|
import json, time, os, sys, glob |
|
|
|
import gradio as gr |
|
|
|
sys.path.append("/home/user/app/ProteinMPNN/vanilla_proteinmpnn") |
|
|
|
import matplotlib.pyplot as plt |
|
import shutil |
|
import warnings |
|
import numpy as np |
|
import torch |
|
from torch import optim |
|
from torch.utils.data import DataLoader |
|
from torch.utils.data.dataset import random_split, Subset |
|
import copy |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import random |
|
import os.path |
|
from protein_mpnn_utils import ( |
|
loss_nll, |
|
loss_smoothed, |
|
gather_edges, |
|
gather_nodes, |
|
gather_nodes_t, |
|
cat_neighbors_nodes, |
|
_scores, |
|
_S_to_seq, |
|
tied_featurize, |
|
parse_PDB, |
|
) |
|
from protein_mpnn_utils import StructureDataset, StructureDatasetPDB, ProteinMPNN |
|
import plotly.express as px |
|
import urllib |
|
|
|
if "/home/user/app/alphafold" not in sys.path: |
|
sys.path.append("/home/user/app/alphafold") |
|
|
|
from alphafold.common import protein |
|
from alphafold.data import pipeline |
|
from alphafold.data import templates |
|
from alphafold.model import data |
|
from alphafold.model import config |
|
from alphafold.model import model |
|
import plotly.graph_objects as go |
|
import ray |
|
|
|
|
|
def make_tied_positions_for_homomers(pdb_dict_list): |
|
my_dict = {} |
|
for result in pdb_dict_list: |
|
all_chain_list = sorted( |
|
[item[-1:] for item in list(result) if item[:9] == "seq_chain"] |
|
) |
|
tied_positions_list = [] |
|
chain_length = len(result[f"seq_chain_{all_chain_list[0]}"]) |
|
for i in range(1, chain_length + 1): |
|
temp_dict = {} |
|
for j, chain in enumerate(all_chain_list): |
|
temp_dict[chain] = [i] |
|
tied_positions_list.append(temp_dict) |
|
my_dict[result["name"]] = tied_positions_list |
|
return my_dict |
|
|
|
|
|
def mk_mock_template(query_sequence): |
|
"""create blank template""" |
|
ln = len(query_sequence) |
|
output_templates_sequence = "-" * ln |
|
templates_all_atom_positions = np.zeros( |
|
(ln, templates.residue_constants.atom_type_num, 3) |
|
) |
|
templates_all_atom_masks = np.zeros((ln, templates.residue_constants.atom_type_num)) |
|
templates_aatype = templates.residue_constants.sequence_to_onehot( |
|
output_templates_sequence, templates.residue_constants.HHBLITS_AA_TO_ID |
|
) |
|
template_features = { |
|
"template_all_atom_positions": templates_all_atom_positions[None], |
|
"template_all_atom_masks": templates_all_atom_masks[None], |
|
"template_aatype": np.array(templates_aatype)[None], |
|
"template_domain_names": [f"none".encode()], |
|
} |
|
return template_features |
|
|
|
|
|
def align_structures(pdb1, pdb2): |
|
import Bio.PDB |
|
|
|
|
|
|
|
|
|
atoms_to_be_aligned = range(start_id, end_id + 1) |
|
|
|
|
|
pdb_parser = Bio.PDB.PDBParser(QUIET=True) |
|
|
|
|
|
ref_structure = pdb_parser.get_structure("reference", pdb1) |
|
sample_structure = pdb_parser.get_structure("samle", pdb2) |
|
|
|
|
|
|
|
ref_model = ref_structure[0] |
|
sample_model = sample_structure[0] |
|
|
|
|
|
|
|
ref_atoms = [] |
|
sample_atoms = [] |
|
|
|
|
|
for ref_chain in ref_model: |
|
|
|
for ref_res in ref_chain: |
|
|
|
if ref_res.get_id()[1] in atoms_to_be_aligned: |
|
|
|
ref_atoms.append(ref_res["CA"]) |
|
|
|
|
|
for sample_chain in sample_model: |
