Spaces:
Runtime error
Runtime error
Bryan-Az
commited on
Commit
·
84c3487
1
Parent(s):
01b18c5
evaluted the model
Browse files- src/model_evaluation_v2.ipynb +372 -131
src/model_evaluation_v2.ipynb
CHANGED
@@ -1,136 +1,377 @@
|
|
1 |
{
|
2 |
-
|
3 |
-
{
|
4 |
-
"cell_type": "markdown",
|
5 |
-
"metadata": {},
|
6 |
-
"source": [
|
7 |
-
"# **Evaluating the Recommendation Model**"
|
8 |
-
]
|
9 |
-
},
|
10 |
-
{
|
11 |
-
"cell_type": "code",
|
12 |
-
"execution_count": 1,
|
13 |
-
"metadata": {},
|
14 |
-
"outputs": [
|
15 |
{
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
"
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
{
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
}
|
94 |
-
],
|
95 |
-
"source": [
|
96 |
-
"# Load the label encoders and scaler\n",
|
97 |
-
"label_encoders_path = \"data/new_label_encoders.joblib\"\n",
|
98 |
-
"scaler_path = \"data/new_scaler.joblib\"\n",
|
99 |
-
"\n",
|
100 |
-
"label_encoders = load(label_encoders_path)\n",
|
101 |
-
"scaler = load(scaler_path)\n",
|
102 |
-
"\n",
|
103 |
-
"# Create a mapping from encoded indices to actual song titles\n",
|
104 |
-
"index_to_song_title = {index: title for index, title in enumerate(label_encoders['title'].classes_)}\n"
|
105 |
-
]
|
106 |
-
},
|
107 |
-
{
|
108 |
-
"cell_type": "code",
|
109 |
-
"execution_count": null,
|
110 |
-
"metadata": {},
|
111 |
-
"outputs": [],
|
112 |
-
"source": []
|
113 |
-
}
|
114 |
-
],
|
115 |
-
"metadata": {
|
116 |
-
"kernelspec": {
|
117 |
-
"display_name": "base",
|
118 |
-
"language": "python",
|
119 |
-
"name": "python3"
|
120 |
},
|
121 |
-
"
|
122 |
-
|
123 |
-
|
124 |
-
"version": 3
|
125 |
-
},
|
126 |
-
"file_extension": ".py",
|
127 |
-
"mimetype": "text/x-python",
|
128 |
-
"name": "python",
|
129 |
-
"nbconvert_exporter": "python",
|
130 |
-
"pygments_lexer": "ipython3",
|
131 |
-
"version": "3.8.1"
|
132 |
-
}
|
133 |
-
},
|
134 |
-
"nbformat": 4,
|
135 |
-
"nbformat_minor": 2
|
136 |
-
}
|
|
|
1 |
{
|
2 |
+
"cells": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {
|
6 |
+
"id": "XeyJCRFOLOvg"
|
7 |
+
},
|
8 |
+
"source": [
|
9 |
+
"# **Evaluating the Recommendation Model**"
|
10 |
+
]
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"cell_type": "code",
|
14 |
+
"execution_count": 305,
|
15 |
+
"metadata": {
|
16 |
+
"id": "EWiqFUizLOvh"
|
17 |
+
},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"import gradio as gr\n",
|
21 |
+
"import torch\n",
|
22 |
+
"import torch.nn as nn\n",
|
23 |
+
"from joblib import load\n",
|
24 |
+
"import sklearn"
|
25 |
+
]
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"cell_type": "code",
|
29 |
+
"execution_count": 306,
|
30 |
+
"metadata": {
|
31 |
+
"id": "egV9aaWzLOvk"
|
32 |
+
},
|
33 |
+
"outputs": [],
|
34 |
+
"source": [
|
35 |
+
"user_preferences = pd.read_csv('user_preferences.zip')"
|
36 |
+
]
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"cell_type": "code",
|
40 |
+
"execution_count": 307,
|
41 |
+
"metadata": {
|
42 |
+
"id": "-7EqGsy7LOvj"
|
43 |
+
},
|
44 |
+
"outputs": [],
|
45 |
+
"source": [
|
46 |
+
"# Define the same neural network model\n",
