Spaces:
Runtime error
Runtime error
Organize files into folders
Browse files- data/new_label_encoders.joblib +3 -0
- data/new_scaler.joblib +3 -0
- models/improved_model.pth +3 -0
- src/app.py +88 -0
data/new_label_encoders.joblib
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3592327f59f9de84ff0d96dd4a48c1785380fe523cfe11c980336780b54eb5da
|
| 3 |
+
size 5370329
|
data/new_scaler.joblib
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f6dd8e3793f8411eeef102ec005d2f5ad5c2ef127fd3e890c176817170b9b25d
|
| 3 |
+
size 1063
|
models/improved_model.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c1cc30b55b50184f85132d396837b1fbef7ccbdb2f3f967f44c58a3a02270f84
|
| 3 |
+
size 2785870
|
src/app.py
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
from joblib import load
|
| 5 |
+
|
| 6 |
+
# Define the same neural network model
|
| 7 |
+
class ImprovedSongRecommender(nn.Module):
|
| 8 |
+
def __init__(self, input_size, num_titles):
|
| 9 |
+
super(ImprovedSongRecommender, self).__init__()
|
| 10 |
+
self.fc1 = nn.Linear(input_size, 128)
|
| 11 |
+
self.bn1 = nn.BatchNorm1d(128)
|
| 12 |
+
self.fc2 = nn.Linear(128, 256)
|
| 13 |
+
self.bn2 = nn.BatchNorm1d(256)
|
| 14 |
+
self.fc3 = nn.Linear(256, 128)
|
| 15 |
+
self.bn3 = nn.BatchNorm1d(128)
|
| 16 |
+
self.output = nn.Linear(128, num_titles)
|
| 17 |
+
self.dropout = nn.Dropout(0.5)
|
| 18 |
+
|
| 19 |
+
def forward(self, x):
|
| 20 |
+
x = torch.relu(self.bn1(self.fc1(x)))
|
| 21 |
+
x = self.dropout(x)
|
| 22 |
+
x = torch.relu(self.bn2(self.fc2(x)))
|
| 23 |
+
x = self.dropout(x)
|
| 24 |
+
x = torch.relu(self.bn3(self.fc3(x)))
|
| 25 |
+
x = self.dropout(x)
|
| 26 |
+
x = self.output(x)
|
| 27 |
+
return x
|
| 28 |
+
|
| 29 |
+
# Load the trained model
|
| 30 |
+
model_path = "C:/Users/joash/Desktop/Neurobytes_final_project/Neurobytes_Music_Recommender/models/improved_model.pth"
|
| 31 |
+
num_unique_titles = 4855
|
| 32 |
+
|
| 33 |
+
model = ImprovedSongRecommender(input_size=2, num_titles=num_unique_titles)
|
| 34 |
+
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
|
| 35 |
+
model.eval()
|
| 36 |
+
|
| 37 |
+
# Load the label encoders and scaler
|
| 38 |
+
label_encoders_path = "C:/Users/joash/Desktop/Neurobytes_final_project/Neurobytes_Music_Recommender/data/new_label_encoders.joblib"
|
| 39 |
+
scaler_path = "C:/Users/joash/Desktop/Neurobytes_final_project/Neurobytes_Music_Recommender/data/new_scaler.joblib"
|
| 40 |
+
|
| 41 |
+
label_encoders = load(label_encoders_path)
|
| 42 |
+
scaler = load(scaler_path)
|
| 43 |
+
|
| 44 |
+
# Create a mapping from encoded indices to actual song titles
|
| 45 |
+
index_to_song_title = {index: title for index, title in enumerate(label_encoders['title'].classes_)}
|
| 46 |
+
|
| 47 |
+
def encode_input(tags, artist_name):
|
| 48 |
+
tags = tags.strip().replace('\n', '')
|
| 49 |
+
artist_name = artist_name.strip().replace('\n', '')
|
| 50 |
+
|
| 51 |
+
try:
|
| 52 |
+
encoded_tags = label_encoders['tags'].transform([tags])[0]
|
| 53 |
+
except ValueError:
|
| 54 |
+
encoded_tags = label_encoders['tags'].transform(['unknown'])[0]
|
| 55 |
+
|
| 56 |
+
if artist_name:
|
| 57 |
+
try:
|
| 58 |
+
encoded_artist = label_encoders['artist_name'].transform([artist_name])[0]
|
| 59 |
+
except ValueError:
|
| 60 |
+
encoded_artist = label_encoders['artist_name'].transform(['unknown'])[0]
|
| 61 |
+
else:
|
| 62 |
+
encoded_artist = label_encoders['artist_name'].transform(['unknown'])[0]
|
| 63 |
+
|
| 64 |
+
return [encoded_tags, encoded_artist]
|
| 65 |
+
|
| 66 |
+
def recommend_songs(tags, artist_name):
|
| 67 |
+
encoded_input = encode_input(tags, artist_name)
|
| 68 |
+
input_tensor = torch.tensor([encoded_input]).float()
|
| 69 |
+
|
| 70 |
+
with torch.no_grad():
|
| 71 |
+
output = model(input_tensor)
|
| 72 |
+
|
| 73 |
+
recommendations_indices = torch.topk(output, 5).indices.squeeze().tolist()
|
| 74 |
+
recommendations = [index_to_song_title.get(idx, "Unknown song") for idx in recommendations_indices]
|
| 75 |
+
|
| 76 |
+
formatted_output = [f"Recommendation {i+1}: {rec}" for i, rec in enumerate(recommendations)]
|
| 77 |
+
return formatted_output
|
| 78 |
+
|
| 79 |
+
# Set up the Gradio interface
|
| 80 |
+
interface = gr.Interface(
|
| 81 |
+
fn=recommend_songs,
|
| 82 |
+
inputs=[gr.Textbox(lines=1, placeholder="Enter Tags (e.g., rock)"), gr.Textbox(lines=1, placeholder="Enter Artist Name (optional)")],
|
| 83 |
+
outputs=gr.Textbox(label="Recommendations"),
|
| 84 |
+
title="Music Recommendation System",
|
| 85 |
+
description="Enter tags and (optionally) artist name to get music recommendations."
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
interface.launch()
|