Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +215 -14
src/streamlit_app.py
CHANGED
@@ -1,31 +1,204 @@
|
|
1 |
-
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
#
|
4 |
-
|
|
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
|
9 |
-
#
|
10 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
|
|
|
|
13 |
|
14 |
import streamlit as st
|
15 |
import json
|
16 |
import re
|
17 |
import random
|
|
|
18 |
from typing import Dict, List, Optional, Set
|
19 |
from huggingface_hub import hf_hub_download
|
20 |
from llama_cpp import Llama
|
21 |
|
|
|
|
|
|
|
|
|
22 |
@st.cache_resource
|
23 |
def load_model():
|
24 |
model_path = hf_hub_download(
|
25 |
repo_id="Nitish035/gguf_4",
|
26 |
filename="unsloth.Q4_K_M.gguf",
|
27 |
-
|
|
|
28 |
)
|
|
|
29 |
model = Llama(
|
30 |
model_path=model_path,
|
31 |
n_ctx=4096,
|
@@ -83,27 +256,22 @@ def generate_response(prompt_dict, max_tokens=3024):
|
|
83 |
|
84 |
prompt = f"""<|im_start|>user
|
85 |
Generate a {prompt_dict['Difficulty']} difficulty math multiple-choice question with options and correct answer with these specifications:
|
86 |
-
|
87 |
* Grade Level: {prompt_dict['Grade']}
|
88 |
* Topic: {prompt_dict['Topic']} (align with appropriate CCSS standard)
|
89 |
* Depth of Knowledge (DOK): Level {prompt_dict['DOK']} ({dok_descriptions[prompt_dict['DOK']]})
|
90 |
* Difficulty: {prompt_dict['Difficulty']} ({difficulty_levels[prompt_dict['Difficulty']]})
|
91 |
* Context: {random.choice(contexts)}
|
92 |
* Math Operations: {random.choice(operations)}
|
93 |
-
|
94 |
1. Create a unique word problem based on the context and operations
|
95 |
2. Design a question that matches DOK level {prompt_dict['DOK']}
|
96 |
3. Create four plausible options with one clearly correct answer
|
97 |
4. Format as a clean multiple-choice question
|
98 |
-
|
99 |
# Requirements:
|
100 |
-
|
101 |
1. The question must be unique and different from previous questions
|
102 |
2. Make sure the final answer computed in the explanation is inserted into one of the 4 options
|
103 |
3. The `correct_answer` key must match the option letter that holds the correct answer
|
104 |
4. Options should reflect common student misconceptions
|
105 |
5. Format the response as a JSON object with these keys: 'question', 'options', 'correct_answer', 'explanation'
|
106 |
-
|
107 |
<|im_end|>
|
108 |
<|im_start|>assistant
|
109 |
"""
|
@@ -148,10 +316,20 @@ def main():
|
|
148 |
difficulty = get_difficulty(dok_level)
|
149 |
all_questions = []
|
150 |
generated_questions = set()
|
|
|
|
|
|
|
|
|
151 |
|
152 |
for i in range(no_of_questions):
|
|
|
|
|
|
|
153 |
attempts = 0
|
154 |
while attempts < 3:
|
|
|
|
|
|
|
155 |
prompt_dict = {
|
156 |
"Grade": str(grade_level),
|
157 |
"Topic": topic,
|
@@ -162,15 +340,38 @@ def main():
|
|
162 |
response_text = generate_response(prompt_dict)
|
163 |
parsed_json = try_parse_json(response_text)
|
164 |
|
|
|
|
|
|
|
165 |
if parsed_json and parsed_json.get('question') and parsed_json['question'] not in generated_questions:
|
166 |
generated_questions.add(parsed_json['question'])
|
167 |
all_questions.append(parsed_json)
|
|
|
|
|
|
|
|
|
|
|
168 |
break
|
169 |
attempts += 1
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
st.subheader("Generated Questions:")
|
172 |
if all_questions:
|
173 |
st.json(all_questions)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
else:
|
175 |
st.error("Failed to generate unique questions. Please try again.")
