Natwar's picture
Update app.py
bd4c718 verified
import subprocess
import sys
import os
# Check if running in a standard environment (not Colab/Jupyter)
# and install packages if needed
if not os.path.exists("/.dockerenv") and not os.path.exists("/kaggle"):
try:
import spacy
import matplotlib
import gradio
except ImportError:
print("Installing required packages...")
subprocess.check_call([sys.executable, "-m", "pip", "install",
"spacy", "matplotlib", "gradio"])
# Download spaCy model
subprocess.check_call([sys.executable, "-m", "spacy", "download", "en_core_web_md"])
import spacy
import numpy as np
import matplotlib.pyplot as plt
import gradio as gr
import re
from collections import Counter
print("Setting up spaCy-based emotion analysis model...")
# Load spaCy model
print("Loading spaCy model (this takes just a moment)...")
nlp = spacy.load("en_core_web_md")
# Enhanced emotion categories with carefully selected keywords
EMOTION_CATEGORIES = {
'joy': [
'happy', 'joyful', 'delighted', 'excited', 'cheerful',
'glad', 'elated', 'jubilant', 'overjoyed', 'pleased',
'ecstatic', 'thrilled', 'euphoric', 'content', 'blissful'
],
'sadness': [
'sad', 'unhappy', 'depressed', 'disappointed', 'sorrowful',
'heartbroken', 'melancholy', 'grief', 'somber', 'mournful',
'gloomy', 'despondent', 'downcast', 'miserable', 'devastated'
],
'anger': [
'angry', 'furious', 'enraged', 'irritated', 'annoyed',
'outraged', 'hostile', 'mad', 'infuriated', 'indignant',
'livid', 'irate', 'fuming', 'seething', 'resentful'
],
'fear': [
'afraid', 'scared', 'frightened', 'terrified', 'anxious',
'worried', 'nervous', 'panicked', 'horrified', 'apprehensive',
'fearful', 'uneasy', 'alarmed', 'dread', 'paranoid'
],
'surprise': [
'surprised', 'amazed', 'astonished', 'shocked', 'stunned',
'startled', 'astounded', 'bewildered', 'unexpected', 'awestruck',
'flabbergasted', 'dumbfounded', 'incredulous', 'perplexed', 'thunderstruck'
],
'love': [
'loving', 'affectionate', 'fond', 'adoring', 'caring',
'devoted', 'passionate', 'tender', 'compassionate', 'cherishing',
'enamored', 'smitten', 'infatuated', 'admiring', 'doting'
],
'sarcasm': [
'sarcastic', 'ironic', 'mocking', 'cynical', 'satirical',
'sardonic', 'facetious', 'contemptuous', 'caustic', 'biting',
'scornful', 'derisive', 'snide', 'taunting', 'wry'
],
'disgust': [
'disgusted', 'revolted', 'nauseated', 'repulsed', 'sickened',
'appalled', 'repelled', 'abhorred', 'loathing', 'distaste',
'aversion', 'revulsion', 'repugnance', 'horrified', 'offended'
],
'anticipation': [
'anticipating', 'expecting', 'awaiting', 'looking forward', 'hopeful',
'eager', 'excited', 'impatient', 'prepared', 'ready',
'vigilant', 'attentive', 'watchful', 'alert', 'expectant'
],
'trust': [
'trusting', 'confident', 'assured', 'secure', 'certain',
'reliant', 'faithful', 'believing', 'dependable', 'reliable',
'credible', 'trustworthy', 'honest', 'loyal', 'devoted'
]
}
# Define emotion colors for visualization
EMOTION_COLORS = {
'joy': '#F1C40F', # Yellow
'sadness': '#3498DB', # Blue
'anger': '#E74C3C', # Red
'fear': '#7D3C98', # Purple
'surprise': '#2ECC71', # Green
'love': '#E91E63', # Pink
'sarcasm': '#FF7F50', # Coral
'disgust': '#8E44AD', # Dark Purple
'anticipation': '#F39C12', # Orange
'trust': '#16A085' # Teal
}
# Common sentiment phrases and expressions for improved detection
EMOTION_PHRASES = {
'joy': [
'over the moon', 'on cloud nine', 'couldn\'t be happier',
'best day ever', 'made my day', 'feeling great',
'absolutely thrilled', 'jumping for joy', 'bursting with happiness',
'walking on sunshine', 'flying high', 'tickled pink'
],
'sadness': [
'broke my heart', 'in tears', 'feel like crying',
'deeply saddened', 'lost all hope', 'feel empty',
'devastating news', 'hit hard', 'feel down', 'soul-crushing',
'falling apart', 'world is ending', 'deeply hurt'
],
'anger': [
'makes my blood boil', 'fed up with', 'had it with',