|
for sample_res in sample_chain: |
|
if sample_res.get_id()[1] in atoms_to_be_aligned: |
|
sample_atoms.append(sample_res["CA"]) |
|
|
|
|
|
super_imposer = Bio.PDB.Superimposer() |
|
super_imposer.set_atoms(ref_atoms, sample_atoms) |
|
super_imposer.apply(sample_model.get_atoms()) |
|
|
|
io = Bio.PDB.PDBIO() |
|
io.set_structure(sample_structure) |
|
io.save(f"{pdb1}_aligned.pdb") |
|
return super_imposer.rms |
|
|
|
|
|
def predict_structure(prefix, feature_dict, model_runners, random_seed=0): |
|
"""Predicts structure using AlphaFold for the given sequence.""" |
|
|
|
|
|
|
|
plddts = {} |
|
for model_name, model_runner in model_runners.items(): |
|
processed_feature_dict = model_runner.process_features( |
|
feature_dict, random_seed=random_seed |
|
) |
|
prediction_result = model_runner.predict(processed_feature_dict) |
|
b_factors = ( |
|
prediction_result["plddt"][:, None] |
|
* prediction_result["structure_module"]["final_atom_mask"] |
|
) |
|
unrelaxed_protein = protein.from_prediction( |
|
processed_feature_dict, prediction_result, b_factors |
|
) |
|
unrelaxed_pdb_path = f"/home/user/app/{prefix}_unrelaxed_{model_name}.pdb" |
|
plddts[model_name] = prediction_result["plddt"] |
|
|
|
print(f"{model_name} {plddts[model_name].mean()}") |
|
|
|
with open(unrelaxed_pdb_path, "w") as f: |
|
f.write(protein.to_pdb(unrelaxed_protein)) |
|
return plddts |
|
|
|
|
|
@ray.remote(num_gpus=1, max_calls=1) |
|
def run_alphafold(startsequence): |
|
model_runners = {} |
|
models = ["model_1"] |
|
for model_name in models: |
|
model_config = config.model_config(model_name) |
|
model_config.data.eval.num_ensemble = 1 |
|
model_params = data.get_model_haiku_params( |
|
model_name=model_name, data_dir="/home/user/app/" |
|
) |
|
model_runner = model.RunModel(model_config, model_params) |
|
model_runners[model_name] = model_runner |
|
query_sequence = startsequence.replace("\n", "") |
|
|
|
feature_dict = { |
|
**pipeline.make_sequence_features( |
|
sequence=query_sequence, description="none", num_res=len(query_sequence) |
|
), |
|
**pipeline.make_msa_features( |
|
msas=[[query_sequence]], deletion_matrices=[[[0] * len(query_sequence)]] |
|
), |
|
**mk_mock_template(query_sequence), |
|
} |
|
print(feature_dict["residue_index"]) |
|
plddts = predict_structure("test", feature_dict, model_runners) |
|
print("AF2 done") |
|
return plddts["model_1"] |
|
|
|
|
|
print("Cuda available", torch.cuda.is_available()) |
|
device = torch.device("cuda:0" if (torch.cuda.is_available()) else "cpu") |
|
model_name = "v_48_020" |
|
backbone_noise = 0.00 |
|
|
|
path_to_model_weights = ( |
|
"/home/user/app/ProteinMPNN/vanilla_proteinmpnn/vanilla_model_weights" |
|
) |
|
hidden_dim = 128 |
|
num_layers = 3 |
|
model_folder_path = path_to_model_weights |
|
if model_folder_path[-1] != "/": |
|
model_folder_path = model_folder_path + "/" |
|
checkpoint_path = model_folder_path + f"{model_name}.pt" |
|
|
|
checkpoint = torch.load(checkpoint_path, map_location=device) |
|
|
|
noise_level_print = checkpoint["noise_level"] |
|
|
|
model = ProteinMPNN( |
|
num_letters=21, |
|
node_features=hidden_dim, |
|
edge_features=hidden_dim, |
|
hidden_dim=hidden_dim, |
|
num_encoder_layers=num_layers, |
|
num_decoder_layers=num_layers, |
|
