Joash2024 commited on
Commit
f34f7ed
·
1 Parent(s): 879737b

basic loop back and multi tag mechanism

Browse files
Files changed (3) hide show
  1. .gitignore +41 -0
  2. app.py +342 -38
  3. flagged/log.csv +3 -0
.gitignore ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ignore virtual environment directories
2
+ .venv/
3
+ venv_nmr/
4
+
5
+ # Ignore Python cache files
6
+ __pycache__/
7
+ *.py[cod]
8
+ *$py.class
9
+
10
+ # Ignore model files
11
+ models/
12
+ *.pth
13
+
14
+ # Ignore joblib files
15
+ data/*.joblib
16
+
17
+ # Ignore Jupyter notebook checkpoints
18
+ .ipynb_checkpoints/
19
+
20
+ # Ignore the feedback data file
21
+ feedback_data.csv
22
+
23
+ # Ignore log files
24
+ *.log
25
+
26
+ # Ignore any environment variable files
27
+ .env
28
+
29
+ # Ignore temporary files and directories
30
+ *.tmp
31
+ *.temp
32
+ tmp/
33
+ temp/
34
+
35
+ # Ignore OS-specific files
36
+ .DS_Store
37
+ Thumbs.db
38
+
39
+ # Ignore IDE-specific files
40
+ .vscode/
41
+ .idea/
app.py CHANGED
@@ -1,9 +1,293 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
  import torch
3
  import torch.nn as nn
4
  from joblib import load
 
 
5
 
6
- # Define the same neural network model
7
  class ImprovedSongRecommender(nn.Module):
8
  def __init__(self, input_size, num_titles):
9
  super(ImprovedSongRecommender, self).__init__()
@@ -29,36 +313,28 @@ class ImprovedSongRecommender(nn.Module):
29
  # Load the trained model
30
  model_path = "models/improved_model.pth"
31
  num_unique_titles = 4855
32
-
33
- model = ImprovedSongRecommender(input_size=2, num_titles=num_unique_titles)
34
  model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
35
  model.eval()
36
 
37
  # Load the label encoders and scaler
38
  label_encoders_path = "data/new_label_encoders.joblib"
39
- scaler_path = "data/new_scaler.joblib"
40
-
41
  label_encoders = load(label_encoders_path)
42
- scaler = load(scaler_path)
43
-
44
- # Create a mapping from encoded indices to actual song titles
45
- index_to_song_title = {index: title for index, title in enumerate(label_encoders['title'].classes_)}
46
 
47
  def encode_input(tags, artist_name):
48
- tags = tags.strip().replace('\n', '')
49
- artist_name = artist_name.strip().replace('\n', '')
50
-
51
- try:
52
- encoded_tags = label_encoders['tags'].transform([tags])[0]
53
- except ValueError:
54
- encoded_tags = label_encoders['tags'].transform(['unknown'])[0]
55
-
56
- if artist_name:
57
  try:
58
- encoded_artist = label_encoders['artist_name'].transform([artist_name])[0]
59
  except ValueError:
60
- encoded_artist = label_encoders['artist_name'].transform(['unknown'])[0]
61
- else:
 
 
 
 
 
