Spaces:
Runtime error
Runtime error
Bryan-Az
commited on
Commit
·
84c3487
1
Parent(s):
01b18c5
evaluted the model
Browse files- src/model_evaluation_v2.ipynb +372 -131
src/model_evaluation_v2.ipynb
CHANGED
|
@@ -1,136 +1,377 @@
|
|
| 1 |
{
|
| 2 |
-
|
| 3 |
-
{
|
| 4 |
-
"cell_type": "markdown",
|
| 5 |
-
"metadata": {},
|
| 6 |
-
"source": [
|
| 7 |
-
"# **Evaluating the Recommendation Model**"
|
| 8 |
-
]
|
| 9 |
-
},
|
| 10 |
-
{
|
| 11 |
-
"cell_type": "code",
|
| 12 |
-
"execution_count": 1,
|
| 13 |
-
"metadata": {},
|
| 14 |
-
"outputs": [
|
| 15 |
{
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
"
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
{
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
}
|
| 94 |
-
],
|
| 95 |
-
"source": [
|
| 96 |
-
"# Load the label encoders and scaler\n",
|
| 97 |
-
"label_encoders_path = \"data/new_label_encoders.joblib\"\n",
|
| 98 |
-
"scaler_path = \"data/new_scaler.joblib\"\n",
|
| 99 |
-
"\n",
|
| 100 |
-
"label_encoders = load(label_encoders_path)\n",
|
| 101 |
-
"scaler = load(scaler_path)\n",
|
| 102 |
-
"\n",
|
| 103 |
-
"# Create a mapping from encoded indices to actual song titles\n",
|
| 104 |
-
"index_to_song_title = {index: title for index, title in enumerate(label_encoders['title'].classes_)}\n"
|
| 105 |
-
]
|
| 106 |
-
},
|
| 107 |
-
{
|
| 108 |
-
"cell_type": "code",
|
| 109 |
-
"execution_count": null,
|
| 110 |
-
"metadata": {},
|
| 111 |
-
"outputs": [],
|
| 112 |
-
"source": []
|
| 113 |
-
}
|
| 114 |
-
],
|
| 115 |
-
"metadata": {
|
| 116 |
-
"kernelspec": {
|
| 117 |
-
"display_name": "base",
|
| 118 |
-
"language": "python",
|
| 119 |
-
"name": "python3"
|
| 120 |
},
|
| 121 |
-
"
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
"version": 3
|
| 125 |
-
},
|
| 126 |
-
"file_extension": ".py",
|
| 127 |
-
"mimetype": "text/x-python",
|
| 128 |
-
"name": "python",
|
| 129 |
-
"nbconvert_exporter": "python",
|
| 130 |
-
"pygments_lexer": "ipython3",
|
| 131 |
-
"version": "3.8.1"
|
| 132 |
-
}
|
| 133 |
-
},
|
| 134 |
-
"nbformat": 4,
|
| 135 |
-
"nbformat_minor": 2
|
| 136 |
-
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"cells": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {
|
| 6 |
+
"id": "XeyJCRFOLOvg"
|
| 7 |
+
},
|
| 8 |
+
"source": [
|
| 9 |
+
"# **Evaluating the Recommendation Model**"
|
| 10 |
+
]
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"cell_type": "code",
|
| 14 |
+
"execution_count": 305,
|
| 15 |
+
"metadata": {
|
| 16 |
+
"id": "EWiqFUizLOvh"
|
| 17 |
+
},
|
| 18 |
+
"outputs": [],
|
| 19 |
+
"source": [
|
| 20 |
+
"import gradio as gr\n",
|
| 21 |
+
"import torch\n",
|
| 22 |
+
"import torch.nn as nn\n",
|
| 23 |
+
"from joblib import load\n",