|
47 |
+
"class ImprovedSongRecommender(nn.Module):\n",
|
48 |
+
" def __init__(self, input_size, num_titles):\n",
|
49 |
+
" super(ImprovedSongRecommender, self).__init__()\n",
|
50 |
+
" self.fc1 = nn.Linear(input_size, 128)\n",
|
51 |
+
" self.bn1 = nn.BatchNorm1d(128)\n",
|
52 |
+
" self.fc2 = nn.Linear(128, 256)\n",
|
53 |
+
" self.bn2 = nn.BatchNorm1d(256)\n",
|
54 |
+
" self.fc3 = nn.Linear(256, 128)\n",
|
55 |
+
" self.bn3 = nn.BatchNorm1d(128)\n",
|
56 |
+
" self.output = nn.Linear(128, num_titles)\n",
|
57 |
+
" self.dropout = nn.Dropout(0.5)\n",
|
58 |
+
"\n",
|
59 |
+
" def forward(self, x):\n",
|
60 |
+
" x = torch.relu(self.bn1(self.fc1(x)))\n",
|
61 |
+
" x = self.dropout(x)\n",
|
62 |
+
" x = torch.relu(self.bn2(self.fc2(x)))\n",
|
63 |
+
" x = self.dropout(x)\n",
|
64 |
+
" x = torch.relu(self.bn3(self.fc3(x)))\n",
|
65 |
+
" x = self.dropout(x)\n",
|
66 |
+
" x = self.output(x)\n",
|
67 |
+
" return x\n",
|
68 |
+
"\n",
|
69 |
+
"# Load the trained model\n",
|
70 |
+
"model_path = \"improved_model.pth\"\n",
|
71 |
+
"num_unique_titles = 4855"
|
72 |
+
]
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"cell_type": "code",
|
76 |
+
"execution_count": 308,
|
77 |
+
"metadata": {
|
78 |
+
"colab": {
|
79 |
+
"base_uri": "https://localhost:8080/"
|
80 |
+
},
|
81 |
+
"id": "WnWXqoEeLOvk",
|
82 |
+
"outputId": "bc9d2c9a-6e8c-40b8-8cff-303d23b38cbd"
|
83 |
+
},
|
84 |
+
"outputs": [
|
85 |
+
{
|
86 |
+
"output_type": "execute_result",
|
87 |
+
"data": {
|
88 |
+
"text/plain": [
|
89 |
+
"ImprovedSongRecommender(\n",
|
90 |
+
" (fc1): Linear(in_features=2, out_features=128, bias=True)\n",
|
91 |
+
" (bn1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
92 |
+
" (fc2): Linear(in_features=128, out_features=256, bias=True)\n",
|
93 |
+
" (bn2): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
94 |
+
" (fc3): Linear(in_features=256, out_features=128, bias=True)\n",
|
95 |
+
" (bn3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
96 |
+
" (output): Linear(in_features=128, out_features=4855, bias=True)\n",
|
97 |
+
" (dropout): Dropout(p=0.5, inplace=False)\n",
|
98 |
+
")"
|
99 |
+
]
|
100 |
+
},
|
101 |
+
"metadata": {},
|
102 |
+
"execution_count": 308
|
103 |
+
}
|
104 |
+
],
|
105 |
+
"source": [
|
106 |
+
"model = ImprovedSongRecommender(input_size=2, num_titles=num_unique_titles)\n",
|
107 |
+
"model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))\n",
|
108 |
+
"model.eval()"
|
109 |
+
]
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"cell_type": "code",
|
113 |
+
"execution_count": 309,
|
114 |
+
"metadata": {
|
115 |
+
"id": "s5acd8QeLOvk"
|
116 |
+
},
|
117 |
+
"outputs": [],
|
118 |
+
"source": [
|
119 |
+
"# Load the label encoders and scaler\n",
|
120 |
+
"label_encoders_path = \"new_label_encoders.joblib\"\n",
|
121 |
+
"scaler_path = \"new_scaler.joblib\"\n",
|
122 |
+
"\n",
|
123 |
+
"label_encoders = load(label_encoders_path)\n",
|
124 |
+
"scaler = load(scaler_path)\n",
|
125 |
+
"\n",
|
126 |
+
"# Create a mapping from encoded indices to actual song titles\n",
|
127 |
+