62
  encoded_artist = label_encoders['artist_name'].transform(['unknown'])[0]
63
 
64
  return [encoded_tags, encoded_artist]
@@ -66,23 +342,51 @@ def encode_input(tags, artist_name):
66
  def recommend_songs(tags, artist_name):
67
  encoded_input = encode_input(tags, artist_name)
68
  input_tensor = torch.tensor([encoded_input]).float()
69
-
70
  with torch.no_grad():
71
  output = model(input_tensor)
72
-
73
  recommendations_indices = torch.topk(output, 5).indices.squeeze().tolist()
74
- recommendations = [index_to_song_title.get(idx, "Unknown song") for idx in recommendations_indices]
75
-
76
- formatted_output = [f"Recommendation {i+1}: {rec}" for i, rec in enumerate(recommendations)]
77
- return formatted_output
78
-
79
- # Set up the Gradio interface
80
- interface = gr.Interface(
81
- fn=recommend_songs,
82
- inputs=[gr.Textbox(lines=1, placeholder="Enter Tags (e.g., rock)"), gr.Textbox(lines=1, placeholder="Enter Artist Name (optional)")],
83
- outputs=gr.Textbox(label="Recommendations"),
84
- title="Music Recommendation System",
85
- description="Enter tags and (optionally) artist name to get music recommendations."
86
- )
87
-
88
- interface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # import gradio as gr
2
+ # import torch
3
+ # import torch.nn as nn
4
+ # from joblib import load
5
+
6
+ # # Define the same neural network model
7
+ # class ImprovedSongRecommender(nn.Module):
8
+ # def __init__(self, input_size, num_titles):
9
+ # super(ImprovedSongRecommender, self).__init__()
10
+ # self.fc1 = nn.Linear(input_size, 128)
11
+ # self.bn1 = nn.BatchNorm1d(128)
12
+ # self.fc2 = nn.Linear(128, 256)
13
+ # self.bn2 = nn.BatchNorm1d(256)
14
+ # self.fc3 = nn.Linear(256, 128)
15
+ # self.bn3 = nn.BatchNorm1d(128)
16
+ # self.output = nn.Linear(128, num_titles)
17
+ # self.dropout = nn.Dropout(0.5)
18
+
19
+ # def forward(self, x):
20
+ # x = torch.relu(self.bn1(self.fc1(x)))
21
+ # x = self.dropout(x)
22
+ # x = torch.relu(self.bn2(self.fc2(x)))
23
+ # x = self.dropout(x)
24
+ # x = torch.relu(self.bn3(self.fc3(x)))
25
+ # x = self.dropout(x)
26
+ # x = self.output(x)
27
+ # return x
28
+
29
+ # # Load the trained model
30
+ # model_path = "models/improved_model.pth"
31
+ # num_unique_titles = 4855
32
+
33
+ # model = ImprovedSongRecommender(input_size=2, num_titles=num_unique_titles)
34
+ # model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
35
+ # model.eval()
36
+
37
+ # # Load the label encoders and scaler
38
+ # label_encoders_path = "data/new_label_encoders.joblib"
39
+ # scaler_path = "data/new_scaler.joblib"
40
+
41
+ # label_encoders = load(label_encoders_path)
42
+ # scaler = load(scaler_path)
43
+
44
+ # # Create a mapping from encoded indices to actual song titles
45
+ # index_to_song_title = {index: title for index, title in enumerate(label_encoders['title'].classes_)}
46
+
47
+ # def encode_input(tags, artist_name):
48
+ # tags = tags.strip().replace('\n', '')
49
+ # artist_name = artist_name.strip().replace('\n', '')
50
+
51
+ # try:
52
+ # encoded_tags = label_encoders['tags'].transform([tags])[0]
53
+ # except ValueError:
54
+ # encoded_tags = label_encoders['tags'].transform(['unknown'])[0]
55
+
56
+ # if artist_name:
57
+ # try:
58
+ # encoded_artist = label_encoders['artist_name'].transform([artist_name])[0]
59
+ # except ValueError:
60
+ # encoded_artist = label_encoders['artist_name'].transform(['unknown'])[0]
61
+ # else:
62
+ # encoded_artist = label_encoders['artist_name'].transform(['unknown'])[0]
63
+
64
+ # return [encoded_tags, encoded_artist]
65
+
66
+ # def recommend_songs(tags, artist_name):
67
+ # encoded_input = encode_input(tags, artist_name)
68
+ # input_tensor = torch.tensor([encoded_input]).float()
69
+
70
+ # with torch.no_grad():
71
+ # output = model(input_tensor)
72
+
73
+ # recommendations_indices = torch.topk(output, 5).indices.squeeze().tolist()
74
+ # recommendations = [index_to_song_title.get(idx, "Unknown song") for idx in recommendations_indices]
75
+
76
+ # formatted_output = [f"Recommendation {i+1}: {rec}" for i, rec in enumerate(recommendations)]
77
+ # return formatted_output
78
+
79
+ # # Set up the Gradio interface
80
+ # interface = gr.Interface(
81
+ # fn=recommend_songs,
82
+ # inputs=[gr.Textbox(lines=1, placeholder="Enter Tags (e.g., rock)"), gr.Textbox(lines=1, placeholder="Enter Artist Name (optional)")],