|
| 24 |
+
"import sklearn"
|
| 25 |
+
]
|
| 26 |
+
},
|
| 27 |
+
{
|
| 28 |
+
"cell_type": "code",
|
| 29 |
+
"execution_count": 306,
|
| 30 |
+
"metadata": {
|
| 31 |
+
"id": "egV9aaWzLOvk"
|
| 32 |
+
},
|
| 33 |
+
"outputs": [],
|
| 34 |
+
"source": [
|
| 35 |
+
"user_preferences = pd.read_csv('user_preferences.zip')"
|
| 36 |
+
]
|
| 37 |
+
},
|
| 38 |
+
{
|
| 39 |
+
"cell_type": "code",
|
| 40 |
+
"execution_count": 307,
|
| 41 |
+
"metadata": {
|
| 42 |
+
"id": "-7EqGsy7LOvj"
|
| 43 |
+
},
|
| 44 |
+
"outputs": [],
|
| 45 |
+
"source": [
|
| 46 |
+
"# Define the same neural network model\n",
|
| 47 |
+
"class ImprovedSongRecommender(nn.Module):\n",
|
| 48 |
+
" def __init__(self, input_size, num_titles):\n",
|
| 49 |
+
" super(ImprovedSongRecommender, self).__init__()\n",
|
| 50 |
+
" self.fc1 = nn.Linear(input_size, 128)\n",
|
| 51 |
+
" self.bn1 = nn.BatchNorm1d(128)\n",
|
| 52 |
+
" self.fc2 = nn.Linear(128, 256)\n",
|
| 53 |
+
" self.bn2 = nn.BatchNorm1d(256)\n",
|
| 54 |
+
" self.fc3 = nn.Linear(256, 128)\n",
|
| 55 |
+
" self.bn3 = nn.BatchNorm1d(128)\n",
|
| 56 |
+
" self.output = nn.Linear(128, num_titles)\n",
|
| 57 |
+
" self.dropout = nn.Dropout(0.5)\n",
|
| 58 |
+
"\n",
|
| 59 |
+
" def forward(self, x):\n",
|
| 60 |
+
" x = torch.relu(self.bn1(self.fc1(x)))\n",
|
| 61 |
+
" x = self.dropout(x)\n",
|
| 62 |
+
" x = torch.relu(self.bn2(self.fc2(x)))\n",
|
| 63 |
+
" x = self.dropout(x)\n",
|
| 64 |
+
" x = torch.relu(self.bn3(self.fc3(x)))\n",
|
| 65 |
+
" x = self.dropout(x)\n",
|
| 66 |
+
" x = self.output(x)\n",
|
| 67 |
+
" return x\n",
|
| 68 |
+
"\n",
|
| 69 |
+
"# Load the trained model\n",
|
| 70 |
+
"model_path = \"improved_model.pth\"\n",
|
| 71 |
+
"num_unique_titles = 4855"
|
| 72 |
+
]
|
| 73 |
+
},
|
| 74 |
+
{
|
| 75 |
+
"cell_type": "code",
|
| 76 |
+
"execution_count": 308,
|
| 77 |
+
"metadata": {
|
| 78 |
+
"colab": {
|
| 79 |
+
"base_uri": "https://localhost:8080/"
|
| 80 |
+
},
|
| 81 |
+
"id": "WnWXqoEeLOvk",
|
| 82 |
+
"outputId": "bc9d2c9a-6e8c-40b8-8cff-303d23b38cbd"
|
| 83 |
+
},
|
| 84 |
+
"outputs": [
|
| 85 |
+
{
|
| 86 |
+
"output_type": "execute_result",
|
| 87 |
+
"data": {
|
| 88 |
+
"text/plain": [
|
| 89 |
+
"ImprovedSongRecommender(\n",
|
| 90 |
+
" (fc1): Linear(in_features=2, out_features=128, bias=True)\n",
|
| 91 |
+
" (bn1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 92 |
+
" (fc2): Linear(in_features=128, out_features=256, bias=True)\n",
|
| 93 |
+
" (bn2): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 94 |
+
" (fc3): Linear(in_features=256, out_features=128, bias=True)\n",
|
| 95 |
+
" (bn3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
| 96 |
+
" (output): Linear(in_features=128, out_features=4855, bias=True)\n",
