import streamlit as st import cv2 import time from streamlit_webrtc import VideoTransformerBase, webrtc_streamer from PIL import Image from transformers import pipeline import os from collections import Counter import base64 # ====================== # 模型加载函数(缓存) # ====================== @st.cache_resource def load_smoke_pipeline(): """初始化并缓存吸烟图片分类 pipeline。""" return pipeline("image-classification", model="ccclllwww/smoker_cls_base_V9", use_fast=True) @st.cache_resource def load_gender_pipeline(): """初始化并缓存性别图片分类 pipeline。""" return pipeline("image-classification", model="rizvandwiki/gender-classification-2", use_fast=True) @st.cache_resource def load_age_pipeline(): """初始化并缓存年龄图片分类 pipeline。""" return pipeline("image-classification", model="akashmaggon/vit-base-age-classification", use_fast=True) # 预先加载所有模型 load_smoke_pipeline() load_gender_pipeline() load_age_pipeline() # ====================== # 音频加载函数(缓存) # ====================== @st.cache_resource def load_all_audios(): """加载 audio 目录中的所有 .wav 文件,并返回一个字典, 键为文件名(不带扩展名),值为音频字节数据。""" audio_dir = "audio" audio_files = [f for f in os.listdir(audio_dir) if f.endswith(".wav")] audio_dict = {} for audio_file in audio_files: file_path = os.path.join(audio_dir, audio_file) with open(file_path, "rb") as af: audio_bytes = af.read() # 去掉扩展名作为键 key = os.path.splitext(audio_file)[0] audio_dict[key] = audio_bytes return audio_dict # 应用启动时加载所有音频 audio_data = load_all_audios() # ====================== # 核心处理函数 # ====================== @st.cache_data(show_spinner=False, max_entries=3) def smoking_classification(image: Image.Image) -> str: """接受 PIL 图片并利用吸烟分类 pipeline 进行判定,返回标签(如 "smoking")。""" try: smoke_pipeline = load_smoke_pipeline() output = smoke_pipeline(image) status = max(output, key=lambda x: x["score"])['label'] return status except Exception as e: st.error(f"🔍 图像处理错误: {str(e)}") st.stop() @st.cache_data(show_spinner=False, max_entries=3) def gender_classification(image: Image.Image) -> str: """进行性别分类,返回模型输出的性别(依模型输出)。""" try: gender_pipeline = load_gender_pipeline() output = gender_pipeline(image) status = max(output, key=lambda x: x["score"])['label'] return status except Exception as e: st.error(f"🔍 图像处理错误: {str(e)}") st.stop() @st.cache_data(show_spinner=False, max_entries=3) def age_classification(image: Image.Image) -> str: """进行年龄分类,返回年龄范围,例如 "10-19" 等。""" try: age_pipeline = load_age_pipeline() output = age_pipeline(image) age_range = max(output, key=lambda x: x["score"])['label'] return age_range except Exception as e: st.error(f"🔍 图像处理错误: {str(e)}") st.stop() # ====================== # 自定义JS播放音频函数 # ====================== @st.cache_resource def play_audio_via_js(audio_bytes): """ 利用自定义 HTML 和 JavaScript 播放音频。 将二进制音频数据转换为 Base64 后嵌入 audio 标签, 并用 JS 在页面加载后模拟点击进行播放。 """ audio_base64 = base64.b64encode(audio_bytes).decode("utf-8") html_content = f""" """ st.components.v1.html(html_content, height=150) # ====================== # VideoTransformer 定义:处理摄像头帧与快照捕获 # ====================== class VideoTransformer(VideoTransformerBase): def __init__(self): self.snapshots = [] # 存储捕获的快照 self.last_capture_time = time.time() # 上次捕获时间 self.capture_interval = 0.5 # 每0.5秒捕获一张快照 def transform(self, frame): """从摄像头流捕获单帧图像,并转换为 PIL Image。""" img = frame.to_ndarray(format="bgr24") current_time = time.time() # 每隔 capture_interval 秒捕获一张快照,直到捕获20张 if current_time - self.last_capture_time >= self.capture_interval and len(self.snapshots) < 20: img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) self.snapshots.append(Image.fromarray(img_rgb)) self.last_capture_time = current_time st.write(f"已捕获快照 {len(self.snapshots)}/20") return img # 返回原始帧以供前端显示 # ====================== # 主函数:整合视频流、自动图片分类并展示结果 # ====================== def main(): st.title("Streamlit-WebRTC 自动图片分类示例") st.write("程序在一分钟内捕获20张快照进行图片分类,首先判定是否吸烟。