augment_eps=backbone_noise, |
|
k_neighbors=checkpoint["num_edges"], |
|
) |
|
model.to(device) |
|
model.load_state_dict(checkpoint["model_state_dict"]) |
|
model.eval() |
|
|
|
|
|
import re |
|
|
|
import numpy as np |
|
|
|
|
|
def get_pdb(pdb_code="", filepath=""): |
|
if pdb_code is None or pdb_code == "": |
|
return filepath.name |
|
else: |
|
os.system(f"wget -qnc https://files.rcsb.org/view/{pdb_code}.pdb") |
|
return f"{pdb_code}.pdb" |
|
|
|
|
|
def update(inp, file, designed_chain, fixed_chain, homomer, num_seqs, sampling_temp): |
|
pdb_path = get_pdb(pdb_code=inp, filepath=file) |
|
if designed_chain == "": |
|
designed_chain_list = [] |
|
else: |
|
designed_chain_list = re.sub("[^A-Za-z]+", ",", designed_chain).split(",") |
|
|
|
if fixed_chain == "": |
|
fixed_chain_list = [] |
|
else: |
|
fixed_chain_list = re.sub("[^A-Za-z]+", ",", fixed_chain).split(",") |
|
|
|
chain_list = list(set(designed_chain_list + fixed_chain_list)) |
|
num_seq_per_target = num_seqs |
|
save_score = 0 |
|
save_probs = ( |
|
0 |
|
) |
|
score_only = 0 |
|
conditional_probs_only = 0 |
|
conditional_probs_only_backbone = 0 |
|
|
|
batch_size = 1 |
|
max_length = 20000 |
|
|
|
out_folder = "." |
|
jsonl_path = "" |
|
omit_AAs = "X" |
|
|
|
pssm_multi = 0.0 |
|
pssm_threshold = 0.0 |
|
pssm_log_odds_flag = 0 |
|
pssm_bias_flag = 0 |
|
|
|
folder_for_outputs = out_folder |
|
|
|
NUM_BATCHES = num_seq_per_target // batch_size |
|
BATCH_COPIES = batch_size |
|
temperatures = [sampling_temp] |
|
omit_AAs_list = omit_AAs |
|
alphabet = "ACDEFGHIKLMNPQRSTVWYX" |
|
|
|
omit_AAs_np = np.array([AA in omit_AAs_list for AA in alphabet]).astype(np.float32) |
|
|
|
chain_id_dict = None |
|
fixed_positions_dict = None |
|
pssm_dict = None |
|
omit_AA_dict = None |
|
bias_AA_dict = None |
|
|
|
bias_by_res_dict = None |
|
bias_AAs_np = np.zeros(len(alphabet)) |
|
|
|
|
|
pdb_dict_list = parse_PDB(pdb_path, input_chain_list=chain_list) |
|
dataset_valid = StructureDatasetPDB( |
|
pdb_dict_list, truncate=None, max_length=max_length |
|
) |
|
if homomer: |
|
tied_positions_dict = make_tied_positions_for_homomers(pdb_dict_list) |
|
else: |
|
tied_positions_dict = None |
|
chain_id_dict = {} |
|
chain_id_dict[pdb_dict_list[0]["name"]] = (designed_chain_list, fixed_chain_list) |
|
with torch.no_grad(): |
|
for ix, protein in enumerate(dataset_valid): |
|
score_list = [] |
|
all_probs_list = [] |
|
all_log_probs_list = [] |
|
S_sample_list = [] |
|
batch_clones = [copy.deepcopy(protein) for i in range(BATCH_COPIES)] |
|
( |
|
X, |
|
S, |
|
mask, |
|
lengths, |
|
chain_M, |
|
chain_encoding_all, |
|
chain_list_list, |
|
visible_list_list, |
|
masked_list_list, |
|
masked_chain_length_list_list, |
|
chain_M_pos, |
|
omit_AA_mask, |
|
residue_idx, |
|
dihedral_mask, |
|
tied_pos_list_of_lists_list, |
|
pssm_coef, |
|
pssm_bias, |
|
pssm_log_odds_all, |
|
bias_by_res_all, |
|
tied_beta, |
|
) = tied_featurize( |
|
batch_clones, |
|
device, |
|
chain_id_dict, |
|
fixed_positions_dict, |
|
omit_AA_dict, |
|
tied_positions_dict, |
|
pssm_dict, |
|
bias_by_res_dict, |
|
) |
|
pssm_log_odds_mask = ( |
|
pssm_log_odds_all > pssm_threshold |
|
).float() |
|
name_ = batch_clones[0]["name"] |
|
|
|
randn_1 = torch.randn(chain_M.shape, device=X.device) |
|
log_probs = model( |