|
| 97 |
+
" (dropout): Dropout(p=0.5, inplace=False)\n",
|
| 98 |
+
")"
|
| 99 |
+
]
|
| 100 |
+
},
|
| 101 |
+
"metadata": {},
|
| 102 |
+
"execution_count": 308
|
| 103 |
+
}
|
| 104 |
+
],
|
| 105 |
+
"source": [
|
| 106 |
+
"model = ImprovedSongRecommender(input_size=2, num_titles=num_unique_titles)\n",
|
| 107 |
+
"model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))\n",
|
| 108 |
+
"model.eval()"
|
| 109 |
+
]
|
| 110 |
+
},
|
| 111 |
+
{
|
| 112 |
+
"cell_type": "code",
|
| 113 |
+
"execution_count": 309,
|
| 114 |
+
"metadata": {
|
| 115 |
+
"id": "s5acd8QeLOvk"
|
| 116 |
+
},
|
| 117 |
+
"outputs": [],
|
| 118 |
+
"source": [
|
| 119 |
+
"# Load the label encoders and scaler\n",
|
| 120 |
+
"label_encoders_path = \"new_label_encoders.joblib\"\n",
|
| 121 |
+
"scaler_path = \"new_scaler.joblib\"\n",
|
| 122 |
+
"\n",
|
| 123 |
+
"label_encoders = load(label_encoders_path)\n",
|
| 124 |
+
"scaler = load(scaler_path)\n",
|
| 125 |
+
"\n",
|
| 126 |
+
"# Create a mapping from encoded indices to actual song titles\n",
|
| 127 |
+
"index_to_song_title = {index: title for index, title in enumerate(label_encoders['title'].classes_)}\n"
|
| 128 |
+
]
|
| 129 |
+
},
|
| 130 |
{
|
| 131 |
+
"cell_type": "code",
|
| 132 |
+
"source": [
|
| 133 |
+
"from sklearn.preprocessing import LabelEncoder, MinMaxScaler\n",
|
| 134 |
+
"import joblib\n",
|
| 135 |
+
"import re\n",
|
| 136 |
+
"\n",
|
| 137 |
+
"# Function to clean tags and artist names\n",
|
| 138 |
+
"def clean_text(text):\n",
|
| 139 |
+
" # Convert to lowercase\n",
|
| 140 |
+
" text = text.lower()\n",
|
| 141 |
+
" # Remove special characters and digits\n",
|
| 142 |
+
" text = re.sub(r'[^a-zA-Z\\s]', '', text)\n",
|
| 143 |
+
" # Remove extra white spaces\n",
|
| 144 |
+
" text = re.sub(r'\\s+', ' ', text).strip()\n",
|
| 145 |
+
" return text\n",
|
| 146 |
+
"\n",
|
| 147 |
+
"columns_to_check = ['tags', 'artist', 'tags', 'song', 'listeners', 'playcount'] # Specify the columns you want to check for NaN values\n",
|
| 148 |
+
"user_preferences = user_preferences.dropna(subset=columns_to_check)\n",
|
| 149 |
+
"\n",
|
| 150 |
+
"\n",
|
| 151 |
+
"# Clean 'tags' and 'artist_name' columns\n",
|
| 152 |
+
"user_preferences['tags'] = user_preferences['tags'].apply(clean_text)\n",
|
| 153 |
+
"user_preferences['artist'] = user_preferences['artist'].apply(clean_text)\n",
|
| 154 |
+
"\n",
|
| 155 |
+
"def label_encode_data(df):\n",
|
| 156 |
+
" df = df.copy(deep=True)\n",
|
| 157 |
+
" label_encoders = {}\n",
|
| 158 |
+
" unknown_label = 'unknown' # Define an unknown label\n",
|
| 159 |
+
"\n",
|
| 160 |
+
" for column in ['tags', 'song', 'artist']:\n",
|
| 161 |
+