83
+ # outputs=gr.Textbox(label="Recommendations"),
84
+ # title="Music Recommendation System",
85
+ # description="Enter tags and (optionally) artist name to get music recommendations."
86
+ # )
87
+
88
+ # interface.launch()
89
+
90
+ # import gradio as gr
91
+ # import torch
92
+ # import torch.nn as nn
93
+ # from joblib import load
94
+ # import numpy as np
95
+ # import json
96
+
97
+ # class ImprovedSongRecommender(nn.Module):
98
+ # def __init__(self, input_size, num_titles):
99
+ # super(ImprovedSongRecommender, self).__init__()
100
+ # self.fc1 = nn.Linear(input_size, 128)
101
+ # self.bn1 = nn.BatchNorm1d(128)
102
+ # self.fc2 = nn.Linear(128, 256)
103
+ # self.bn2 = nn.BatchNorm1d(256)
104
+ # self.fc3 = nn.Linear(256, 128)
105
+ # self.bn3 = nn.BatchNorm1d(128)
106
+ # self.output = nn.Linear(128, num_titles)
107
+ # self.dropout = nn.Dropout(0.5)
108
+
109
+ # def forward(self, x):
110
+ # x = torch.relu(self.bn1(self.fc1(x)))
111
+ # x = self.dropout(x)
112
+ # x = torch.relu(self.bn2(self.fc2(x)))
113
+ # x = self.dropout(x)
114
+ # x = torch.relu(self.bn3(self.fc3(x)))
115
+ # x = self.dropout(x)
116
+ # x = self.output(x)
117
+ # return x
118
+
119
+ # # Load the trained model
120
+ # model_path = "models/improved_model.pth"
121
+ # num_unique_titles = 4855
122
+ # model = ImprovedSongRecommender(input_size=2, num_titles=num_unique_titles)
123
+ # model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
124
+ # model.eval()
125
+
126
+ # # Load the label encoders and scaler
127
+ # label_encoders_path = "data/new_label_encoders.joblib"
128
+ # scaler_path = "data/new_scaler.joblib"
129
+ # label_encoders = load(label_encoders_path)
130
+ # scaler = load(scaler_path)
131
+
132
+ # index_to_song_title = {index: title for index, title in enumerate(label_encoders['title'].classes_)}
133
+
134
+ # def encode_input(tags, artist_name):
135
+ # tags_list = [tag.strip() for tag in tags.split(',')]
136
+ # encoded_tags_list = []
137
+ # for tag in tags_list:
138
+ # try:
139
+ # encoded_tags_list.append(label_encoders['tags'].transform([tag])[0])
140
+ # except ValueError:
141
+ # encoded_tags_list.append(label_encoders['tags'].transform(['unknown'])[0])
142
+
143
+ # encoded_tags = np.mean(encoded_tags_list).astype(int) if encoded_tags_list else label_encoders['tags'].transform(['unknown'])[0]
144
+
145
+ # try:
146
+ # encoded_artist = label_encoders['artist_name'].transform([artist_name])[0] if artist_name else label_encoders['artist_name'].transform(['unknown'])[0]
147
+ # except ValueError:
148
+ # encoded_artist = label_encoders['artist_name'].transform(['unknown'])[0]
149
+
150
+ # return [encoded_tags, encoded_artist]
151
+
152
+ # def recommend_songs(tags, artist_name):
153
+ # encoded_input = encode_input(tags, artist_name)
154
+ # input_tensor = torch.tensor([encoded_input]).float()
155
+ # with torch.no_grad():
156
+ # output = model(input_tensor)
157
+ # recommendations_indices = torch.topk(output, 5).indices.squeeze().tolist()
158
+ # recommendations = [index_to_song_title.get(idx, "Unknown song") for idx in recommendations_indices]
159
+
160
+ # feedback_html = []
161
+ # for idx, rec in enumerate(recommendations):
162
+ # feedback_html.append(f"{rec} <button onclick='gr.Interface.update(\"record_feedback\", {{\"recommendation\": \"{rec}\", \"feedback\": \"up\"}})'>👍</button> <button onclick='gr.Interface.update(\"record_feedback\", {{\"recommendation\": \"{rec}\", \"feedback\": \"down\"}})'>👎</button>")
163
+ # return "<br>".join(feedback_html)
164
+
165
+ # def record_feedback(recommendation, feedback):
166
+
167
+ # with open("feedback_data.csv", "a") as file:
168
+ # file.write(f"{recommendation},{feedback}\n")
169
+ # return f"Feedback recorded for {recommendation}: {feedback}"
170
+
171
+ # interface = gr.Interface(
172
+ # fn=recommend_songs,
173
+ # inputs=[
174
+ # gr.Textbox(lines=2, placeholder="Enter Tags (e.g., rock, jazz)"),
175
+ # gr.Textbox(lines=2, placeholder="Enter Artist Name (optional)")
176
+ # ],
177
+ # outputs=gr.HTML(label="Recommendations"),
178
+ # title="Music Recommendation System",
179
+ # description="Enter tags and (optionally) artist name to get music recommendations. Click on thumbs up/down to provide feedback on each song.",
180
+ # allow_flagging="never"
181
+ # )
182
+
183
