Spaces:
Sleeping
Sleeping
Upload 5 files
Browse files- 69.jpg +0 -0
- 76.jpg +0 -0
- 80.jpg +0 -0
- app.py +61 -0
- requirements.txt +4 -0
69.jpg
ADDED
|
76.jpg
ADDED
|
80.jpg
ADDED
|
app.py
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import albumentations as albu
|
| 3 |
+
from pylab import imshow
|
| 4 |
+
import numpy as np
|
| 5 |
+
import cv2
|
| 6 |
+
import torch
|
| 7 |
+
import albumentations as albu
|
| 8 |
+
from iglovikov_helper_functions.utils.image_utils import load_rgb, pad, unpad
|
| 9 |
+
from iglovikov_helper_functions.dl.pytorch.utils import tensor_from_rgb_image
|
| 10 |
+
from collections import namedtuple
|
| 11 |
+
from tempfile import NamedTemporaryFile
|
| 12 |
+
import os
|
| 13 |
+
from people_segmentation.pre_trained_models import create_model
|
| 14 |
+
model = create_model("Unet_2020-07-20")
|
| 15 |
+
model.eval()
|
| 16 |
+
# Define model
|
| 17 |
+
import matplotlib.pyplot as plt
|
| 18 |
+
from pylab import imshow
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def segment_people(image):
|
| 22 |
+
transform = albu.Compose([albu.Normalize(p=1)], p=1)
|
| 23 |
+
padded_image, pads = pad(image, factor=32, border=cv2.BORDER_CONSTANT)
|
| 24 |
+
x = transform(image=padded_image)["image"]
|
| 25 |
+
x = torch.unsqueeze(tensor_from_rgb_image(x), 0)
|
| 26 |
+
with torch.no_grad():
|
| 27 |
+
prediction = model(x)[0][0]
|
| 28 |
+
|
| 29 |
+
mask = (prediction > 0).cpu().numpy().astype(np.uint8)
|
| 30 |
+
mask = unpad(mask, pads)
|
| 31 |
+
dst = cv2.addWeighted(image, 1, (cv2.cvtColor(mask, cv2.COLOR_GRAY2RGB) * (0, 255, 0)).astype(np.uint8), 0.5, 0)
|
| 32 |
+
|
| 33 |
+
return dst
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
# Create Gradio app
|
| 37 |
+
def gradio_segmentation(image_path):
|
| 38 |
+
|
| 39 |
+
image = load_rgb(image_path)
|
| 40 |
+
mask = segment_people(image)
|
| 41 |
+
return mask
|
| 42 |
+
|
| 43 |
+
examples = [
|
| 44 |
+
[ "76.jpg"],
|
| 45 |
+
[ "69.jpg"],
|
| 46 |
+
[ "80.jpg"]
|
| 47 |
+
]
|
| 48 |
+
|
| 49 |
+
description = """
|
| 50 |
+
# People Segmentation
|
| 51 |
+
This application segments people from the input image. Upload an image to see the segmented output.
|
| 52 |
+
"""
|
| 53 |
+
|
| 54 |
+
gr.Interface(
|
| 55 |
+
fn=gradio_segmentation,
|
| 56 |
+
inputs=gr.Image(type="filepath"),
|
| 57 |
+
outputs=gr.Image(type="numpy"),
|
| 58 |
+
examples=examples,
|
| 59 |
+
title="People Segmentation",
|
| 60 |
+
description=description,
|
| 61 |
+
).launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
people_segmentation
|
| 2 |
+
albumentations
|
| 3 |
+
iglovikov_helper_functions
|
| 4 |
+
gradio
|