Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,60 +1,67 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
import gradio as gr
|
| 4 |
-
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
| 5 |
from PIL import Image
|
| 6 |
-
import sympy
|
| 7 |
|
| 8 |
-
#
|
| 9 |
-
|
| 10 |
-
model =
|
|
|
|
| 11 |
|
| 12 |
def solve_math_problem(image):
|
| 13 |
try:
|
| 14 |
-
# Ensure the image is in RGB format
|
| 15 |
image = image.convert("RGB")
|
| 16 |
|
| 17 |
-
#
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
# Clean and prepare the extracted text
|
| 25 |
-
problem_text = generated_text.strip().replace(' ', '')
|
| 26 |
|
| 27 |
-
#
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
-
#
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
return f"
|
| 39 |
|
| 40 |
except Exception as e:
|
| 41 |
-
return f"
|
| 42 |
|
| 43 |
-
#
|
| 44 |
demo = gr.Interface(
|
| 45 |
fn=solve_math_problem,
|
| 46 |
inputs=gr.Image(
|
| 47 |
type="pil",
|
| 48 |
label="Upload Handwritten Math Problem",
|
| 49 |
-
image_mode="RGB"
|
| 50 |
),
|
| 51 |
-
outputs=gr.
|
| 52 |
title="Handwritten Math Problem Solver",
|
| 53 |
-
description="Upload an image of a handwritten math problem,
|
| 54 |
examples=[
|
| 55 |
["example_addition.png"],
|
| 56 |
["example_algebra.jpg"]
|
| 57 |
],
|
|
|
|
| 58 |
allow_flagging="never"
|
| 59 |
)
|
| 60 |
|
|
|
|
| 1 |
+
from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
|
|
|
|
| 2 |
import gradio as gr
|
|
|
|
| 3 |
from PIL import Image
|
|
|
|
| 4 |
|
| 5 |
+
# Use a public model identifier. If you need a private model, remember to authenticate.
|
| 6 |
+
model_name = "google/pix2struct-textcaps-base"
|
| 7 |
+
model = Pix2StructForConditionalGeneration.from_pretrained(model_name)
|
| 8 |
+
processor = Pix2StructProcessor.from_pretrained(model_name)
|
| 9 |
|
| 10 |
def solve_math_problem(image):
|
| 11 |
try:
|
| 12 |
+
# Ensure the image is in RGB format.
|
| 13 |
image = image.convert("RGB")
|
| 14 |
|
| 15 |
+
# Preprocess the image and text. Note that header_text is omitted as it's not used for non-VQA tasks.
|
| 16 |
+
inputs = processor(
|
| 17 |
+
images=[image],
|
| 18 |
+
text="Solve the following math problem:",
|
| 19 |
+
return_tensors="pt",
|
| 20 |
+
max_patches=2048
|
| 21 |
+
)
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
# Generate the solution with generation parameters.
|
| 24 |
+
predictions = model.generate(
|
| 25 |
+
**inputs,
|
| 26 |
+
max_new_tokens=200,
|
| 27 |
+
early_stopping=True,
|
| 28 |
+
num_beams=4,
|
| 29 |
+
temperature=0.2
|
| 30 |
+
)
|
| 31 |
|
| 32 |
+
# Decode the problem text and generated solution.
|
| 33 |
+
problem_text = processor.decode(
|
| 34 |
+
inputs["input_ids"][0],
|
| 35 |
+
skip_special_tokens=True,
|
| 36 |
+
clean_up_tokenization_spaces=True
|
| 37 |
+
)
|
| 38 |
+
solution = processor.decode(
|
| 39 |
+
predictions[0],
|
| 40 |
+
skip_special_tokens=True,
|
| 41 |
+
clean_up_tokenization_spaces=True
|
| 42 |
+
)
|
| 43 |
|
| 44 |
+
return f"Problem: {problem_text}\nSolution: {solution}"
|
| 45 |
|
| 46 |
except Exception as e:
|
| 47 |
+
return f"Error processing image: {str(e)}"
|
| 48 |
|
| 49 |
+
# Set up the Gradio interface.
|
| 50 |
demo = gr.Interface(
|
| 51 |
fn=solve_math_problem,
|
| 52 |
inputs=gr.Image(
|
| 53 |
type="pil",
|
| 54 |
label="Upload Handwritten Math Problem",
|
| 55 |
+
image_mode="RGB" # This forces the input to be RGB.
|
| 56 |
),
|
| 57 |
+
outputs=gr.Textbox(label="Solution", show_copy_button=True),
|
| 58 |
title="Handwritten Math Problem Solver",
|
| 59 |
+
description="Upload an image of a handwritten math problem (algebra, arithmetic, etc.) and get the solution",
|
| 60 |
examples=[
|
| 61 |
["example_addition.png"],
|
| 62 |
["example_algebra.jpg"]
|
| 63 |
],
|
| 64 |
+
theme="soft",
|
| 65 |
allow_flagging="never"
|
| 66 |
)
|
| 67 |
|