+ # interface.launch()
184
+
185
+
186
+ # import gradio as gr
187
+ # import torch
188
+ # import torch.nn as nn
189
+ # from joblib import load
190
+ # import numpy as np
191
+ # import os
192
+
193
+ # class ImprovedSongRecommender(nn.Module):
194
+ # def __init__(self, input_size, num_titles):
195
+ # super(ImprovedSongRecommender, self).__init__()
196
+ # self.fc1 = nn.Linear(input_size, 128)
197
+ # self.bn1 = nn.BatchNorm1d(128)
198
+ # self.fc2 = nn.Linear(128, 256)
199
+ # self.bn2 = nn.BatchNorm1d(256)
200
+ # self.fc3 = nn.Linear(256, 128)
201
+ # self.bn3 = nn.BatchNorm1d(128)
202
+ # self.output = nn.Linear(128, num_titles)
203
+ # self.dropout = nn.Dropout(0.5)
204
+
205
+ # def forward(self, x):
206
+ # x = torch.relu(self.bn1(self.fc1(x)))
207
+ # x = self.dropout(x)
208
+ # x = torch.relu(self.bn2(self.fc2(x)))
209
+ # x = self.dropout(x)
210
+ # x = torch.relu(self.bn3(self.fc3(x)))
211
+ # x = self.dropout(x)
212
+ # x = self.output(x)
213
+ # return x
214
+
215
+ # # Load the trained model
216
+ # model_path = "models/improved_model.pth"
217
+ # num_unique_titles = 4855
218
+ # model = ImprovedSongRecommender(input_size=2, num_titles=num_unique_titles)
219
+ # model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
220
+ # model.eval()
221
+
222
+ # # Load the label encoders and scaler
223
+ # label_encoders_path = "data/new_label_encoders.joblib"
224
+ # scaler_path = "data/new_scaler.joblib"
225
+ # label_encoders = load(label_encoders_path)
226
+ # scaler = load(scaler_path)
227
+
228
+ # index_to_song_title = {index: title for index, title in enumerate(label_encoders['title'].classes_)}
229
+
230
+ # def encode_input(tags, artist_name):
231
+ # tags_list = [tag.strip() for tag in tags.split(',')]
232
+ # encoded_tags_list = []
233
+ # for tag in tags_list:
234
+ # try:
235
+ # encoded_tags_list.append(label_encoders['tags'].transform([tag])[0])
236
+ # except ValueError:
237
+ # encoded_tags_list.append(label_encoders['tags'].transform(['unknown'])[0])
238
+
239
+ # encoded_tags = np.mean(encoded_tags_list).astype(int) if encoded_tags_list else label_encoders['tags'].transform(['unknown'])[0]
240
+
241
+ # try:
242
+ # encoded_artist = label_encoders['artist_name'].transform([artist_name])[0] if artist_name else label_encoders['artist_name'].transform(['unknown'])[0]
243
+ # except ValueError:
244
+ # encoded_artist = label_encoders['artist_name'].transform(['unknown'])[0]
245
+
246
+ # return [encoded_tags, encoded_artist]
247
+
248
+ # def recommend_songs(tags, artist_name):
249
+ # encoded_input = encode_input(tags, artist_name)
250
+ # input_tensor = torch.tensor([encoded_input]).float()
251
+ # with torch.no_grad():
252
+ # output = model(input_tensor)
253
+ # recommendations_indices = torch.topk(output, 5).indices.squeeze().tolist()
254
+ # recommendations = [index_to_song_title.get(idx, "Unknown song") for idx in recommendations_indices]
255
+
256
+ # feedback_html = []
257
+ # for idx, rec in enumerate(recommendations):
258
+ # feedback_html.append(f"{rec} <button onclick='record_feedback(\"{rec}\", \"up\")'>👍</button> <button onclick='record_feedback(\"{rec}\", \"down\")'>👎</button>")
259
+ # return "<br>".join(feedback_html)
260
+
261
+ # def record_feedback(recommendation, feedback):
262
+ # print(f"Recording feedback for: {recommendation}, Feedback: {feedback}") # Debugging statement
263
+ # with open("feedback_data.csv", "a") as file:
264
+ # file.write(f"{recommendation},{feedback}\n")
265
+ # print("Feedback recorded successfully.")
266
+ # return f"Feedback recorded for {recommendation}: {feedback}"
267
+
268
+ # interface = gr.Interface(
269
+ # fn=recommend_songs,
270
+ # inputs=[
271
+ # gr.Textbox(lines=2, placeholder="Enter Tags (e.g., rock, jazz)"),
272
+ # gr.Textbox(lines=2, placeholder="Enter Artist Name (optional)")
273
+ # ],
274
+ # outputs=gr.HTML(label="Recommendations"),
275
+ # title="Music Recommendation System",
276
+ # description="Enter tags and (optionally) artist name to get music recommendations. Click on thumbs up/down to provide feedback on each song.",
277
+ # allow_flagging="never",
278
+ # live=True
279
+ # )
280
+
281
+ # interface.launch()
282
+
283
  import gradio as gr
284
  import torch
285
  import torch.nn as nn
286
  from joblib import load
287
+ import numpy as np
288
+ import os
289
 