'sick and tired of', 'drives me crazy', 'lost my temper',
'absolutely furious', 'beyond frustrated', 'driving me up the wall',
'at my wit\'s end', 'through the roof', 'blow a gasket', 'see red'
],
'fear': [
'scared to death', 'freaking out', 'keeps me up at night',
'terrified of', 'living in fear', 'panic attack',
'nervous wreck', 'can\'t stop worrying', 'break out in a cold sweat',
'shaking like a leaf', 'scared stiff', 'frozen with fear'
],
'surprise': [
'can\'t believe', 'took me by surprise', 'out of nowhere',
'never expected', 'caught off guard', 'mind blown',
'plot twist', 'jaw dropped', 'knocked my socks off',
'took my breath away', 'blew me away', 'speechless'
],
'love': [
'deeply in love', 'means the world to me', 'treasure every moment',
'hold dear', 'close to my heart', 'forever grateful',
'truly blessed', 'never felt this way', 'head over heels',
'madly in love', 'heart skips a beat', 'love with all my heart'
],
'sarcasm': [
'just what I needed', 'couldn\'t get any better', 'how wonderful',
'oh great', 'lucky me', 'my favorite part',
'thrilled to bits', 'way to go', 'thanks for nothing',
'brilliant job', 'story of my life', 'what a surprise'
],
'disgust': [
'makes me sick', 'turn my stomach', 'can\'t stand',
'absolutely disgusting', 'utterly repulsive', 'gross',
'revolting sight', 'nauseating', 'skin crawl',
'makes me want to vomit', 'repulsed by', 'can hardly look at'
],
'anticipation': [
'looking forward to', 'can\'t wait for', 'counting down the days',
'eagerly awaiting', 'excited about', 'in anticipation of',
'on the edge of my seat', 'can hardly wait', 'dying to see',
'marked on my calendar', 'preparing for', 'gearing up for'
],
'trust': [
'rely on completely', 'trust with my life', 'put my faith in',
'never let me down', 'count on', 'believe in',
'have confidence in', 'trustworthy', 'dependable',
'true to their word', 'rock solid', 'through thick and thin'
]
}
# Contextual emotion indicators for better analysis
CONTEXTUAL_INDICATORS = {
'intensifiers': ['very', 'extremely', 'incredibly', 'absolutely', 'totally', 'completely', 'utterly'],
'negators': ['not', 'never', 'no', 'none', 'neither', 'nor', 'hardly', 'barely'],
'hedges': ['somewhat', 'kind of', 'sort of', 'a bit', 'slightly', 'perhaps', 'maybe'],
'boosters': ['definitely', 'certainly', 'absolutely', 'undoubtedly', 'surely', 'clearly'],
'punctuation': {'!': 'emphasis', '?': 'question', '...': 'hesitation'}
}
# Emotional verdict categories for intelligently classifying mixed emotions
EMOTION_VERDICT_CATEGORIES = {
# Single dominant emotions (when over 35%)
'purely_joyful': {'conditions': [('joy', 0.35)], 'label': 'Purely Joyful', 'description': 'Expressing happiness and positive emotions'},
'deeply_sad': {'conditions': [('sadness', 0.35)], 'label': 'Deeply Sad', 'description': 'Expressing sadness and negative emotions'},
'intensely_angry': {'conditions': [('anger', 0.35)], 'label': 'Intensely Angry', 'description': 'Expressing anger and frustration'},
'primarily_fearful': {'conditions': [('fear', 0.35)], 'label': 'Primarily Fearful', 'description': 'Expressing fear and anxiety'},
'genuinely_surprised': {'conditions': [('surprise', 0.35)], 'label': 'Genuinely Surprised', 'description': 'Expressing surprise and astonishment'},
'deeply_loving': {'conditions': [('love', 0.35)], 'label': 'Deeply Loving', 'description': 'Expressing love and affection'},
'clearly_sarcastic': {'conditions': [('sarcasm', 0.35)], 'label': 'Clearly Sarcastic', 'description': 'Expressing sarcasm and irony'},
'utterly_disgusted': {'conditions': [('disgust', 0.35)], 'label': 'Utterly Disgusted', 'description': 'Expressing disgust and revulsion'},
'eagerly_anticipating': {'conditions': [('anticipation', 0.35)], 'label': 'Eagerly Anticipating', 'description': 'Expressing anticipation and eagerness'},
'firmly_trusting': {'conditions': [('trust', 0.35)], 'label': 'Firmly Trusting', 'description': 'Expressing trust and confidence'},