"index_to_song_title = {index: title for index, title in enumerate(label_encoders['title'].classes_)}\n"
|
128 |
+
]
|
129 |
+
},
|
130 |
{
|
131 |
+
"cell_type": "code",
|
132 |
+
"source": [
|
133 |
+
"from sklearn.preprocessing import LabelEncoder, MinMaxScaler\n",
|
134 |
+
"import joblib\n",
|
135 |
+
"import re\n",
|
136 |
+
"\n",
|
137 |
+
"# Function to clean tags and artist names\n",
|
138 |
+
"def clean_text(text):\n",
|
139 |
+
" # Convert to lowercase\n",
|
140 |
+
" text = text.lower()\n",
|
141 |
+
" # Remove special characters and digits\n",
|
142 |
+
" text = re.sub(r'[^a-zA-Z\\s]', '', text)\n",
|
143 |
+
" # Remove extra white spaces\n",
|
144 |
+
" text = re.sub(r'\\s+', ' ', text).strip()\n",
|
145 |
+
" return text\n",
|
146 |
+
"\n",
|
147 |
+
"columns_to_check = ['tags', 'artist', 'tags', 'song', 'listeners', 'playcount'] # Specify the columns you want to check for NaN values\n",
|
148 |
+
"user_preferences = user_preferences.dropna(subset=columns_to_check)\n",
|
149 |
+
"\n",
|
150 |
+
"\n",
|
151 |
+
"# Clean 'tags' and 'artist_name' columns\n",
|
152 |
+
"user_preferences['tags'] = user_preferences['tags'].apply(clean_text)\n",
|
153 |
+
"user_preferences['artist'] = user_preferences['artist'].apply(clean_text)\n",
|
154 |
+
"\n",
|
155 |
+
"def label_encode_data(df):\n",
|
156 |
+
" df = df.copy(deep=True)\n",
|
157 |
+
" label_encoders = {}\n",
|
158 |
+
" unknown_label = 'unknown' # Define an unknown label\n",
|
159 |
+
"\n",
|
160 |
+
" for column in ['tags', 'song', 'artist']:\n",
|
161 |
+
" le = LabelEncoder()\n",
|
162 |
+
" unique_categories = df[column].unique().tolist()\n",
|
163 |
+
" unique_categories.append(unknown_label)\n",
|
164 |
+
" le.fit(unique_categories)\n",
|
165 |
+
" df[column] = le.transform(df[column].astype(str))\n",
|
166 |
+
" label_encoders[column] = le\n",
|
167 |
+
"\n",
|
168 |
+
" return df, label_encoders\n",
|
169 |
+
"\n",
|
170 |
+
"# Normalize numerical features\n",
|
171 |
+
"scaler = MinMaxScaler()\n",
|
172 |
+
"user_preferences[['listeners', 'playcount']] = scaler.fit_transform(user_preferences[['listeners', 'playcount']])\n",
|
173 |
+
"\n",
|
174 |
+
"# Label encode categorical features\n",
|
175 |
+
"df_scaled, label_encoders = label_encode_data(user_preferences.loc[:, ['tags', 'artist', 'listeners', 'playcount', 'song']])"
|
176 |
+
],
|
177 |
+
"metadata": {
|
178 |
+
"colab": {
|
179 |
+
"base_uri": "https://localhost:8080/"
|
180 |
+
},
|
181 |
+
"id": "qeuVdOrZMX2H",
|
182 |
+
"outputId": "3e38f50d-a6fe-4ec4-eafe-c119ef4228fe"
|
183 |
+
},
|
184 |
+
"execution_count": 310,
|
185 |
+
"outputs": [
|
186 |
+
{
|
187 |
+
"output_type": "stream",
|
188 |
+
"name": "stderr",
|
189 |
+
"text": [
|
190 |
+
"<ipython-input-310-b2dbd9207146>:20: SettingWithCopyWarning: \n",
|
191 |
+
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
192 |
+
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
193 |
+
"\n",
|
194 |
+
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
195 |
+
" user_preferences['tags'] = user_preferences['tags'].apply(clean_text)\n",
|
196 |
+
"<ipython-input-310-b2dbd9207146>:21: SettingWithCopyWarning: \n",