" le = LabelEncoder()\n",
|
| 162 |
+
" unique_categories = df[column].unique().tolist()\n",
|
| 163 |
+
" unique_categories.append(unknown_label)\n",
|
| 164 |
+
" le.fit(unique_categories)\n",
|
| 165 |
+
" df[column] = le.transform(df[column].astype(str))\n",
|
| 166 |
+
" label_encoders[column] = le\n",
|
| 167 |
+
"\n",
|
| 168 |
+
" return df, label_encoders\n",
|
| 169 |
+
"\n",
|
| 170 |
+
"# Normalize numerical features\n",
|
| 171 |
+
"scaler = MinMaxScaler()\n",
|
| 172 |
+
"user_preferences[['listeners', 'playcount']] = scaler.fit_transform(user_preferences[['listeners', 'playcount']])\n",
|
| 173 |
+
"\n",
|
| 174 |
+
"# Label encode categorical features\n",
|
| 175 |
+
"df_scaled, label_encoders = label_encode_data(user_preferences.loc[:, ['tags', 'artist', 'listeners', 'playcount', 'song']])"
|
| 176 |
+
],
|
| 177 |
+
"metadata": {
|
| 178 |
+
"colab": {
|
| 179 |
+
"base_uri": "https://localhost:8080/"
|
| 180 |
+
},
|
| 181 |
+
"id": "qeuVdOrZMX2H",
|
| 182 |
+
"outputId": "3e38f50d-a6fe-4ec4-eafe-c119ef4228fe"
|
| 183 |
+
},
|
| 184 |
+
"execution_count": 310,
|
| 185 |
+
"outputs": [
|
| 186 |
+
{
|
| 187 |
+
"output_type": "stream",
|
| 188 |
+
"name": "stderr",
|
| 189 |
+
"text": [
|
| 190 |
+
"<ipython-input-310-b2dbd9207146>:20: SettingWithCopyWarning: \n",
|
| 191 |
+
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
| 192 |
+
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
| 193 |
+
"\n",
|
| 194 |
+
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 195 |
+
" user_preferences['tags'] = user_preferences['tags'].apply(clean_text)\n",
|
| 196 |
+
"<ipython-input-310-b2dbd9207146>:21: SettingWithCopyWarning: \n",
|
| 197 |
+
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
| 198 |
+
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
| 199 |
+
"\n",
|
| 200 |
+
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 201 |
+
" user_preferences['artist'] = user_preferences['artist'].apply(clean_text)\n",
|
| 202 |
+
"<ipython-input-310-b2dbd9207146>:40: SettingWithCopyWarning: \n",
|
| 203 |
+
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
| 204 |
+
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
| 205 |
+
"\n",
|
| 206 |
+
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 207 |
+
" user_preferences[['listeners', 'playcount']] = scaler.fit_transform(user_preferences[['listeners', 'playcount']])\n"
|
| 208 |
+
]
|
| 209 |
+
}
|
| 210 |
+
]
|
| 211 |
+
},
|
| 212 |
+
{
|
| 213 |
+
"cell_type": "code",
|
| 214 |
+
"source": [
|
| 215 |
+
"from sklearn.model_selection import train_test_split"
|
| 216 |
+
],
|
| 217 |
+
"metadata": {
|
| 218 |
+
"id": "f8Z0xtfCOWkC"
|
| 219 |
+
},
|
| 220 |
+
"execution_count": 311,
|
| 221 |