290
+ # Define the neural network model
291
  class ImprovedSongRecommender(nn.Module):
292
  def __init__(self, input_size, num_titles):
293
  super(ImprovedSongRecommender, self).__init__()
 
313
  # Load the trained model
314
  model_path = "models/improved_model.pth"
315
  num_unique_titles = 4855
316
+ model = ImprovedSongRecommender(input_size=2, num_titles=num_unique_titles)
 
317
  model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
318
  model.eval()
319
 
320
  # Load the label encoders and scaler
321
  label_encoders_path = "data/new_label_encoders.joblib"
 
 
322
  label_encoders = load(label_encoders_path)
 
 
 
 
323
 
324
  def encode_input(tags, artist_name):
325
+ tags_list = [tag.strip() for tag in tags.split(',')]
326
+ encoded_tags_list = []
327
+ for tag in tags_list:
 
 
 
 
 
 
328
  try:
329
+ encoded_tags_list.append(label_encoders['tags'].transform([tag])[0])
330
  except ValueError:
331
+ encoded_tags_list.append(label_encoders['tags'].transform(['unknown'])[0])
332
+
333
+ encoded_tags = np.mean(encoded_tags_list).astype(int) if encoded_tags_list else label_encoders['tags'].transform(['unknown'])[0]
334
+
335
+ try:
336
+ encoded_artist = label_encoders['artist_name'].transform([artist_name])[0]
337
+ except ValueError:
338
  encoded_artist = label_encoders['artist_name'].transform(['unknown'])[0]
339
 
340
  return [encoded_tags, encoded_artist]
 
342
  def recommend_songs(tags, artist_name):
343
  encoded_input = encode_input(tags, artist_name)
344
  input_tensor = torch.tensor([encoded_input]).float()
 
345
  with torch.no_grad():
346
  output = model(input_tensor)
 
347
  recommendations_indices = torch.topk(output, 5).indices.squeeze().tolist()
348
+ recommendations = [label_encoders['title'].inverse_transform([idx])[0] for idx in recommendations_indices]
349
+ print("Recommendations:", recommendations) # Debugging statement
350
+ return recommendations
351
+
352
+ def record_feedback(recommendation, feedback):
353
+ feedback_path = "feedback_data.csv"
354
+ if not os.path.exists(feedback_path):
355
+ with open(feedback_path, 'w') as f:
356
+ f.write("Recommendation,Feedback\n")
357
+ with open(feedback_path, 'a') as f:
358
+ f.write(f"{recommendation},{feedback}\n")
359
+ return "Feedback recorded!"
360
+
361
+ app = gr.Blocks()
362
+
363
+ with app:
364
+ gr.Markdown("## Music Recommendation System")
365
+ tags_input = gr.Textbox(label="Enter Tags (e.g., rock, jazz, pop)", placeholder="rock, pop")
366
+ artist_name_input = gr.Textbox(label="Enter Artist Name (optional)", placeholder="The Beatles")
367
+ submit_button = gr.Button("Get Recommendations")
368
+ recommendations_output = gr.HTML(label="Recommendations")
369
+ feedback_input = gr.Radio(choices=["Thumbs Up", "Thumbs Down"], label="Feedback")
370
+ feedback_button = gr.Button("Submit Feedback")
371
+ feedback_result = gr.Label(label="Feedback Result")
372
+
373
+ def display_recommendations(tags, artist_name):
374
+ recommendations = recommend_songs(tags, artist_name)
375
+ if recommendations:
376
+ return recommendations
377
+ else:
378
+ return ["No recommendations found"]
379
+
380
+ submit_button.click(
381
+ fn=display_recommendations,
382
+ inputs=[tags_input, artist_name_input],
383
+ outputs=recommendations_output
384
+ )
385
+
386
+ feedback_button.click(
387
+ fn=record_feedback,
388
+ inputs=[recommendations_output, feedback_input],
389
+ outputs=feedback_result
390
+ )
391
+
392
+ app.launch()
flagged/log.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ tags,artist_name,Recommendations,flag,username,timestamp
2
+ hipop,,"['Love Is All Around', 'Never Gonna Give You Up', 'Emergency (Album Version)', 'Soul', 'Intro']",,,2024-05-19 23:49:26.765199
3
+ "rock, pop",,[],,,2024-05-20 01:00:25.404739