Spaces:
Sleeping
Sleeping
import pandas as pd | |
import numpy as np | |
import faiss | |
from sentence_transformers import SentenceTransformer | |
import gradio as gr | |
# ---------- Load CSV ---------- | |
df = pd.read_csv("shl_products.csv") | |
# ---------- Description Helper ---------- | |
def create_description(row): | |
return f"{row['Pre-packaged Job Solutions']} is a {row['Test Type']} test. " \ | |
f"Remote Testing support: {row['Remote Testing']}. Adaptive/IRT: {row['Adaptive/IRT']}." | |
df["description"] = df.apply(create_description, axis=1) | |
# ---------- Sentence Embeddings ---------- | |
model = SentenceTransformer("all-MiniLM-L6-v2") | |
df["embedding"] = df["description"].apply(lambda x: model.encode(str(x))) | |
# ---------- Build FAISS Index ---------- | |
embedding_matrix = np.stack(df["embedding"].values) | |
dimension = embedding_matrix.shape[1] | |
index = faiss.IndexFlatL2(dimension) | |
index.add(embedding_matrix) | |
# ---------- Retrieval Function ---------- | |
def recommend_assessments(query, k=10): | |
query_embedding = model.encode(query) | |
D, I = index.search(np.array([query_embedding]), k) | |
results = df.iloc[I[0]][[ | |
"Pre-packaged Job Solutions", | |
"Remote Testing", | |
"Adaptive/IRT", | |
"Test Type" | |
]] | |
return results.reset_index(drop=True) | |
# ---------- Gradio UI ---------- | |
interface = gr.Interface( | |
fn=recommend_assessments, | |
inputs=gr.Textbox(lines=3, label="Job Description / Hiring Need"), | |
outputs=gr.Dataframe(type="pandas"), | |
title="SHL Assessment Recommender", | |
description="Enter a natural language hiring query and get relevant SHL assessments.", | |
examples=[ | |
["Looking for a cognitive test for engineers that supports remote testing."], | |
["Assessment for sales roles with adaptive questions and remote option."], | |
["Test for developers that evaluates collaboration and reasoning in under 40 minutes."] | |
] | |
) | |
if __name__ == "__main__": | |
interface.launch() | |