|
176 |
|
|
|
1 |
+
# import os
|
2 |
+
|
3 |
+
# # 1) create a writable cache folder
|
4 |
+
# os.makedirs("/tmp/hf_cache", exist_ok=True)
|
5 |
+
|
6 |
+
# # 2) point HF env vars at it
|
7 |
+
# os.environ["HF_HOME"] = "/tmp/hf_cache"
|
8 |
+
# os.environ["HF_HUB_CACHE"] = "/tmp/hf_cache"
|
9 |
+
# # For older versions, you can also set:
|
10 |
+
# # os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf_cache"
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
# import streamlit as st
|
15 |
+
# import json
|
16 |
+
# import re
|
17 |
+
# import random
|
18 |
+
# from typing import Dict, List, Optional, Set
|
19 |
+
# from huggingface_hub import hf_hub_download
|
20 |
+
# from llama_cpp import Llama
|
21 |
+
|
22 |
+
# @st.cache_resource
|
23 |
+
# def load_model():
|
24 |
+
# model_path = hf_hub_download(
|
25 |
+
# repo_id="Nitish035/gguf_4",
|
26 |
+
# filename="unsloth.Q4_K_M.gguf",
|
27 |
+
|
28 |
+
# )
|
29 |
+
# model = Llama(
|
30 |
+
# model_path=model_path,
|
31 |
+
# n_ctx=4096,
|
32 |
+
# n_gpu_layers=35,
|
33 |
+
# verbose=False,
|
34 |
+
# )
|
35 |
+
# return model
|
36 |
+
|
37 |
+
# model = load_model()
|
38 |
+
|
39 |
+
# def get_difficulty(dok):
|
40 |
+
# difficulty_map = {
|
41 |
+
# 1: "Easy",
|
42 |
+
# 2: "Medium",
|
43 |
+
# 3: "Hard",
|
44 |
+
# 4: "Very Hard"
|
45 |
+
# }
|
46 |
+
# return difficulty_map.get(dok, "Medium")
|
47 |
+
|
48 |
+
# def generate_response(prompt_dict, max_tokens=3024):
|
49 |
+
# dok_descriptions = {
|
50 |
+
# 1: "Basic recall of math facts, definitions, or simple calculations",
|
51 |
+
# 2: "Application of math concepts requiring 1-2 step procedures",
|
52 |
+
# 3: "Multi-step math problems requiring analysis and justification",
|
53 |
+
# 4: "Complex math problems needing synthesis and creative approaches"
|
54 |
+
# }
|
55 |
+
|
56 |
+
# difficulty_levels = {
|
57 |
+
# "Easy": "Multi-step problems requiring reasoning and understanding of concepts - easy; Straightforward problems with obvious approaches.",
|
58 |
+
# "Medium": "Multi-step problems requiring moderate reasoning and understanding of concepts - medium; Requires careful analysis but standard methods apply.",
|
59 |
+
# "Hard": "Complex multi-step problems with multiple variables and operations - hard; Demands innovative thinking and multiple concepts.",
|
60 |
+
# "Very Hard": "Advanced problems requiring systems of equations, conditional logic, and optimization - very hard; Requires advanced reasoning, optimization strategies, and integration of multiple topics."
|
61 |
+
# }
|
62 |
+
|
63 |
+
# contexts = [
|
64 |
+
# "a school fundraiser",
|
65 |
+
# "a community bake sale",
|
66 |
+
# "a sports team's snack stand",
|
67 |
+
# "a charity event",
|
68 |
+
# "a classroom project",
|
69 |
+
# "",
|
70 |
+
# "",
|
71 |
+
# ""
|
72 |
+
# ]
|
73 |
+
|
74 |
+
# operations = [
|
75 |
+
# "addition and subtraction",
|
76 |
+
# "multiplication and division",
|
77 |
+
# "fractions and percentages",
|
78 |
+
# "ratios and proportions",
|
79 |
+
# "algebraic equations",
|
80 |
+
# "",
|
81 |
+
# ""
|
82 |
+
# ]
|
83 |
+
|
84 |
+
# prompt = f"""<|im_start|>user
|
85 |
+
# Generate a {prompt_dict['Difficulty']} difficulty math multiple-choice question with options and correct answer with these specifications:
|
86 |
+
|
87 |
+
# * Grade Level: {prompt_dict['Grade']}
|
88 |
+
# * Topic: {prompt_dict['Topic']} (align with appropriate CCSS standard)
|
89 |
+
# * Depth of Knowledge (DOK): Level {prompt_dict['DOK']} ({dok_descriptions[prompt_dict['DOK']]})
|
90 |
+
# * Difficulty: {prompt_dict['Difficulty']} ({difficulty_levels[prompt_dict['Difficulty']]})
|
91 |
+
# * Context: {random.choice(contexts)}
|
92 |
+
# * Math Operations: {random.choice(operations)}
|
93 |
+
|
94 |
+
# 1. Create a unique word problem based on the context and operations
|
95 |
+
# 2. Design a question that matches DOK level {prompt_dict['DOK']}
|
96 |
+
# 3. Create four plausible options with one clearly correct answer
|
97 |
+
# 4. Format as a clean multiple-choice question
|
98 |
+
|
99 |
+
# # Requirements:
|
100 |
+
|
101 |
+
# 1. The question must be unique and different from previous questions
|
102 |
+
# 2. Make sure the final answer computed in the explanation is inserted into one of the 4 options
|
103 |
+
# 3. The `correct_answer` key must match the option letter that holds the correct answer
|
104 |
+
# 4. Options should reflect common student misconceptions
|
105 |
+
# 5. Format the response as a JSON object with these keys: 'question', 'options', 'correct_answer', 'explanation'
|
106 |
|
107 |
+
# <|im_end|>
|
108 |
+
# <|im_start|>assistant
|
109 |
+
# """
|
110 |
|
111 |
+
# response = model.create_completion(
|
112 |
+
# prompt=prompt,
|
113 |
+
# max_tokens=max_tokens,
|
114 |
+
# temperature=0.7,
|
115 |
+
# top_p=0.9,
|
116 |
+
# echo=False
|
117 |
+
# )
|
118 |
+
|
119 |
+
# return response['choices'][0]['text']
|
120 |
+
|
121 |
+
# def try_parse_json(response_text):
|
122 |
+
# try:
|
123 |
+
# match = re.search(r'{.*}', response_text, re.DOTALL)
|
124 |
+
# if match:
|
125 |
+
# return json.loads(match.group())
|
126 |
+
# return None
|
127 |
+
# except json.JSONDecodeError as e:
|
128 |
+
# st.error(f"Failed to parse JSON response: {e}")
|
129 |
+
# return None
|
130 |
+
|
131 |
+
# def main():
|
132 |
+
# st.title("DOK-Based Math Question Generator")
|
133 |
+
# st.write("Generate math questions based on a Depth of Knowledge level")
|
134 |
+
|
135 |
+
# dok_level = st.selectbox("Select DOK Level:", [1, 2, 3, 4])
|
136 |
+
# no_of_questions = st.slider("Number of Questions:", 1, 2)
|
137 |
+
# topic = st.selectbox("Select Topic:", [
|
138 |
+
# "Functions",
|
139 |
+
# "Statistics and Probability",
|
140 |
+
# "Geometry",
|
141 |
+
# "Expressions and Equations",
|
142 |
+
# "Number System",
|
143 |
+
# "Ratios and Proportional"
|
144 |
+
# ])
|
145 |
+
# grade_level = st.selectbox("Select Grade Level:", [6, 7, 8])
|
146 |
+
|
147 |
+
# if st.button("Generate Questions"):
|
148 |
+
# difficulty = get_difficulty(dok_level)
|
149 |
+
# all_questions = []
|
150 |
+
# generated_questions = set()
|
151 |
|
152 |
+
# for i in range(no_of_questions):
|
153 |
+
# attempts = 0
|
154 |
+
# while attempts < 3:
|
155 |
+
# prompt_dict = {
|
156 |
+
# "Grade": str(grade_level),
|
157 |
+
# "Topic": topic,
|
158 |
+
# "DOK": dok_level,
|
159 |
+
# "Difficulty": difficulty
|
160 |
+
# }
|
161 |
+
|
162 |
+
# response_text = generate_response(prompt_dict)
|
163 |
+
# parsed_json = try_parse_json(response_text)
|
164 |
+
|
165 |
+
# if parsed_json and parsed_json.get('question') and parsed_json['question'] not in generated_questions:
|
166 |
+
# generated_questions.add(parsed_json['question'])
|
167 |
+
# all_questions.append(parsed_json)
|
168 |
+
# break
|
169 |
+
# attempts += 1
|
170 |
+
|
171 |
+
# st.subheader("Generated Questions:")
|
172 |
+
# if all_questions:
|
173 |
+
# st.json(all_questions)
|
174 |
+
# else:
|
175 |
+
# st.error("Failed to generate unique questions. Please try again.")
|
176 |
|
177 |
+
# if __name__ == "__main__":
|
178 |
+
# main()
|
179 |
|
180 |
import streamlit as st
|
181 |
import json
|
182 |
import re
|
183 |
import random
|
184 |
+
import os
|
185 |
from typing import Dict, List, Optional, Set
|
186 |
from huggingface_hub import hf_hub_download
|
187 |
from llama_cpp import Llama
|
188 |
|
189 |
+
# Use /tmp directory which is writable in the Docker container
|
