btn.disabled = false;
            btn.innerHTML = '<i data-lucide="play" class="w-5 h-5 inline mr-2"></i>Start Evaluation';
            lucide.createIcons();
        }
    </script>
</body>
</html>
    """

@app.get("/api/models")
async def get_models():
    """Get available models"""
    return {"models": HF_MODELS}

@app.get("/api/datasets")
async def get_datasets():
    """Get available datasets"""
    return {"datasets": EVALUATION_DATASETS}

@app.get("/api/metrics")
async def get_metrics():
    """Get available metrics"""
    return {"metrics": EVALUATION_METRICS}

@app.post("/api/evaluate")
async def start_evaluation(request: EvaluationRequest):
    """Start a new evaluation"""
    evaluation_id = str(uuid.uuid4())
    
    # Start evaluation in background
    asyncio.create_task(simulate_evaluation(evaluation_id, request))
    
    return EvaluationResponse(
        evaluation_id=evaluation_id,
        status="started",
        message="Evaluation started successfully"
    )

@app.get("/api/evaluation/{evaluation_id}")
async def get_evaluation_status(evaluation_id: str):
    """Get evaluation status"""
    if evaluation_id not in active_evaluations:
        raise HTTPException(status_code=404, detail="Evaluation not found")
    
    return active_evaluations[evaluation_id]

@app.websocket("/ws/{evaluation_id}")
async def websocket_endpoint(websocket: WebSocket, evaluation_id: str):
    """WebSocket endpoint for real-time updates"""
    await websocket.accept()
    websocket_connections[evaluation_id] = websocket
    
    try:
        while True:
            # Keep connection alive
            await asyncio.sleep(1)
    except WebSocketDisconnect:
        if evaluation_id in websocket_connections:
            del websocket_connections[evaluation_id]

@app.get("/api/health")
async def health_check():
    """Health check endpoint"""
    return {"status": "healthy", "timestamp": datetime.now().isoformat()}

if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)