|
X, |
|
S, |
|
mask, |
|
chain_M * chain_M_pos, |
|
residue_idx, |
|
chain_encoding_all, |
|
randn_1, |
|
) |
|
mask_for_loss = mask * chain_M * chain_M_pos |
|
scores = _scores(S, log_probs, mask_for_loss) |
|
native_score = scores.cpu().data.numpy() |
|
message = "" |
|
for temp in temperatures: |
|
for j in range(NUM_BATCHES): |
|
randn_2 = torch.randn(chain_M.shape, device=X.device) |
|
if tied_positions_dict == None: |
|
sample_dict = model.sample( |
|
X, |
|
randn_2, |
|
S, |
|
chain_M, |
|
chain_encoding_all, |
|
residue_idx, |
|
mask=mask, |
|
temperature=temp, |
|
omit_AAs_np=omit_AAs_np, |
|
bias_AAs_np=bias_AAs_np, |
|
chain_M_pos=chain_M_pos, |
|
omit_AA_mask=omit_AA_mask, |
|
pssm_coef=pssm_coef, |
|
pssm_bias=pssm_bias, |
|
pssm_multi=pssm_multi, |
|
pssm_log_odds_flag=bool(pssm_log_odds_flag), |
|
pssm_log_odds_mask=pssm_log_odds_mask, |
|
pssm_bias_flag=bool(pssm_bias_flag), |
|
bias_by_res=bias_by_res_all, |
|
) |
|
S_sample = sample_dict["S"] |
|
else: |
|
sample_dict = model.tied_sample( |
|
X, |
|
randn_2, |
|
S, |
|
chain_M, |
|
chain_encoding_all, |
|
residue_idx, |
|
mask=mask, |
|
temperature=temp, |
|
omit_AAs_np=omit_AAs_np, |
|
bias_AAs_np=bias_AAs_np, |
|
chain_M_pos=chain_M_pos, |
|
omit_AA_mask=omit_AA_mask, |
|
pssm_coef=pssm_coef, |
|
pssm_bias=pssm_bias, |
|
pssm_multi=pssm_multi, |
|
pssm_log_odds_flag=bool(pssm_log_odds_flag), |
|
pssm_log_odds_mask=pssm_log_odds_mask, |
|
pssm_bias_flag=bool(pssm_bias_flag), |
|
tied_pos=tied_pos_list_of_lists_list[0], |
|
tied_beta=tied_beta, |
|
bias_by_res=bias_by_res_all, |
|
) |
|
|
|
S_sample = sample_dict["S"] |
|
log_probs = model( |
|
X, |
|
S_sample, |
|
mask, |
|
chain_M * chain_M_pos, |
|
residue_idx, |
|
chain_encoding_all, |
|
randn_2, |
|
use_input_decoding_order=True, |
|
decoding_order=sample_dict["decoding_order"], |
|
) |
|
mask_for_loss = mask * chain_M * chain_M_pos |
|
scores = _scores(S_sample, log_probs, mask_for_loss) |
|
scores = scores.cpu().data.numpy() |
|
all_probs_list.append(sample_dict["probs"].cpu().data.numpy()) |
|
all_log_probs_list.append(log_probs.cpu().data.numpy()) |
|
S_sample_list.append(S_sample.cpu().data.numpy()) |
|
for b_ix in range(BATCH_COPIES): |
|
masked_chain_length_list = masked_chain_length_list_list[b_ix] |
|
masked_list = masked_list_list[b_ix] |
|
seq_recovery_rate = torch.sum( |
|
torch.sum( |
|
torch.nn.functional.one_hot(S[b_ix], 21) |
|
* torch.nn.functional.one_hot(S_sample[b_ix], 21), |
|
axis=-1, |
|
) |
|
* mask_for_loss[b_ix] |
|
) / torch.sum(mask_for_loss[b_ix]) |
|
seq = _S_to_seq(S_sample[b_ix], chain_M[b_ix]) |
|
score = scores[b_ix] |
|
score_list.append(score) |
|
native_seq = _S_to_seq(S[b_ix], chain_M[b_ix]) |
|
if b_ix == 0 and j == 0 and temp == temperatures[0]: |
|
start = 0 |
|
end = 0 |
|
list_of_AAs = [] |
|
for mask_l in masked_chain_length_list: |
|
end += mask_l |
|
list_of_AAs.append(native_seq[start:end]) |
|
start = end |
|
native_seq = "".join( |
|
list(np.array(list_of_AAs)[np.argsort(masked_list)]) |
|
) |
|
l0 = 0 |
|
for mc_length in list( |
|
np.array(masked_chain_length_list)[ |
|
np.argsort(masked_list) |
|
] |
|
)[:-1]: |
|
l0 += mc_length |
|
native_seq = native_seq[:l0] + "/" + native_seq[l0:] |
|
l0 += 1 |
|
sorted_masked_chain_letters = np.argsort( |
