Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -38,43 +38,43 @@ def initialize_models():
|
|
| 38 |
scheduler = DDPMScheduler.from_pretrained(
|
| 39 |
"NightRaven109/CCSRModels",
|
| 40 |
subfolder="stable-diffusion-2-1-base/scheduler",
|
| 41 |
-
use_auth_token=os.environ['
|
| 42 |
)
|
| 43 |
|
| 44 |
text_encoder = CLIPTextModel.from_pretrained(
|
| 45 |
"NightRaven109/CCSRModels",
|
| 46 |
subfolder="stable-diffusion-2-1-base/text_encoder",
|
| 47 |
-
use_auth_token=os.environ['
|
| 48 |
)
|
| 49 |
|
| 50 |
tokenizer = CLIPTokenizer.from_pretrained(
|
| 51 |
"NightRaven109/CCSRModels",
|
| 52 |
subfolder="stable-diffusion-2-1-base/tokenizer",
|
| 53 |
-
use_auth_token=os.environ['
|
| 54 |
)
|
| 55 |
|
| 56 |
feature_extractor = CLIPImageProcessor.from_pretrained(
|
| 57 |
"NightRaven109/CCSRModels",
|
| 58 |
subfolder="stable-diffusion-2-1-base/feature_extractor",
|
| 59 |
-
use_auth_token=os.environ['
|
| 60 |
)
|
| 61 |
|
| 62 |
unet = UNet2DConditionModel.from_pretrained(
|
| 63 |
"NightRaven109/CCSRModels",
|
| 64 |
subfolder="stable-diffusion-2-1-base/unet",
|
| 65 |
-
use_auth_token=os.environ['
|
| 66 |
)
|
| 67 |
|
| 68 |
controlnet = ControlNetModel.from_pretrained(
|
| 69 |
"NightRaven109/CCSRModels",
|
| 70 |
subfolder="Controlnet",
|
| 71 |
-
use_auth_token=os.environ['
|
| 72 |
)
|
| 73 |
|
| 74 |
vae = AutoencoderKL.from_pretrained(
|
| 75 |
"NightRaven109/CCSRModels",
|
| 76 |
subfolder="vae",
|
| 77 |
-
use_auth_token=os.environ['
|
| 78 |
)
|
| 79 |
|
| 80 |
# Rest of the code remains the same
|
|
|
|
| 38 |
scheduler = DDPMScheduler.from_pretrained(
|
| 39 |
"NightRaven109/CCSRModels",
|
| 40 |
subfolder="stable-diffusion-2-1-base/scheduler",
|
| 41 |
+
use_auth_token=os.environ['Read2']
|
| 42 |
)
|
| 43 |
|
| 44 |
text_encoder = CLIPTextModel.from_pretrained(
|
| 45 |
"NightRaven109/CCSRModels",
|
| 46 |
subfolder="stable-diffusion-2-1-base/text_encoder",
|
| 47 |
+
use_auth_token=os.environ['Read2']
|
| 48 |
)
|
| 49 |
|
| 50 |
tokenizer = CLIPTokenizer.from_pretrained(
|
| 51 |
"NightRaven109/CCSRModels",
|
| 52 |
subfolder="stable-diffusion-2-1-base/tokenizer",
|
| 53 |
+
use_auth_token=os.environ['Read2']
|
| 54 |
)
|
| 55 |
|
| 56 |
feature_extractor = CLIPImageProcessor.from_pretrained(
|
| 57 |
"NightRaven109/CCSRModels",
|
| 58 |
subfolder="stable-diffusion-2-1-base/feature_extractor",
|
| 59 |
+
use_auth_token=os.environ['Read2']
|
| 60 |
)
|
| 61 |
|
| 62 |
unet = UNet2DConditionModel.from_pretrained(
|
| 63 |
"NightRaven109/CCSRModels",
|
| 64 |
subfolder="stable-diffusion-2-1-base/unet",
|
| 65 |
+
use_auth_token=os.environ['Read2']
|
| 66 |
)
|
| 67 |
|
| 68 |
controlnet = ControlNetModel.from_pretrained(
|
| 69 |
"NightRaven109/CCSRModels",
|
| 70 |
subfolder="Controlnet",
|
| 71 |
+
use_auth_token=os.environ['Read2']
|
| 72 |
)
|
| 73 |
|
| 74 |
vae = AutoencoderKL.from_pretrained(
|
| 75 |
"NightRaven109/CCSRModels",
|
| 76 |
subfolder="vae",
|
| 77 |
+
use_auth_token=os.environ['Read2']
|
| 78 |
)
|
| 79 |
|
| 80 |
# Rest of the code remains the same
|