# Common emotional combinations
'bitter_sweet': {
'conditions': [('joy', 0.2), ('sadness', 0.2)],
'label': 'Bittersweet',
'description': 'Mixed feelings of happiness and sadness'
},
'anxious_excitement': {
'conditions': [('anticipation', 0.2), ('fear', 0.2)],
'label': 'Anxious Excitement',
'description': 'Mixture of excitement and nervousness'
},
'angry_disappointment': {
'conditions': [('anger', 0.2), ('sadness', 0.2)],
'label': 'Angry Disappointment',
'description': 'Disappointment expressed through anger'
},
'ironic_amusement': {
'conditions': [('sarcasm', 0.2), ('joy', 0.15)],
'label': 'Ironic Amusement',
'description': 'Finding humor through irony or sarcasm'
},
'fearful_anticipation': {
'conditions': [('fear', 0.2), ('anticipation', 0.2)],
'label': 'Fearful Anticipation',
'description': 'Anxiously awaiting something'
},
'relieved_surprise': {
'conditions': [('surprise', 0.2), ('joy', 0.15)],
'label': 'Relieved Surprise',
'description': 'Surprise with positive outcome'
},
'shocked_disappointment': {
'conditions': [('surprise', 0.2), ('sadness', 0.15)],
'label': 'Shocked Disappointment',
'description': 'Unexpectedly negative outcome'
},
'disgusted_anger': {
'conditions': [('disgust', 0.2), ('anger', 0.2)],
'label': 'Disgusted Anger',
'description': 'Angry response to something repulsive'
},
'loving_trust': {
'conditions': [('love', 0.2), ('trust', 0.2)],
'label': 'Loving Trust',
'description': 'Deep affection with confidence'
},
'sarcastic_frustration': {
'conditions': [('sarcasm', 0.2), ('anger', 0.15)],
'label': 'Sarcastic Frustration',
'description': 'Using sarcasm to express frustration'
},
'confused_surprise': {
'conditions': [('surprise', 0.2), ('fear', 0.15)],
'label': 'Confused Surprise',
'description': 'Startled with uncertainty'
},
'hopeful_joy': {
'conditions': [('joy', 0.2), ('anticipation', 0.2)],
'label': 'Hopeful Joy',
'description': 'Happy anticipation of something positive'
},
'betrayed_trust': {
'conditions': [('sadness', 0.2), ('trust', 0.15), ('anger', 0.15)],
'label': 'Betrayed Trust',
'description': 'Sadness from broken trust'
},
'fearful_disgust': {
'conditions': [('fear', 0.2), ('disgust', 0.2)],
'label': 'Fearful Disgust',
'description': 'Fear of something repulsive'
},
# Special cases for multiple emotions
'emotionally_complex': {
'conditions': ['multiple_over_15'],
'label': 'Emotionally Complex',
'description': 'Multiple competing emotions'
},
'mildly_emotional': {
'conditions': ['all_under_20'],
'label': 'Mildly Emotional',
'description': 'Low intensity emotional content'
},
'predominantly_neutral': {
'conditions': ['all_under_15'],
'label': 'Predominantly Neutral',
'description': 'No strong emotional signals detected'
}
}
# Sarcasm patterns with refined detection logic
SARCASM_PATTERNS = [
# Exaggerated positive with negative context
r'(?i)\b(?:so+|really|absolutely|totally|completely)\s+(?:thrilled|excited|happy|delighted)\s+(?:about|with|by)\b.*?(?:terrible|awful|worst|bad)',
# Classic sarcastic phrases
r'(?i)(?:^|\W)just\s+what\s+(?:I|we)\s+(?:need|wanted|hoped for)\b',
r'(?i)(?:^|\W)how\s+(?:wonderful|nice|great|lovely|exciting)\b.*?(?:\!|\?{2,})',
# Thanks for nothing pattern
r'(?i)(?:^|\W)thanks\s+for\s+(?:nothing|that|pointing|stating)\b',
# Quotation marks around positive words (scare quotes)
r'(?i)"(?:great|wonderful|excellent|perfect|amazing)"',
# Typical sarcastic responses
r'(?i)^(?:yeah|sure|right|oh)\s+(?:right|sure|okay|ok)(?:\W|$)',
# Exaggerated praise in negative context
r'(?i)\b(?:brilliant|genius|impressive)\b.*?(?:disaster|failure|mess)',
# Obvious understatements
r'(?i)\b(?:slightly|bit|little)\s+(?:catastrophic|disastrous|terrible|awful)\b',
# Oh great patterns
r'(?i)(?:^|\W)oh\s+(?:great|wonderful|perfect|fantastic|awesome)(?:\W|$)'
]
def tokenize_and_clean(text):
"""Tokenize text using spaCy"""
