Spaces:
Running
Running
| # coding=utf-8 | |
| # Copyright (C) 2020 ATHENA AUTHORS; Yiping Peng; Ne Luo | |
| # All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # ============================================================================== | |
| # Only support eager mode and TF>=2.0.0 | |
| # pylint: disable=no-member, invalid-name, relative-beyond-top-level | |
| # pylint: disable=too-many-locals, too-many-statements, too-many-arguments, too-many-instance-attributes | |
| """ voxceleb 1 & 2 """ | |
| import hashlib | |
| import os | |
| import subprocess | |
| import sys | |
| import zipfile | |
| import pandas | |
| import soundfile as sf | |
| from absl import logging | |
| SUBSETS = { | |
| "vox1_dev_wav": [ | |
| "https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_dev_wav_partaa", | |
| "https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_dev_wav_partab", | |
| "https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_dev_wav_partac", | |
| "https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_dev_wav_partad", | |
| ], | |
| "vox1_test_wav": ["https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_test_wav.zip"], | |
| "vox2_dev_aac": [ | |
| "https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partaa", | |
| "https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partab", | |
| "https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partac", | |
| "https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partad", | |
| "https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partae", | |
| "https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partaf", | |
| "https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partag", | |
| "https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partah", | |
| ], | |
| "vox2_test_aac": ["https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_test_aac.zip"], | |
| } | |
| MD5SUM = { | |
| "vox1_dev_wav": "ae63e55b951748cc486645f532ba230b", | |
| "vox2_dev_aac": "bbc063c46078a602ca71605645c2a402", | |
| "vox1_test_wav": "185fdc63c3c739954633d50379a3d102", | |
| "vox2_test_aac": "0d2b3ea430a821c33263b5ea37ede312", | |
| } | |
| USER = {"user": "", "password": ""} | |
| speaker_id_dict = {} | |
| def download_and_extract(directory, subset, urls): | |
| """Download and extract the given split of dataset. | |
| Args: | |
| directory: the directory where to put the downloaded data. | |
| subset: subset name of the corpus. | |
| urls: the list of urls to download the data file. | |
| """ | |
| os.makedirs(directory, exist_ok=True) | |
| try: | |
| for url in urls: | |
| zip_filepath = os.path.join(directory, url.split("/")[-1]) | |
| if os.path.exists(zip_filepath): | |
| continue | |
| logging.info("Downloading %s to %s" % (url, zip_filepath)) | |
| subprocess.call( | |
| "wget %s --user %s --password %s -O %s" % (url, USER["user"], USER["password"], zip_filepath), | |
| shell=True, | |
| ) | |
| statinfo = os.stat(zip_filepath) | |
| logging.info("Successfully downloaded %s, size(bytes): %d" % (url, statinfo.st_size)) | |
| # concatenate all parts into zip files | |
| if ".zip" not in zip_filepath: | |
| zip_filepath = "_".join(zip_filepath.split("_")[:-1]) | |
| subprocess.call("cat %s* > %s.zip" % (zip_filepath, zip_filepath), shell=True) | |
| zip_filepath += ".zip" | |
| extract_path = zip_filepath.strip(".zip") | |
| # check zip file md5sum | |
| with open(zip_filepath, "rb") as f_zip: | |
| md5 = hashlib.md5(f_zip.read()).hexdigest() | |
| if md5 != MD5SUM[subset]: | |
| raise ValueError("md5sum of %s mismatch" % zip_filepath) | |
| with zipfile.ZipFile(zip_filepath, "r") as zfile: | |
| zfile.extractall(directory) | |
| extract_path_ori = os.path.join(directory, zfile.infolist()[0].filename) | |
| subprocess.call("mv %s %s" % (extract_path_ori, extract_path), shell=True) | |
| finally: | |
| # os.remove(zip_filepath) | |
