Spaces:
Runtime error
Runtime error
Commit
·
77e720d
1
Parent(s):
cb45693
Initial: initial commit
Browse files- app.py +30 -0
- gpt2.py +108 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from gpt2 import generate_text, GENERATE_EXAMPLES
|
| 3 |
+
|
| 4 |
+
gpt_generate = gr.Interface(
|
| 5 |
+
fn=generate_text,
|
| 6 |
+
inputs=[
|
| 7 |
+
gr.Textbox(label="Input text"),
|
| 8 |
+
gr.Dropdown(
|
| 9 |
+
[
|
| 10 |
+
"sample_outputs",
|
| 11 |
+
"greedy_search",
|
| 12 |
+
"beem_search",
|
| 13 |
+
"top_k_search",
|
| 14 |
+
"top_p_search",
|
| 15 |
+
],
|
| 16 |
+
label="Search method",
|
| 17 |
+
value="sample_outputs",
|
| 18 |
+
),
|
| 19 |
+
],
|
| 20 |
+
outputs=gr.Textbox(label="Generated text"),
|
| 21 |
+
examples=GENERATE_EXAMPLES,
|
| 22 |
+
title="GPT-2 Text generator Demo",
|
| 23 |
+
description="Generate text using GPT-2.",
|
| 24 |
+
allow_flagging="never",
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
with gr.Blocks() as demo:
|
| 28 |
+
gpt_generate.render()
|
| 29 |
+
|
| 30 |
+
demo.launch()
|
gpt2.py
ADDED
|
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
if torch.cuda.is_available():
|
| 7 |
+
device = torch.device("cuda")
|
| 8 |
+
elif (
|
| 9 |
+
hasattr(torch.backends, "mps")
|
| 10 |
+
and torch.backends.mps.is_available()
|
| 11 |
+
and torch.backends.mps.is_built()
|
| 12 |
+
):
|
| 13 |
+
device = torch.device("mps")
|
| 14 |
+
else:
|
| 15 |
+
device = torch.device("cpu")
|
| 16 |
+
|
| 17 |
+
print(f"running device: {device}")
|
| 18 |
+
auth_token = os.environ.get("TOKEN_READ_SECRET") or True
|
| 19 |
+
|
| 20 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 21 |
+
"NorHsangPha/shan_gpt2_news", token=auth_token
|
| 22 |
+
)
|
| 23 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 24 |
+
"NorHsangPha/shan_gpt2_news", pad_token_id=tokenizer.eos_token_id, token=auth_token
|
| 25 |
+
).to(device)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def greedy_search(model_inputs, max_new_tokens):
|
| 29 |
+
greedy_output = model.generate(**model_inputs, max_new_tokens=max_new_tokens)
|
| 30 |
+
|
| 31 |
+
return tokenizer.decode(greedy_output[0], skip_special_tokens=True)
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def beem_search(model_inputs, max_new_tokens):
|
| 35 |
+
beam_output = model.generate(
|
| 36 |
+
**model_inputs,
|
| 37 |
+
max_new_tokens=max_new_tokens,
|
| 38 |
+
num_beams=5,
|
| 39 |
+
no_repeat_ngram_size=2, #
|
| 40 |
+
num_return_sequences=5, #
|
| 41 |
+
early_stopping=True,
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
return tokenizer.decode(beam_output[0], skip_special_tokens=True)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def sample_outputs(model_inputs, max_new_tokens):
|
| 48 |
+
sample_output = model.generate(
|
| 49 |
+
**model_inputs,
|
| 50 |
+
max_new_tokens=max_new_tokens,
|
| 51 |
+
do_sample=True,
|
| 52 |
+
top_k=0,
|
| 53 |
+
temperature=0.6,
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
return tokenizer.decode(sample_output[0], skip_special_tokens=True)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def top_k_search(model_inputs, max_new_tokens):
|
| 60 |
+
top_k_output = model.generate(
|
| 61 |
+
**model_inputs, max_new_tokens=max_new_tokens, do_sample=True, top_k=50
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
return tokenizer.decode(top_k_output[0], skip_special_tokens=True)
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def top_p_search(model_inputs, max_new_tokens):
|
| 68 |
+
top_p_output = model.generate(
|
| 69 |
+
**model_inputs,
|
| 70 |
+
max_new_tokens=max_new_tokens,
|
| 71 |
+
do_sample=True,
|
| 72 |
+
top_p=0.92,
|
| 73 |
+
top_k=0,
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
return tokenizer.decode(top_p_output[0], skip_special_tokens=True)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def generate_text(input_text, search_method="sample_outputs"):
|
| 80 |
+
model_inputs = tokenizer(input_text, return_tensors="pt").to(device)
|
| 81 |
+
max_new_tokens = 120
|
| 82 |
+
|
| 83 |
+
match search_method:
|
| 84 |
+
case "greedy_search":
|
| 85 |
+
text = greedy_search(model_inputs, max_new_tokens)
|
| 86 |
+
|
| 87 |
+
case "beem_search":
|
| 88 |
+
text = beem_search(model_inputs, max_new_tokens)
|
| 89 |
+
|
| 90 |
+
case "top_k_search":
|
| 91 |
+
text = top_k_search(model_inputs, max_new_tokens)
|
| 92 |
+
|
| 93 |
+
case "top_p_search":
|
| 94 |
+
text = top_p_search(model_inputs, max_new_tokens)
|
| 95 |
+
|
| 96 |
+
case _:
|
| 97 |
+
text = sample_outputs(model_inputs, max_new_tokens)
|
| 98 |
+
|
| 99 |
+
return text
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
GENERATE_EXAMPLES = [
|
| 103 |
+
["မႂ်ႇသုင်ၶႃႈ", "sample_outputs"],
|
| 104 |
+
["ပၢင်တိုၵ်းသိုၵ်းသိူဝ်", "greedy_search"],
|
| 105 |
+
["ပၢင်တိုၵ်းသိုၵ်းသိူဝ်", "top_k_search"],
|
| 106 |
+
["ပၢင်တိုၵ်းသိုၵ်းသိူဝ်", "top_p_search"],
|
| 107 |
+
["ပၢင်တိုၵ်းသိုၵ်းသိူဝ်", "beem_search"],
|
| 108 |
+
]
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
transformers
|
| 3 |
+
torch
|
| 4 |
+
torchaudio
|