doc = nlp(text.lower().strip())
# Return only alphabetic tokens
return [token.text for token in doc if token.is_alpha]
def detect_phrases(text, emotion_phrases):
"""Detect emotion-specific phrases in text"""
text_lower = text.lower()
detected_phrases = {}
for emotion, phrases in emotion_phrases.items():
found_phrases = []
for phrase in phrases:
if phrase.lower() in text_lower:
found_phrases.append(phrase)
if found_phrases:
detected_phrases[emotion] = found_phrases
return detected_phrases
def detect_contextual_features(text):
"""Detect contextual features in text that may influence emotion"""
features = {
'intensifiers': 0,
'negators': 0,
'hedges': 0,
'boosters': 0,
'exclamations': text.count('!'),
'questions': text.count('?'),
'ellipses': text.count('...'),
'capitalized_words': len(re.findall(r'\b[A-Z]{2,}\b', text))
}
doc = nlp(text.lower())
# Get tokens for counting
tokens = [token.text for token in doc]
# Count contextual indicators
for indicator_type, words in CONTEXTUAL_INDICATORS.items():
if indicator_type != 'punctuation':
for word in words:
if ' ' in word: # Multi-word phrase
if word in text.lower():
features[indicator_type] += 1
else: # Single word
features[indicator_type] += tokens.count(word)
return features
def detect_sarcasm_patterns(text):
"""Detect linguistic patterns of sarcasm in text with context awareness"""
# Match sarcasm patterns
matches = 0
pattern_matches = []
for pattern in SARCASM_PATTERNS:
if re.search(pattern, text):
matches += 1
pattern_matches.append(pattern)
# Get contextual features
features = detect_contextual_features(text)
# Check for phrases specific to sarcasm
phrases = detect_phrases(text, {'sarcasm': EMOTION_PHRASES['sarcasm']})
sarcasm_phrases = len(phrases.get('sarcasm', []))
# Calculate raw score based on pattern matches and features
raw_score = (matches * 0.15) + (sarcasm_phrases * 0.2)
# Adjust based on contextual features
if features['exclamations'] > 1:
raw_score += min(features['exclamations'] * 0.05, 0.2)
if features['capitalized_words'] > 0:
raw_score += min(features['capitalized_words'] * 0.1, 0.3)
# Detect positive-negative contrasts
pos_neg_contrast = 0
emotion_phrases = detect_phrases(text, {
'positive': EMOTION_PHRASES['joy'] + EMOTION_PHRASES['love'],
'negative': EMOTION_PHRASES['sadness'] + EMOTION_PHRASES['anger']
})
if emotion_phrases.get('positive') and emotion_phrases.get('negative'):
pos_neg_contrast = 0.3
# Add contrast score
raw_score += pos_neg_contrast
# Normalize to [0, 1]
return min(raw_score, 1.0), pattern_matches
def calculate_emotion_similarity(text, emotion_keywords):
"""Calculate similarity between text and emotion keywords using spaCy"""
if not text.strip():
return 0.0
# Process the input text
doc = nlp(text.lower())
# Get average similarity with emotion keywords
keyword_scores = []
# Use a subset of keywords for efficiency
for keyword in emotion_keywords[:6]: # Use first 6 keywords for each emotion
keyword_doc = nlp(keyword)
# Calculate maximum similarity between any token in text and the keyword
max_similarity = 0
for token in doc:
if token.is_alpha and not token.is_stop:
for keyword_token in keyword_doc:
similarity = token.similarity(keyword_token)
max_similarity = max(max_similarity, similarity)
keyword_scores.append(max_similarity)
# Return average of top 3 similarities if we have at least 3 scores
if len(keyword_scores) >= 3:
return sum(sorted(keyword_scores, reverse=True)[:3]) / 3
# Otherwise return average of all scores
elif keyword_scores:
return sum(keyword_scores) / len(keyword_scores)
else:
return 0.0
def get_emotion_score(text, emotion, keywords):
"""Calculate emotion score based on similarity, context, and phrase detection"""
# Get emotion score using spaCy word vectors
similarity_score = calculate_emotion_similarity(text, keywords)
# Check for emotion-specific phrases
detected_phrases = detect_phrases(text, {emotion: EMOTION_PHRASES[emotion]})