|
masked_list_list[0] |
|
) |
|
print_masked_chains = [ |
|
masked_list_list[0][i] |
|
for i in sorted_masked_chain_letters |
|
] |
|
sorted_visible_chain_letters = np.argsort( |
|
visible_list_list[0] |
|
) |
|
print_visible_chains = [ |
|
visible_list_list[0][i] |
|
for i in sorted_visible_chain_letters |
|
] |
|
native_score_print = np.format_float_positional( |
|
np.float32(native_score.mean()), |
|
unique=False, |
|
precision=4, |
|
) |
|
line = ">{}, score={}, fixed_chains={}, designed_chains={}, model_name={}\n{}\n".format( |
|
name_, |
|
native_score_print, |
|
print_visible_chains, |
|
print_masked_chains, |
|
model_name, |
|
native_seq, |
|
) |
|
message += f"{line}\n" |
|
start = 0 |
|
end = 0 |
|
list_of_AAs = [] |
|
for mask_l in masked_chain_length_list: |
|
end += mask_l |
|
list_of_AAs.append(seq[start:end]) |
|
start = end |
|
|
|
seq = "".join( |
|
list(np.array(list_of_AAs)[np.argsort(masked_list)]) |
|
) |
|
l0 = 0 |
|
for mc_length in list( |
|
np.array(masked_chain_length_list)[np.argsort(masked_list)] |
|
)[:-1]: |
|
l0 += mc_length |
|
seq = seq[:l0] + "/" + seq[l0:] |
|
l0 += 1 |
|
score_print = np.format_float_positional( |
|
np.float32(score), unique=False, precision=4 |
|
) |
|
seq_rec_print = np.format_float_positional( |
|
np.float32(seq_recovery_rate.detach().cpu().numpy()), |
|
unique=False, |
|
precision=4, |
|
) |
|
line = ( |
|
">T={}, sample={}, score={}, seq_recovery={}\n{}\n".format( |
|
temp, b_ix, score_print, seq_rec_print, seq |
|
) |
|
) |
|
message += f"{line}\n" |
|
|
|
all_probs_concat = np.concatenate(all_probs_list) |
|
all_log_probs_concat = np.concatenate(all_log_probs_list) |
|
np.savetxt("all_probs_concat.csv", all_probs_concat.mean(0).T, delimiter=",") |
|
np.savetxt( |
|
"all_log_probs_concat.csv", |
|
np.exp(all_log_probs_concat).mean(0).T, |
|
delimiter=",", |
|
) |
|
S_sample_concat = np.concatenate(S_sample_list) |
|
fig = px.imshow( |
|
np.exp(all_log_probs_concat).mean(0).T, |
|
labels=dict(x="positions", y="amino acids", color="probability"), |
|
y=list(alphabet), |
|
template="simple_white", |
|
) |
|
fig.update_xaxes(side="top") |
|
|
|
fig_tadjusted = px.imshow( |
|
all_probs_concat.mean(0).T, |
|
labels=dict(x="positions", y="amino acids", color="probability"), |
|
y=list(alphabet), |
|
template="simple_white", |
|
) |
|
|
|
fig_tadjusted.update_xaxes(side="top") |
|
|
|
return ( |
|
message, |
|
fig, |
|
fig_tadjusted, |
|
gr.File.update(value="all_log_probs_concat.csv", visible=True), |
|
gr.File.update(value="all_probs_concat.csv", visible=True), |
|
) |
|
|
|
|
|
def update_AF(startsequence): |
|
|
|
|
|
plddts = ray.get(run_alphafold.remote(startsequence)) |
|
print(plddts) |
|
x = np.arange(10) |
|
|
|
plotAF = go.Figure( |
|
data=go.Scatter( |
|
x=np.arange(len(plddts)), |
|
y=plddts, |
|
hovertemplate="<i>pLDDT</i>: %{y:.2f} <br><i>Residue index:</i> %{x}", |
|
) |
|
) |
|
plotAF.update_layout( |
|
title="pLDDT", |
|
xaxis_title="Residue index", |
|
yaxis_title="pLDDT", |
|
height=500, |
|
template="simple_white", |
|
) |
|
return molecule(f"test_unrelaxed_model_1.pdb"), plotAF |
|
|
|
|
|
def read_mol(molpath): |
|
with open(molpath, "r") as fp: |
|
lines = fp.readlines() |
|
mol = "" |
|
for l in lines: |
|
mol += l |
|