若检测到吸烟的快照超过2次,则展示年龄与性别分类结果。") # 创建用于显示进度文字和进度条的占位容器 capture_text_placeholder = st.empty() capture_progress_placeholder = st.empty() classification_text_placeholder = st.empty() classification_progress_placeholder = st.empty() detection_info_placeholder = st.empty() # 用于显示“开始侦测” # 启动实时视频流 ctx = webrtc_streamer(key="unique_example", video_transformer_factory=VideoTransformer) image_placeholder = st.empty() audio_placeholder = st.empty() capture_target = 10 # 本轮捕获目标张数 if ctx.video_transformer is not None: classification_result_placeholder = st.empty() # 用于显示分类结果 detection_info_placeholder.info("开始侦测") while True: snapshots = ctx.video_transformer.snapshots # 更新捕获阶段进度:同时显示文字和进度条 if len(snapshots) < capture_target: capture_text_placeholder.text(f"捕获进度: {len(snapshots)}/{capture_target} 张快照") progress_value = int(len(snapshots) / capture_target * 100) capture_progress_placeholder.progress(progress_value) else: # 捕获完成,清空捕获进度条,并显示完成提示 capture_text_placeholder.text("捕获进度: 捕获完成!") capture_progress_placeholder.empty() detection_info_placeholder.empty() # 清除“开始侦测”提示 # ---------- 分类阶段进度 ---------- total = len(snapshots) classification_text_placeholder.text("分类进度: 正在分类...") classification_progress = classification_progress_placeholder.progress(0) # 1. 吸烟分类 (0 ~ 33%) smoke_results = [] for idx, img in enumerate(snapshots): smoke_results.append(smoking_classification(img)) smoking_count = sum(1 for result in smoke_results if result.lower() == "smoking") classification_progress.progress(33) # 2. 若吸烟次数超过2,再进行性别和年龄分类 (33% ~ 100%) if smoking_count > 2: gender_results = [] for idx, img in enumerate(snapshots): gender_results.append(gender_classification(img)) classification_progress.progress(66) age_results = [] for idx, img in enumerate(snapshots): age_results.append(age_classification(img)) classification_progress.progress(100) classification_text_placeholder.text("分类进度: 分类完成!") most_common_gender = Counter(gender_results).most_common(1)[0][0] most_common_age = Counter(age_results).most_common(1)[0][0] result_text = ( f"**吸烟状态:** Smoking (检测到 {smoking_count} 次)\n\n" f"**性别:** {most_common_gender}\n\n" f"**年龄范围:** {most_common_age}" ) classification_result_placeholder.markdown(result_text) # 选择第一张分类结果为 "smoking" 的快照,如未检测到,则显示第一张 smoking_image = None for idx, label in enumerate(smoke_results): if label.lower() == "smoking": smoking_image = snapshots[idx] break if smoking_image is None: smoking_image = snapshots[0] image_placeholder.image(smoking_image, caption="捕获的快照示例", use_container_width=True) # 清空播放区域后再播放对应音频 audio_placeholder.empty() audio_key = f"{most_common_age} {most_common_gender.lower()}" if audio_key in audio_data: audio_bytes = audio_data[audio_key] play_audio_via_js(audio_bytes) else: st.error(f"音频文件不存在: {audio_key}.wav") else: result_text = "**吸烟状态:** Not Smoking" classification_result_placeholder.markdown(result_text) image_placeholder.empty() audio_placeholder.empty() classification_text_placeholder.text("分类进度: 分类完成!") classification_progress.progress(100) # 分类阶段结束后清空分类进度占位区 time.sleep(1) classification_progress_placeholder.empty() classification_text_placeholder.empty() capture_text_placeholder.empty() # 重置快照列表,准备下一轮捕获 detection_info_placeholder.info("开始侦测") ctx.video_transformer.snapshots = [] ctx.video_transformer.last_capture_time = time.time() time.sleep(0.1) if __name__ == "__main__": main()