phrase_count = len(detected_phrases.get(emotion, []))
phrase_score = min(phrase_count * 0.2, 0.6) # Cap at 0.6
# Get contextual features
features = detect_contextual_features(text)
# Calculate feature-based adjustment
feature_adjustment = 0
# Search for direct emotion mentions in text
doc = nlp(text.lower())
direct_mention_score = 0
for token in doc:
if token.lemma_ in keywords:
direct_mention_score += 0.2 # Direct mention of emotion word
break
# Adjust score based on emotional context
if emotion in ['joy', 'love', 'surprise'] and features['exclamations'] > 0:
feature_adjustment += min(features['exclamations'] * 0.05, 0.2)
if emotion in ['anger', 'sadness'] and features['negators'] > 0:
feature_adjustment += min(features['negators'] * 0.05, 0.2)
if emotion == 'fear' and features['intensifiers'] > 0:
feature_adjustment += min(features['intensifiers'] * 0.05, 0.2)
# Combine scores with appropriate weights
final_score = (similarity_score * 0.5) + (phrase_score * 0.3) + (feature_adjustment * 0.1) + (direct_mention_score * 0.1)
# Normalize to ensure it's in [0, 1]
return max(0, min(final_score, 1.0)), detected_phrases.get(emotion, [])
def analyze_sarcasm(text):
"""Specialized analysis for sarcasm detection using spaCy and pattern matching"""
# 1. Keyword similarity for sarcasm words
sarcasm_keywords = EMOTION_CATEGORIES['sarcasm']
similarity_score = calculate_emotion_similarity(text, sarcasm_keywords)
# 2. Linguistic pattern detection
pattern_score, pattern_matches = detect_sarcasm_patterns(text)
# 3. Check for semantic incongruity between sentences
incongruity_score = 0
sentences = list(nlp(text).sents)
if len(sentences) > 1:
# Calculate similarity between adjacent sentences
similarities = []
for i in range(len(sentences) - 1):
sim = sentences[i].similarity(sentences[i+1])
similarities.append(sim)
# Low similarity between adjacent sentences might indicate sarcasm
if similarities and min(similarities) < 0.5:
incongruity_score = 0.3
# 4. Check for sarcasm phrases
detected_phrases = detect_phrases(text, {'sarcasm': EMOTION_PHRASES['sarcasm']})
phrase_score = min(len(detected_phrases.get('sarcasm', [])) * 0.2, 0.6)
# 5. Check for emotional contrast
# (positive words in negative context or vice versa)
doc = nlp(text.lower())
# Count positive and negative words
pos_count = 0
neg_count = 0
for token in doc:
if token.is_alpha and not token.is_stop:
# Check against positive and negative emotion keywords
if any(token.similarity(nlp(word)) > 0.7 for word in EMOTION_CATEGORIES['joy'][:5]):
pos_count += 1
if any(token.similarity(nlp(word)) > 0.7 for word in EMOTION_CATEGORIES['sadness'][:5] + EMOTION_CATEGORIES['anger'][:5]):
neg_count += 1
contrast_score = 0
if pos_count > 0 and neg_count > 0:
contrast_score = min(0.3, pos_count * neg_count * 0.05)
# Weighted combination of all scores
combined_score = (0.15 * similarity_score) + (0.35 * pattern_score) + \
(0.15 * incongruity_score) + (0.25 * phrase_score) + \
(0.1 * contrast_score)
# Normalize to [0, 1]
return max(0, min(combined_score, 1.0)), detected_phrases.get('sarcasm', []), pattern_matches
def determine_emotional_verdict(emotion_scores):
"""Determine the emotional verdict based on the emotional profile"""
# Create a sorted list of emotions by score
sorted_emotions = sorted(emotion_scores.items(), key=lambda x: x[1], reverse=True)
# Count emotions over different thresholds
emotions_over_35 = [e for e, s in sorted_emotions if s > 0.35]
emotions_over_20 = [e for e, s in sorted_emotions if s > 0.20]
emotions_over_15 = [e for e, s in sorted_emotions if s > 0.15]
# Check if we have a strong dominant emotion (over 35%)
if emotions_over_35:
dominant_emotion = emotions_over_35[0]
for verdict_key, verdict_info in EMOTION_VERDICT_CATEGORIES.items():
conditions = verdict_info['conditions']
# Check single emotion conditions
if len(conditions) == 1 and isinstance(conditions[0], tuple):