|
197 |
+
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
198 |
+
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
199 |
+
"\n",
|
200 |
+
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
201 |
+
" user_preferences['artist'] = user_preferences['artist'].apply(clean_text)\n",
|
202 |
+
"<ipython-input-310-b2dbd9207146>:40: SettingWithCopyWarning: \n",
|
203 |
+
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
204 |
+
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
205 |
+
"\n",
|
206 |
+
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
207 |
+
" user_preferences[['listeners', 'playcount']] = scaler.fit_transform(user_preferences[['listeners', 'playcount']])\n"
|
208 |
+
]
|
209 |
+
}
|
210 |
+
]
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"cell_type": "code",
|
214 |
+
"source": [
|
215 |
+
"from sklearn.model_selection import train_test_split"
|
216 |
+
],
|
217 |
+
"metadata": {
|
218 |
+
"id": "f8Z0xtfCOWkC"
|
219 |
+
},
|
220 |
+
"execution_count": 311,
|
221 |
+
"outputs": []
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"cell_type": "code",
|
225 |
+
"source": [
|
226 |
+
"# Split data into features and target\n",
|
227 |
+
"X = df_scaled[['tags', 'artist']]\n",
|
228 |
+
"y = df_scaled['song']\n",
|
229 |
+
"\n",
|
230 |
+
"# Split the dataset into training and testing sets\n",
|
231 |
+
"X_valid, X_test, y_valid, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
|
232 |
+
"print(\"Data split into validation and testing sets.\")"
|
233 |
+
],
|
234 |
+
"metadata": {
|
235 |
+
"colab": {
|
236 |
+
"base_uri": "https://localhost:8080/"
|
237 |
+
},
|
238 |
+
"id": "tuyHessoL9AS",
|
239 |
+
"outputId": "9af89ed4-5ce3-423a-a60e-e6c012b35421"
|
240 |
+
},
|
241 |
+
"execution_count": 312,
|
242 |
+
"outputs": [
|
243 |
+
{
|
244 |
+
"output_type": "stream",
|
245 |
+
"name": "stdout",
|
246 |
+
"text": [
|
247 |
+
"Data split into validation and testing sets.\n"
|
248 |
+
]
|
249 |
+
}
|
250 |
+
]
|
251 |
+
},
|
252 |
+
{
|
253 |
+
"cell_type": "code",
|
254 |
+
"source": [
|
255 |
+
"import torch\n",
|
256 |
+
"import torch.nn as nn\n",
|
257 |
+
"import torch.optim as optim\n",
|
258 |
+
"from torch.utils.data import DataLoader\n",
|
259 |
+
"import numpy as np\n",
|
260 |
+
"from sklearn.metrics import accuracy_score"
|
261 |
+
],
|
262 |
+
"metadata": {
|
263 |
+
"id": "YO3SpUROPRIL"
|
264 |
+
},
|
265 |
+
"execution_count": 313,
|
266 |
+
"outputs": []
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"cell_type": "code",
|
270 |
+
"source": [
|
271 |
+
"valid_loader = DataLoader(list(zip(X_valid.values.astype(float), y_valid)), batch_size=1, shuffle=True)\n",
|
272 |
+
"test_loader = DataLoader(list(zip(X_test.values.astype(float), y_test)), batch_size=1, shuffle=False)\n"
|
273 |
+
],
|
274 |
+
"metadata": {
|
275 |
+
"id": "ddLMncl-Paj5"
|
276 |
+
},
|
277 |
+
"execution_count": 314,
|
278 |
+
"outputs": []
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"cell_type": "code",
|
282 |
+
"source": [
|
283 |
+
"valid_accuracy = 0\n",
|
284 |
+
"test_accuracy = 0\n",
|
285 |
+