+
"outputs": []
|
| 222 |
+
},
|
| 223 |
+
{
|
| 224 |
+
"cell_type": "code",
|
| 225 |
+
"source": [
|
| 226 |
+
"# Split data into features and target\n",
|
| 227 |
+
"X = df_scaled[['tags', 'artist']]\n",
|
| 228 |
+
"y = df_scaled['song']\n",
|
| 229 |
+
"\n",
|
| 230 |
+
"# Split the dataset into training and testing sets\n",
|
| 231 |
+
"X_valid, X_test, y_valid, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
|
| 232 |
+
"print(\"Data split into validation and testing sets.\")"
|
| 233 |
+
],
|
| 234 |
+
"metadata": {
|
| 235 |
+
"colab": {
|
| 236 |
+
"base_uri": "https://localhost:8080/"
|
| 237 |
+
},
|
| 238 |
+
"id": "tuyHessoL9AS",
|
| 239 |
+
"outputId": "9af89ed4-5ce3-423a-a60e-e6c012b35421"
|
| 240 |
+
},
|
| 241 |
+
"execution_count": 312,
|
| 242 |
+
"outputs": [
|
| 243 |
+
{
|
| 244 |
+
"output_type": "stream",
|
| 245 |
+
"name": "stdout",
|
| 246 |
+
"text": [
|
| 247 |
+
"Data split into validation and testing sets.\n"
|
| 248 |
+
]
|
| 249 |
+
}
|
| 250 |
+
]
|
| 251 |
+
},
|
| 252 |
+
{
|
| 253 |
+
"cell_type": "code",
|
| 254 |
+
"source": [
|
| 255 |
+
"import torch\n",
|
| 256 |
+
"import torch.nn as nn\n",
|
| 257 |
+
"import torch.optim as optim\n",
|
| 258 |
+
"from torch.utils.data import DataLoader\n",
|
| 259 |
+
"import numpy as np\n",
|
| 260 |
+
"from sklearn.metrics import accuracy_score"
|
| 261 |
+
],
|
| 262 |
+
"metadata": {
|
| 263 |
+
"id": "YO3SpUROPRIL"
|
| 264 |
+
},
|
| 265 |
+
"execution_count": 313,
|
| 266 |
+
"outputs": []
|
| 267 |
+
},
|
| 268 |
+
{
|
| 269 |
+
"cell_type": "code",
|
| 270 |
+
"source": [
|
| 271 |
+
"valid_loader = DataLoader(list(zip(X_valid.values.astype(float), y_valid)), batch_size=1, shuffle=True)\n",
|
| 272 |
+
"test_loader = DataLoader(list(zip(X_test.values.astype(float), y_test)), batch_size=1, shuffle=False)\n"
|
| 273 |
+
],
|
| 274 |
+
"metadata": {
|
| 275 |
+
"id": "ddLMncl-Paj5"
|
| 276 |
+
},
|
| 277 |
+
"execution_count": 314,
|
| 278 |
+
"outputs": []
|
| 279 |
+
},
|
| 280 |
+
{
|
| 281 |
+
"cell_type": "code",
|
| 282 |
+
"source": [
|
| 283 |
+
"valid_accuracy = 0\n",
|
| 284 |
+
"test_accuracy = 0\n",
|
| 285 |
+
"for features, labels in valid_loader:\n",
|
| 286 |
+
" preds = model(features.float().detach())\n",
|
| 287 |
+
"\n",
|
| 288 |
+
" # Get the predicted class (the one with the highest score)\n",
|
| 289 |
+
" _, predicted_class = torch.max(preds, 1)\n",
|
| 290 |
+
"\n",
|
| 291 |
+
" # Convert to numpy arrays\n",
|
| 292 |
+
" predicted_class_np = predicted_class.numpy()\n",
|
| 293 |
+
" labels_np = labels.numpy()\n",
|
| 294 |
+
"\n",
|
| 295 |
+
" # Calculate accuracy\n",
|
| 296 |
+
" accuracy = accuracy_score(labels_np, predicted_class_np)\n",
|