emotion, threshold = conditions[0]
if emotion == dominant_emotion and emotion_scores[emotion] >= threshold:
return verdict_info['label'], verdict_info['description']
# Check for emotion combinations
for verdict_key, verdict_info in EMOTION_VERDICT_CATEGORIES.items():
conditions = verdict_info['conditions']
# Skip single emotion conditions we've already checked
if len(conditions) == 1 and isinstance(conditions[0], tuple):
continue
# Handle special condition types
if conditions == ['multiple_over_15'] and len(emotions_over_15) >= 3:
return verdict_info['label'], verdict_info['description']
if conditions == ['all_under_20'] and not emotions_over_20:
return verdict_info['label'], verdict_info['description']
if conditions == ['all_under_15'] and not emotions_over_15:
return verdict_info['label'], verdict_info['description']
# Check standard combination conditions
if all(emotion_scores.get(emotion, 0) >= threshold for emotion, threshold in conditions):
return verdict_info['label'], verdict_info['description']
# If we've found nothing specific but have some emotions over 15%
if emotions_over_15:
if len(emotions_over_15) == 1:
# Use the single emotion even though it's not super strong
emotion = emotions_over_15[0]
return f"Moderately {emotion.capitalize()}", f"Shows some signs of {emotion}"
else:
# Create a custom mixed emotion label
primary = emotions_over_15[0].capitalize()
secondary = emotions_over_15[1].capitalize()
return f"{primary} with {secondary}", f"A mix of {primary.lower()} and {secondary.lower()} emotions"
# Default fallback
return "Neutral or Subtle", "No clear emotional signals detected"
def analyze_emotions(text):
"""Analyze emotions in text using spaCy with robust sarcasm detection and emotional verdict"""
if not text or not text.strip():
return None, {"error": "Please enter some text to analyze"}
try:
# Calculate scores for each emotion with supporting phrases
emotion_data = {}
# For each standard emotion category (excluding sarcasm)
for emotion, keywords in EMOTION_CATEGORIES.items():
if emotion == 'sarcasm':
continue
# Use specialized function to get emotion score and supporting phrases
score, phrases = get_emotion_score(text, emotion, keywords)
emotion_data[emotion] = {
'score': score,
'phrases': phrases
}
# Special handling for sarcasm with multi-method approach
sarcasm_score, sarcasm_phrases, sarcasm_patterns = analyze_sarcasm(text)
emotion_data['sarcasm'] = {
'score': sarcasm_score,
'phrases': sarcasm_phrases,
'patterns': sarcasm_patterns
}
# Get contextual features for overall analysis
context_features = detect_contextual_features(text)
# Apply decision making for final analysis
# 1. Check for dominant emotions by raw scores
emotion_scores = {emotion: data['score'] for emotion, data in emotion_data.items()}
# 2. Adjust based on contextual evidence
# If we have strong phrase evidence, boost the score slightly
for emotion, data in emotion_data.items():
if len(data.get('phrases', [])) > 1:
emotion_scores[emotion] = min(emotion_scores[emotion] * 1.2, 1.0)
# 3. Get emotional verdict
verdict_label, verdict_description = determine_emotional_verdict(emotion_scores)
# 4. Normalize scores to percentages
total_score = sum(emotion_scores.values()) or 1 # Avoid division by zero
emotion_percentages = {emotion: (score / total_score) * 100 for emotion, score in emotion_scores.items()}
# Sort emotions by percentage for display
sorted_emotions = sorted(emotion_percentages.items(), key=lambda x: x[1], reverse=True)
# Prepare result
result = {
'emotion_scores': sorted_emotions,
'emotional_verdict': {
'label': verdict_label,
'description': verdict_description
},
'top_emotions': sorted_emotions[:3],
'supporting_evidence': {
emotion: data.get('phrases', []) for emotion, data in emotion_data.items() if data.get('phrases')
},
'context_features': context_features
}
