Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import torch | |
| from transformers import GPT2Tokenizer, GPT2LMHeadModel | |
| tokenizer = GPT2Tokenizer.from_pretrained('NlpHUST/gpt2-vietnamese') | |
| model = GPT2LMHeadModel.from_pretrained('NlpHUST/gpt2-vietnamese') | |
| # max_length = 100 | |
| def run(text, intensity): | |
| res="Tham khảo NlpHUST model \n \n \n" | |
| max_length=intensity | |
| input_ids = tokenizer.encode(text, return_tensors='pt') | |
| sample_outputs = model.generate(input_ids,pad_token_id=tokenizer.eos_token_id, | |
| do_sample=True, | |
| max_length=max_length, | |
| min_length=5, | |
| top_k=40, | |
| num_beams=5, | |
| early_stopping=True, | |
| no_repeat_ngram_size=2, | |
| num_return_sequences=2) | |
| for i, sample_output in enumerate(sample_outputs): | |
| res +="Mẫu số {}\n \n{}".format(i+1, tokenizer.decode(sample_output.tolist())) | |
| res +='\n \n \n \n' | |
| return res | |
| # demo = gr.Interface( | |
| # fn=run, | |
| # inputs=["text", "slider"], | |
| # outputs=["text"], | |
| # ) | |
| demo = gr.Interface(fn=run, | |
| inputs=[gr.Textbox(label="Nhập vào nội dung input",value="Con đường xưa em đi"),gr.Slider(label="Độ dài output muốn tạo ra", value=20, minimum=10, maximum=100, step=2)], | |
| outputs=gr.Textbox(label="Output"), # <-- Number of output components: 1 | |
| ) | |
| demo.launch() | |