| 297 |
+
" valid_accuracy += accuracy\n",
|
| 298 |
+
"\n",
|
| 299 |
+
"for features, labels in test_loader:\n",
|
| 300 |
+
" preds = model(features.float())\n",
|
| 301 |
+
" # Get the predicted class (the one with the highest score)\n",
|
| 302 |
+
" _, predicted_class = torch.max(preds, 1)\n",
|
| 303 |
+
"\n",
|
| 304 |
+
" # Convert to numpy arrays\n",
|
| 305 |
+
" predicted_class_np = predicted_class.numpy()\n",
|
| 306 |
+
" labels_np = labels.numpy()\n",
|
| 307 |
+
"\n",
|
| 308 |
+
" # Calculate accuracy\n",
|
| 309 |
+
" accuracy = accuracy_score(labels_np, predicted_class_np)\n",
|
| 310 |
+
" test_accuracy += accuracy"
|
| 311 |
+
],
|
| 312 |
+
"metadata": {
|
| 313 |
+
"id": "CIH4yNETOR6r"
|
| 314 |
+
},
|
| 315 |
+
"execution_count": 315,
|
| 316 |
+
"outputs": []
|
| 317 |
+
},
|
| 318 |
+
{
|
| 319 |
+
"cell_type": "code",
|
| 320 |
+
"source": [
|
| 321 |
+
"print('The loss of the model on the unseen validation dataset is: ', valid_accuracy)\n",
|
| 322 |
+
"print('The loss of the model on the unseen test dataset is: ', test_accuracy)"
|
| 323 |
+
],
|
| 324 |
+
"metadata": {
|
| 325 |
+
"colab": {
|
| 326 |
+
"base_uri": "https://localhost:8080/"
|
| 327 |
+
},
|
| 328 |
+
"id": "Tf5kf1dMOpdw",
|
| 329 |
+
"outputId": "5377af95-5412-4593-e4b7-c74ec03425a0"
|
| 330 |
+
},
|
| 331 |
+
"execution_count": 316,
|
| 332 |
+
"outputs": [
|
| 333 |
+
{
|
| 334 |
+
"output_type": "stream",
|
| 335 |
+
"name": "stdout",
|
| 336 |
+
"text": [
|
| 337 |
+
"The loss of the model on the unseen validation dataset is: 2.0\n",
|
| 338 |
+
"The loss of the model on the unseen test dataset is: 0.0\n"
|
| 339 |
+
]
|
| 340 |
+
}
|
| 341 |
+
]
|
| 342 |
+
},
|
| 343 |
+
{
|
| 344 |
+
"cell_type": "code",
|
| 345 |
+
"source": [],
|
| 346 |
+
"metadata": {
|
| 347 |
+
"id": "TYbj1lHYQZtg"
|
| 348 |
+
},
|
| 349 |
+
"execution_count": 316,
|
| 350 |
+
"outputs": []
|
| 351 |
+
}
|
| 352 |
+
],
|
| 353 |
+
"metadata": {
|
| 354 |
+
"kernelspec": {
|
| 355 |
+
"display_name": "base",
|
| 356 |
+
"language": "python",
|
| 357 |
+
"name": "python3"
|
| 358 |
+
},
|
| 359 |
+
"language_info": {
|
| 360 |
+
"codemirror_mode": {
|
| 361 |
+
"name": "ipython",
|
| 362 |
+
"version": 3
|
| 363 |
+
},
|
| 364 |
+
"file_extension": ".py",
|
| 365 |
+
"mimetype": "text/x-python",
|
| 366 |
+
"name": "python",
|
| 367 |
+
"nbconvert_exporter": "python",
|
| 368 |
+
"pygments_lexer": "ipython3",
|
| 369 |
+
"version": "3.8.1"
|
| 370 |
+
},
|
| 371 |
+
"colab": {
|
| 372 |
+
"provenance": []
|
| 373 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 374 |
},
|
| 375 |
+
"nbformat": 4,
|
| 376 |
+
"nbformat_minor": 0
|
| 377 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|