return mol |
|
|
|
|
|
def molecule(pdb): |
|
mol = read_mol(pdb) |
|
x = ( |
|
"""<!DOCTYPE html> |
|
<html> |
|
<head> |
|
<meta http-equiv="content-type" content="text/html; charset=UTF-8" /> |
|
<link rel="stylesheet" href="https://unpkg.com/[email protected]/dist/flowbite.min.css" /> |
|
<style> |
|
body{ |
|
font-family:sans-serif |
|
} |
|
.mol-container { |
|
width: 100%; |
|
height: 800px; |
|
position: relative; |
|
} |
|
.space-x-2 > * + *{ |
|
margin-left: 0.5rem; |
|
} |
|
.p-1{ |
|
padding:0.5rem; |
|
} |
|
.flex{ |
|
display:flex; |
|
align-items: center; |
|
} |
|
.w-4{ |
|
width:1rem; |
|
} |
|
.h-4{ |
|
height:1rem; |
|
} |
|
.mt-4{ |
|
margin-top:1rem; |
|
} |
|
select{ |
|
background-image:None; |
|
} |
|
</style> |
|
<script src="https://3Dmol.csb.pitt.edu/build/3Dmol-min.js"></script> |
|
</head> |
|
<body> |
|
|
|
<div id="container" class="mol-container"></div> |
|
<div class="flex"> |
|
<div class="px-4"> |
|
<label for="sidechain" class="relative inline-flex items-center mb-4 cursor-pointer "> |
|
<input id="sidechain"type="checkbox" class="sr-only peer"> |
|
<div class="w-11 h-6 bg-gray-200 rounded-full peer peer-focus:ring-4 peer-focus:ring-blue-300 dark:peer-focus:ring-blue-800 dark:bg-gray-700 peer-checked:after:translate-x-full peer-checked:after:border-white after:absolute after:top-0.5 after:left-[2px] after:bg-white after:border-gray-300 after:border after:rounded-full after:h-5 after:w-5 after:transition-all dark:border-gray-600 peer-checked:bg-blue-600"></div> |
|
<span class="ml-3 text-sm font-medium text-gray-900 dark:text-gray-300">Show side chains</span> |
|
</label> |
|
</div> |
|
<button type="button" class="text-gray-900 bg-white hover:bg-gray-100 border border-gray-200 focus:ring-4 focus:outline-none focus:ring-gray-100 font-medium rounded-lg text-sm px-5 py-2.5 text-center inline-flex items-center dark:focus:ring-gray-600 dark:bg-gray-800 dark:border-gray-700 dark:text-white dark:hover:bg-gray-700 mr-2 mb-2" id="download"> |
|
<svg class="w-6 h-6 mr-2 -ml-1" fill="none" stroke="currentColor" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg"><path stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M4 16v1a3 3 0 003 3h10a3 3 0 003-3v-1m-4-4l-4 4m0 0l-4-4m4 4V4"></path></svg> |
|
Download predicted structure |
|
</button> |
|
</div> |
|
<div class="text-sm"> |
|
<div class="font-medium mt-4"><b>AlphaFold model confidence:</b></div> |
|
<div class="flex space-x-2 py-1"><span class="w-4 h-4" |
|
style="background-color: rgb(0, 83, 214);"> </span><span class="legendlabel">Very high |
|
(pLDDT > 90)</span></div> |
|
<div class="flex space-x-2 py-1"><span class="w-4 h-4" |
|
style="background-color: rgb(101, 203, 243);"> </span><span class="legendlabel">Confident |
|
(90 > pLDDT > 70)</span></div> |
|
<div class="flex space-x-2 py-1"><span class="w-4 h-4" |
|
style="background-color: rgb(255, 219, 19);"> </span><span class="legendlabel">Low (70 > |
|
pLDDT > 50)</span></div> |
|
<div class="flex space-x-2 py-1"><span class="w-4 h-4" |
|
style="background-color: rgb(255, 125, 69);"> </span><span class="legendlabel">Very low |
|
(pLDDT < 50)</span></div> |
|
<div class="row column legendDesc"> AlphaFold produces a per-residue confidence |
|