"for features, labels in valid_loader:\n",
|
286 |
+
" preds = model(features.float().detach())\n",
|
287 |
+
"\n",
|
288 |
+
" # Get the predicted class (the one with the highest score)\n",
|
289 |
+
" _, predicted_class = torch.max(preds, 1)\n",
|
290 |
+
"\n",
|
291 |
+
" # Convert to numpy arrays\n",
|
292 |
+
" predicted_class_np = predicted_class.numpy()\n",
|
293 |
+
" labels_np = labels.numpy()\n",
|
294 |
+
"\n",
|
295 |
+
" # Calculate accuracy\n",
|
296 |
+
" accuracy = accuracy_score(labels_np, predicted_class_np)\n",
|
297 |
+
" valid_accuracy += accuracy\n",
|
298 |
+
"\n",
|
299 |
+
"for features, labels in test_loader:\n",
|
300 |
+
" preds = model(features.float())\n",
|
301 |
+
" # Get the predicted class (the one with the highest score)\n",
|
302 |
+
" _, predicted_class = torch.max(preds, 1)\n",
|
303 |
+
"\n",
|
304 |
+
" # Convert to numpy arrays\n",
|
305 |
+
" predicted_class_np = predicted_class.numpy()\n",
|
306 |
+
" labels_np = labels.numpy()\n",
|
307 |
+
"\n",
|
308 |
+
" # Calculate accuracy\n",
|
309 |
+
" accuracy = accuracy_score(labels_np, predicted_class_np)\n",
|
310 |
+
" test_accuracy += accuracy"
|
311 |
+
],
|
312 |
+
"metadata": {
|
313 |
+
"id": "CIH4yNETOR6r"
|
314 |
+
},
|
315 |
+
"execution_count": 315,
|
316 |
+
"outputs": []
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"cell_type": "code",
|
320 |
+
"source": [
|
321 |
+
"print('The loss of the model on the unseen validation dataset is: ', valid_accuracy)\n",
|
322 |
+
"print('The loss of the model on the unseen test dataset is: ', test_accuracy)"
|
323 |
+
],
|
324 |
+
"metadata": {
|
325 |
+
"colab": {
|
326 |
+
"base_uri": "https://localhost:8080/"
|
327 |
+
},
|
328 |
+
"id": "Tf5kf1dMOpdw",
|
329 |
+
"outputId": "5377af95-5412-4593-e4b7-c74ec03425a0"
|
330 |
+
},
|
331 |
+
"execution_count": 316,
|
332 |
+
"outputs": [
|
333 |
+
{
|
334 |
+
"output_type": "stream",
|
335 |
+
"name": "stdout",
|
336 |
+
"text": [
|
337 |
+
"The loss of the model on the unseen validation dataset is: 2.0\n",
|
338 |
+
"The loss of the model on the unseen test dataset is: 0.0\n"
|
339 |
+
]
|
340 |
+
}
|
341 |
+
]
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"cell_type": "code",
|
345 |
+
"source": [],
|
346 |
+
"metadata": {
|
347 |
+
"id": "TYbj1lHYQZtg"
|
348 |
+
},
|
349 |
+
"execution_count": 316,
|
350 |
+
"outputs": []
|
351 |
+
}
|
352 |
+
],
|
353 |
+
"metadata": {
|
354 |
+
"kernelspec": {
|
355 |
+
"display_name": "base",
|
356 |
+
"language": "python",
|
357 |
+
"name": "python3"
|
358 |
+
},
|
359 |
+
"language_info": {
|
360 |
+
"codemirror_mode": {
|
361 |
+
"name": "ipython",
|
362 |
+
"version": 3
|
363 |
+
},
|
364 |
+
"file_extension": ".py",
|
365 |
+
"mimetype": "text/x-python",
|
366 |
+
"name": "python",
|
367 |
+
"nbconvert_exporter": "python",
|
368 |
+
"pygments_lexer": "ipython3",
|
369 |
+
"version": "3.8.1"
|
370 |
+
},
|
371 |
+
"colab": {
|
372 |
+
"provenance": []
|
373 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
374 |
},
|
375 |
+
"nbformat": 4,
|
376 |
+
"nbformat_minor": 0
|
377 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|