Spaces:
Runtime error
Runtime error
| from flask import Flask, request, jsonify | |
| from transformers import pipeline | |
| from transformers import AutoTokenizer, AutoModelForTokenClassification | |
| import whisper | |
| import os | |
| import tempfile | |
| import io | |
| import torchaudio | |
| app = Flask(__name__) | |
| # Initialize Whisper model | |
| whisper_model = whisper.load_model("small") # Renamed variable | |
| # Initialize Emotion Classifier | |
| classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True) | |
| # Initialize NER pipeline | |
| ner_tokenizer = AutoTokenizer.from_pretrained("dslim/bert-base-NER") | |
| ner_model = AutoModelForTokenClassification.from_pretrained("dslim/bert-base-NER") # Renamed variable | |
| ner_pipeline = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer) # Renamed variable | |
| def transcribe(): | |
| try: | |
| # Read raw bytes from the request | |
| audio_bytes = request.data | |
| if not audio_bytes: | |
| return jsonify({"error": "No audio data provided"}), 400 | |
| # Convert bytes to a file-like object | |
| audio_file = io.BytesIO(audio_bytes) | |
| # Load audio as a waveform using torchaudio | |
| waveform, sample_rate = torchaudio.load(audio_file) | |
| # Whisper expects a NumPy array, so we convert it | |
| audio_numpy = waveform.squeeze().numpy() | |
| # Transcribe the audio | |
| result = model.transcribe(audio_numpy) | |
| return jsonify({"text": result["text"]}) | |
| except Exception as e: | |
| print("Error:", str(e)) # Log error for debugging | |
| return jsonify({"error": "Internal Server Error", "details": str(e)}), 500 | |
| def classify(): | |
| try: | |
| data = request.get_json() | |
| if 'text' not in data: | |
| return jsonify({"error": "Missing 'text' field"}), 400 | |
| text = data['text'] | |
| result = classifier(text) | |
| return jsonify(result) | |
| except Exception as e: | |
| return jsonify({"error": str(e)}), 500 | |
| def ner_endpoint(): | |
| try: | |
| data = request.get_json() | |
| text = data.get("text", "") | |
| # Use the renamed ner_pipeline | |
| ner_results = ner_pipeline(text) | |
| words_and_entities = [ | |
| {"word": result['word'], "entity": result['entity']} | |
| for result in ner_results | |
| ] | |
| return jsonify({"entities": words_and_entities}) | |
| except Exception as e: | |
| return jsonify({"error": str(e)}), 500 | |