score (pLDDT) between 0 and 100. Some regions below 50 pLDDT may be unstructured in isolation. |
|
</div> |
|
</div> |
|
<script> |
|
let viewer = null; |
|
let voldata = null; |
|
$(document).ready(function () { |
|
let element = $("#container"); |
|
let config = { backgroundColor: "white" }; |
|
viewer = $3Dmol.createViewer( element, config ); |
|
viewer.ui.initiateUI(); |
|
let data = `""" |
|
+ mol |
|
+ """` |
|
viewer.addModel( data, "pdb" ); |
|
//AlphaFold code from https://gist.github.com/piroyon/30d1c1099ad488a7952c3b21a5bebc96 |
|
let colorAlpha = function (atom) { |
|
if (atom.b < 50) { |
|
return "OrangeRed"; |
|
} else if (atom.b < 70) { |
|
return "Gold"; |
|
} else if (atom.b < 90) { |
|
return "MediumTurquoise"; |
|
} else { |
|
return "Blue"; |
|
} |
|
}; |
|
viewer.setStyle({}, { cartoon: { colorfunc: colorAlpha } }); |
|
viewer.zoomTo(); |
|
viewer.render(); |
|
viewer.zoom(0.8, 2000); |
|
viewer.getModel(0).setHoverable({}, true, |
|
function (atom, viewer, event, container) { |
|
console.log(atom) |
|
if (!atom.label) { |
|
atom.label = viewer.addLabel(atom.resn+atom.resi+" pLDDT=" + atom.b, { position: atom, backgroundColor: "mintcream", fontColor: "black" }); |
|
} |
|
}, |
|
function (atom, viewer) { |
|
if (atom.label) { |
|
viewer.removeLabel(atom.label); |
|
delete atom.label; |
|
} |
|
} |
|
); |
|
$("#sidechain").change(function () { |
|
if (this.checked) { |
|
BB = ["C", "O", "N"] |
|
viewer.setStyle( {"and": [{resn: ["GLY", "PRO"], invert: true},{atom: BB, invert: true},]},{stick: {colorscheme: "WhiteCarbon", radius: 0.3}, cartoon: { colorfunc: colorAlpha }}); |
|
viewer.render() |
|
} else { |
|
viewer.setStyle({cartoon: { colorfunc: colorAlpha }}); |
|
viewer.render() |
|
} |
|
}); |
|
$("#download").click(function () { |
|
download("gradioFold_model1.pdb", data); |
|
}) |
|
}); |
|
function download(filename, text) { |
|
var element = document.createElement("a"); |
|
element.setAttribute("href", "data:text/plain;charset=utf-8," + encodeURIComponent(text)); |
|
element.setAttribute("download", filename); |
|
element.style.display = "none"; |
|
document.body.appendChild(element); |
|
element.click(); |
|
document.body.removeChild(element); |
|
} |
|
</script> |
|
</body></html>""" |
|
) |
|
|
|
return f"""<iframe style="width: 800px; height: 1200px" name="result" allow="midi; geolocation; microphone; camera; |
|
display-capture; encrypted-media;" sandbox="allow-modals allow-forms |
|
allow-scripts allow-same-origin allow-popups |
|
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" |
|
allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>""" |
|
|
|
|
|
def set_examples(example): |
|
label, inp, designed_chain, fixed_chain, homomer, num_seqs, sampling_temp = example |
|
return [ |
|
label, |
|
inp, |
|
designed_chain, |
|
fixed_chain, |
|
homomer, |
|
gr.Slider.update(value=num_seqs), |
|
gr.Radio.update(value=sampling_temp), |
|
] |
|
|
|
|
|
proteinMPNN = gr.Blocks() |
|
|
|
with proteinMPNN: |
|
gr.Markdown("# ProteinMPNN") |
|
gr.Markdown( |
|
"""This model takes as input a protein structure and based on its backbone predicts new sequences that will fold into that backbone. |
|
Optionally, we can run AlphaFold2 on the predicted sequence to check whether the predicted sequences adopt the same backbone (WIP). |