190 |
+
MODEL_CACHE_DIR = "/tmp/model_cache"
|
191 |
+
os.makedirs(MODEL_CACHE_DIR, exist_ok=True)
|
192 |
+
|
193 |
@st.cache_resource
|
194 |
def load_model():
|
195 |
model_path = hf_hub_download(
|
196 |
repo_id="Nitish035/gguf_4",
|
197 |
filename="unsloth.Q4_K_M.gguf",
|
198 |
+
local_dir=MODEL_CACHE_DIR,
|
199 |
+
cache_dir=MODEL_CACHE_DIR,
|
200 |
)
|
201 |
+
|
202 |
model = Llama(
|
203 |
model_path=model_path,
|
204 |
n_ctx=4096,
|
|
|
256 |
|
257 |
prompt = f"""<|im_start|>user
|
258 |
Generate a {prompt_dict['Difficulty']} difficulty math multiple-choice question with options and correct answer with these specifications:
|
|
|
259 |
* Grade Level: {prompt_dict['Grade']}
|
260 |
* Topic: {prompt_dict['Topic']} (align with appropriate CCSS standard)
|
261 |
* Depth of Knowledge (DOK): Level {prompt_dict['DOK']} ({dok_descriptions[prompt_dict['DOK']]})
|
262 |
* Difficulty: {prompt_dict['Difficulty']} ({difficulty_levels[prompt_dict['Difficulty']]})
|
263 |
* Context: {random.choice(contexts)}
|
264 |
* Math Operations: {random.choice(operations)}
|
|
|
265 |
1. Create a unique word problem based on the context and operations
|
266 |
2. Design a question that matches DOK level {prompt_dict['DOK']}
|
267 |
3. Create four plausible options with one clearly correct answer
|
268 |
4. Format as a clean multiple-choice question
|
|
|
269 |
# Requirements:
|
|
|
270 |
1. The question must be unique and different from previous questions
|
271 |
2. Make sure the final answer computed in the explanation is inserted into one of the 4 options
|
272 |
3. The `correct_answer` key must match the option letter that holds the correct answer
|
273 |
4. Options should reflect common student misconceptions
|
274 |
5. Format the response as a JSON object with these keys: 'question', 'options', 'correct_answer', 'explanation'
|
|
|
275 |
<|im_end|>
|
276 |
<|im_start|>assistant
|
277 |
"""
|
|
|
316 |
difficulty = get_difficulty(dok_level)
|
317 |
all_questions = []
|
318 |
generated_questions = set()
|
319 |
+
time_stats = []
|
320 |
+
|
321 |
+
st.subheader("Generating questions...")
|
322 |
+
progress_bar = st.progress(0)
|
323 |
|
324 |
for i in range(no_of_questions):
|
325 |
+
question_placeholder = st.empty()
|
326 |
+
question_placeholder.text(f"Generating question {i+1}/{no_of_questions}...")
|
327 |
+
|
328 |
attempts = 0
|
329 |
while attempts < 3:
|
330 |
+
import time
|
331 |
+
start_time = time.time()
|
332 |
+
|
333 |
prompt_dict = {
|
334 |
"Grade": str(grade_level),
|
335 |
"Topic": topic,
|
|
|
340 |
response_text = generate_response(prompt_dict)
|
341 |
parsed_json = try_parse_json(response_text)
|
342 |
|
343 |
+
end_time = time.time()
|
344 |
+
generation_time = end_time - start_time
|
345 |
+
|
346 |
if parsed_json and parsed_json.get('question') and parsed_json['question'] not in generated_questions:
|
347 |
generated_questions.add(parsed_json['question'])
|
348 |
all_questions.append(parsed_json)
|
349 |
+
time_stats.append({
|
350 |
+
"question_number": i+1,
|
351 |
+
"generation_time_seconds": round(generation_time, 2),
|
352 |
+
"attempts": attempts+1
|
353 |
+
})
|
354 |
break
|
355 |
attempts += 1
|
356 |
+
|
357 |
+
progress_bar.progress((i+1)/no_of_questions)
|
358 |
+
question_placeholder.empty()
|
359 |
+
|
360 |
+
progress_bar.empty()
|
361 |
|
362 |
st.subheader("Generated Questions:")
|
363 |
if all_questions:
|
364 |
st.json(all_questions)
|
365 |
+
|
366 |
+
# Display timing information
|
367 |
+
st.subheader("Generation Time Statistics:")
|
368 |
+
for stat in time_stats:
|
369 |
+
st.write(f"Question {stat['question_number']}: Generated in {stat['generation_time_seconds']} seconds (after {stat['attempts']} attempt(s))")
|
370 |
+
|
371 |
+
# Calculate and display average generation time
|
372 |
+
if time_stats:
|
373 |
+
avg_time = sum(stat['generation_time_seconds'] for stat in time_stats) / len(time_stats)
|
374 |
+
st.write(f"Average generation time: {round(avg_time, 2)} seconds per question")
|
375 |
else:
|
376 |
st.error("Failed to generate unique questions. Please try again.")
|
377 |
|