return create_visualization(result), result
except Exception as e:
import traceback
error_msg = traceback.format_exc()
return None, {"error": f"Analysis error: {str(e)}", "details": error_msg}
def create_visualization(result):
"""Create visualization of emotion analysis results"""
# Create figure and axis
fig, ax = plt.subplots(figsize=(12, 8))
# Extract emotion data
emotions = [e[0] for e in result['emotion_scores']]
scores = [e[1] for e in result['emotion_scores']]
# Get colors
colors = [EMOTION_COLORS.get(emotion, '#CCCCCC') for emotion in emotions]
# Create horizontal bar chart
bars = ax.barh(emotions, scores, color=colors)
# Set x-axis to a static 100%
ax.set_xlim(0, 100)
ax.set_xticks(range(0, 101, 10))
ax.set_xticklabels([f'{i}%' for i in range(0, 101, 10)])
# Add title and labels
ax.set_title('Emotion Analysis', fontsize=16, fontweight='bold')
ax.set_ylabel('Emotions', fontsize=12)
ax.set_xlabel('Score (%)', fontsize=12)
# Add verdict as text annotation below the chart
verdict = result['emotional_verdict']['label']
description = result['emotional_verdict']['description']
ax.text(0.5, -0.2, f"Verdict: {verdict}", ha='center', transform=ax.transAxes, fontsize=14, fontweight='bold')
ax.text(0.5, -0.27, f"{description}", ha='center', transform=ax.transAxes, fontsize=12)
# Add value labels on top of bars
for bar in bars:
width = bar.get_width()
ax.text(width + 0.5, bar.get_y() + bar.get_height() / 2,
f'{width:.1f}%', ha='left', va='center', fontsize=10)
# Adjust layout
plt.tight_layout()
plt.subplots_adjust(bottom=0.3) # Make room for the verdict text
# Return figure
return fig
def analyze_text(text):
"""Analyze text and return visualization and detailed results"""
fig, result = analyze_emotions(text)
if 'error' in result:
return None, result['error']
# Format the results for display
verdict = result['emotional_verdict']['label']
description = result['emotional_verdict']['description']
# Create a formatted summary
summary = f"## Emotional Analysis Results\n\n"
summary += f"**Verdict:** {verdict}\n\n"
summary += f"**Description:** {description}\n\n"
summary += "### Top Emotions:\n"
for emotion, score in result['top_emotions']:
summary += f"- {emotion.capitalize()}: {score:.1f}%\n"
if result['supporting_evidence']:
summary += "\n### Supporting Evidence:\n"
for emotion, phrases in result['supporting_evidence'].items():
if phrases:
summary += f"- **{emotion.capitalize()}**: {', '.join(phrases)}\n"
return fig, summary
# Create Gradio interface
def create_interface():
with gr.Blocks(title="Emotional Analysis Tool") as demo:
gr.Markdown("# Advanced Emotion Analysis")
gr.Markdown("Enter text to analyze the emotional content and receive a detailed breakdown.")
with gr.Row():
with gr.Column(scale=2):
text_input = gr.Textbox(
label="Text to analyze",
placeholder="Enter text here...",
lines=10
)
analyze_button = gr.Button("Analyze Emotions")
with gr.Column(scale=3):
with gr.Tab("Visualization"):
plot_output = gr.Plot(label="Emotion Distribution")
with gr.Tab("Summary"):
text_output = gr.Markdown(label="Analysis Summary")
analyze_button.click(
fn=analyze_text,
inputs=text_input,
outputs=[plot_output, text_output]
)
gr.Markdown("""
## About This Tool
This advanced emotion analysis tool uses NLP techniques to detect and analyze emotions in text.
It can identify:
- 10 different emotions (joy, sadness, anger, fear, surprise, love, sarcasm, disgust, anticipation, trust)
- Complex emotional combinations
- Contextual features that affect emotional interpretation
- Intelligent emotional verdicts for mixed emotion states
The model uses word vectors, phrase detection, and contextual analysis for accurate emotion recognition.
""")
return demo
# Launch the interface if running directly
if __name__ == "__main__":
print("Creating Gradio interface...")
demo = create_interface()
demo.launch(share=True)
print("Gradio interface launched!")