|
""" |
|
) |
|
gr.Markdown("") |
|
|
|
with gr.Tabs(): |
|
with gr.TabItem("Input"): |
|
inp = gr.Textbox( |
|
placeholder="PDB Code or upload file below", label="Input structure" |
|
) |
|
file = gr.File(file_count="single", type="file") |
|
|
|
with gr.TabItem("Settings"): |
|
with gr.Row(): |
|
designed_chain = gr.Textbox(value="A", label="Designed chain") |
|
fixed_chain = gr.Textbox( |
|
placeholder="Use commas to fix multiple chains", label="Fixed chain" |
|
) |
|
with gr.Row(): |
|
num_seqs = gr.Slider( |
|
minimum=1, maximum=50, value=1, step=1, label="Number of sequences" |
|
) |
|
sampling_temp = gr.Radio( |
|
choices=[0.1, 0.15, 0.2, 0.25, 0.3], |
|
value=0.1, |
|
label="Sampling temperature", |
|
) |
|
with gr.Row(): |
|
homomer = gr.Checkbox(value=False, label="Homomer?") |
|
gr.Markdown( |
|
"for correct symmetric tying lenghts of homomer chains should be the same" |
|
) |
|
|
|
btn = gr.Button("Run") |
|
label = gr.Textbox(label="Label", visible=False) |
|
examples = gr.Dataset( |
|
components=[ |
|
label, |
|
inp, |
|
designed_chain, |
|
fixed_chain, |
|
homomer, |
|
num_seqs, |
|
sampling_temp, |
|
], |
|
samples=[ |
|
["Homomer design", "1O91", "A,B,C", "", True, 2, 0.1], |
|
["Monomer design", "6MRR", "A", "", False, 2, 0.1], |
|
["Redesign of Homomer to Heteromer", "3HTN", "A,B", "C", False, 2, 0.1], |
|
], |
|
) |
|
gr.Markdown( |
|
""" Sampling temperature for amino acids, `T=0.0` means taking argmax, `T>>1.0` means sample randomly. Suggested values `0.1, 0.15, 0.2, 0.25, 0.3`. Higher values will lead to more diversity. |
|
""" |
|
) |
|
|
|
gr.Markdown("# Output") |
|
|
|
with gr.Tabs(): |
|
with gr.TabItem("Designed sequences"): |
|
out = gr.Textbox(label="Status") |
|
|
|
with gr.TabItem("Amino acid probabilities"): |
|
plot = gr.Plot() |
|
all_log_probs = gr.File(visible=False) |
|
with gr.TabItem("T adjusted probabilities"): |
|
gr.Markdown("Sampling temperature adjusted amino acid probabilties") |
|
plot_tadjusted = gr.Plot() |
|
all_probs = gr.File(visible=False) |
|
with gr.TabItem("Structure validation w/ AF2"): |
|
gr.Markdown("Coming soon") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
btn.click( |
|
fn=update, |
|
inputs=[ |
|
inp, |
|
file, |
|
designed_chain, |
|
fixed_chain, |
|
homomer, |
|
num_seqs, |
|
sampling_temp, |
|
], |
|
outputs=[out, plot, plot_tadjusted, all_log_probs, all_probs], |
|
) |
|
|
|
|
|
|
|
|
|
|
|
examples.click(fn=set_examples, inputs=examples, outputs=examples.components) |
|
gr.Markdown( |
|
"""Citation: **Robust deep learning based protein sequence design using ProteinMPNN** <br> |
|
Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J. Ragotte, Lukas F. Milles, Basile I. M. Wicky, Alexis Courbet, Robbert J. de Haas, Neville Bethel, Philip J. Y. Leung, Timothy F. Huddy, Sam Pellock, Doug Tischer, Frederick Chan, Brian Koepnick, Hannah Nguyen, Alex Kang, Banumathi Sankaran, Asim Bera, Neil P. King, David Baker <br> |
|
bioRxiv 2022.06.03.494563; doi: [10.1101/2022.06.03.494563](https://doi.org/10.1101/2022.06.03.494563) <br><br> Server built by [@simonduerr](https://twitter.com/simonduerr) and hosted by Huggingface""" |
|
) |
|
|
|
|
|
ray.init(runtime_env={"working_dir": "./alphafold"}) |
|
|
|
proteinMPNN.launch(share=True) |
|
|