Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
import streamlit as st
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 4 |
+
import sqlparse
|
| 5 |
+
|
| 6 |
+
# Set page config
|
| 7 |
+
st.set_page_config(
|
| 8 |
+
page_title="AI SQL Query Generator",
|
| 9 |
+
page_icon="🤖",
|
| 10 |
+
layout="centered"
|
| 11 |
+
)
|
| 12 |
+
|
| 13 |
+
# Load model and tokenizer
|
| 14 |
+
@st.cache_resource
|
| 15 |
+
def load_model():
|
| 16 |
+
model_name = "tscholak/cxmefzzi" # Pre-trained text-to-SQL model
|
| 17 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 18 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
| 19 |
+
return tokenizer, model
|
| 20 |
+
|
| 21 |
+
# Format SQL output
|
| 22 |
+
def format_sql(sql):
|
| 23 |
+
return sqlparse.format(sql, reindent=True, keyword_case='upper')
|
| 24 |
+
|
| 25 |
+
# Generate SQL from natural language
|
| 26 |
+
def generate_sql(input_text, tokenizer, model):
|
| 27 |
+
prefix = "Translate English to SQL: "
|
| 28 |
+
inputs = tokenizer(prefix + input_text, return_tensors="pt", max_length=512, truncation=True)
|
| 29 |
+
outputs = model.generate(**inputs, max_length=256)
|
| 30 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 31 |
+
|
| 32 |
+
# Streamlit UI
|
| 33 |
+
def main():
|
| 34 |
+
st.title("🤖 AI-Powered SQL Query Generator")
|
| 35 |
+
st.markdown("Convert natural language questions to SQL queries")
|
| 36 |
+
|
| 37 |
+
# Load model
|
| 38 |
+
tokenizer, model = load_model()
|
| 39 |
+
|
| 40 |
+
# User input
|
| 41 |
+
user_input = st.text_area(
|
| 42 |
+
"Enter your question in natural language:",
|
| 43 |
+
placeholder="e.g., Show all customers from California who made purchases after January 2023",
|
| 44 |
+
height=150
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
# Generate button
|
| 48 |
+
if st.button("Generate SQL"):
|
| 49 |
+
if user_input.strip() == "":
|
| 50 |
+
st.warning("Please enter a question")
|
| 51 |
+
else:
|
| 52 |
+
with st.spinner("Generating SQL query..."):
|
| 53 |
+
try:
|
| 54 |
+
# Generate and format SQL
|
| 55 |
+
raw_sql = generate_sql(user_input, tokenizer, model)
|
| 56 |
+
formatted_sql = format_sql(raw_sql)
|
| 57 |
+
|
| 58 |
+
# Display results
|
| 59 |
+
st.subheader("Generated SQL Query:")
|
| 60 |
+
st.code(formatted_sql, language="sql")
|
| 61 |
+
|
| 62 |
+
st.success("Query generated successfully!")
|
| 63 |
+
|
| 64 |
+
# Show raw output for debugging
|
| 65 |
+
with st.expander("Debug Info"):
|
| 66 |
+
st.write(f"Model: tscholak/cxmefzzi")
|
| 67 |
+
st.write(f"Raw Output: `{raw_sql}`")
|
| 68 |
+
except Exception as e:
|
| 69 |
+
st.error(f"Error generating SQL: {str(e)}")
|
| 70 |
+
|
| 71 |
+
# Footer
|
| 72 |
+
st.markdown("---")
|
| 73 |
+
st.markdown("### How to use:")
|
| 74 |
+
st.markdown("1. Enter a question about data you want to query")
|
| 75 |
+
st.markdown("2. Click 'Generate SQL'")
|
| 76 |
+
st.markdown("3. Copy the generated SQL and use it in your database")
|
| 77 |
+
|
| 78 |
+
st.markdown("### Example queries:")
|
| 79 |
+
st.code("Show the total sales per product category in 2022", language="text")
|
| 80 |
+
st.code("List employees hired before 2020 with salary above $50,000", language="text")
|
| 81 |
+
st.code("Count orders by customer country and sort descending", language="text")
|
| 82 |
+
|
| 83 |
+
if __name__ == "__main__":
|
| 84 |
+
main()
|