| pass | |
| def exec_cmd(cmd): | |
| """Run a command in a subprocess. | |
| Args: | |
| cmd: command line to be executed. | |
| Return: | |
| int, the return code. | |
| """ | |
| try: | |
| retcode = subprocess.call(cmd, shell=True) | |
| if retcode < 0: | |
| logging.info(f"Child was terminated by signal {retcode}") | |
| except OSError as e: | |
| logging.info(f"Execution failed: {e}") | |
| retcode = -999 | |
| return retcode | |
| def decode_aac_with_ffmpeg(aac_file, wav_file): | |
| """Decode a given AAC file into WAV using ffmpeg. | |
| Args: | |
| aac_file: file path to input AAC file. | |
| wav_file: file path to output WAV file. | |
| Return: | |
| bool, True if success. | |
| """ | |
| cmd = f"ffmpeg -i {aac_file} {wav_file}" | |
| logging.info(f"Decoding aac file using command line: {cmd}") | |
| ret = exec_cmd(cmd) | |
| if ret != 0: | |
| logging.error(f"Failed to decode aac file with retcode {ret}") | |
| logging.error("Please check your ffmpeg installation.") | |
| return False | |
| return True | |
| def convert_audio_and_make_label(input_dir, subset, output_dir, output_file): | |
| """Optionally convert AAC to WAV and make speaker labels. | |
| Args: | |
| input_dir: the directory which holds the input dataset. | |
| subset: the name of the specified subset. e.g. vox1_dev_wav | |
| output_dir: the directory to place the newly generated csv files. | |
| output_file: the name of the newly generated csv file. e.g. vox1_dev_wav.csv | |
| """ | |
| logging.info("Preprocessing audio and label for subset %s" % subset) | |
| source_dir = os.path.join(input_dir, subset) | |
| files = [] | |
| # Convert all AAC file into WAV format. At the same time, generate the csv | |
| for root, _, filenames in os.walk(source_dir): | |
| for filename in filenames: | |
| name, ext = os.path.splitext(filename) | |
| if ext.lower() == ".wav": | |
| _, ext2 = os.path.splitext(name) | |
| if ext2: | |
| continue | |
| wav_file = os.path.join(root, filename) | |
| elif ext.lower() == ".m4a": | |
| # Convert AAC to WAV. | |
| aac_file = os.path.join(root, filename) | |
| wav_file = aac_file + ".wav" | |
| if not os.path.exists(wav_file): | |
| if not decode_aac_with_ffmpeg(aac_file, wav_file): | |
| raise RuntimeError("Audio decoding failed.") | |
| else: | |
| continue | |
| speaker_name = root.split(os.path.sep)[-2] | |
| if speaker_name not in speaker_id_dict: | |
| num = len(speaker_id_dict) | |
| speaker_id_dict[speaker_name] = num | |
| # wav_filesize = os.path.getsize(wav_file) | |
| wav_length = len(sf.read(wav_file)[0]) | |
| files.append((os.path.abspath(wav_file), wav_length, speaker_id_dict[speaker_name], speaker_name)) | |
| # Write to CSV file which contains four columns: | |
| # "wav_filename", "wav_length_ms", "speaker_id", "speaker_name". | |
| csv_file_path = os.path.join(output_dir, output_file) | |
| df = pandas.DataFrame(data=files, columns=["wav_filename", "wav_length_ms", "speaker_id", "speaker_name"]) | |
| df.to_csv(csv_file_path, index=False, sep="\t") | |
| logging.info("Successfully generated csv file {}".format(csv_file_path)) | |
| def processor(directory, subset, force_process): | |
| """download and process""" | |
| urls = SUBSETS | |
| if subset not in urls: | |
| raise ValueError(subset, "is not in voxceleb") | |
| subset_csv = os.path.join(directory, subset + ".csv") | |
| if not force_process and os.path.exists(subset_csv): | |
| return subset_csv | |
| logging.info("Downloading and process the voxceleb in %s", directory) | |
| logging.info("Preparing subset %s", subset) | |
| download_and_extract(directory, subset, urls[subset]) | |
| convert_audio_and_make_label(directory, subset, directory, subset + ".csv") | |
| logging.info("Finished downloading and processing") | |
| return subset_csv | |
| if __name__ == "__main__": | |
| logging.set_verbosity(logging.INFO) | |
| if len(sys.argv) != 4: | |
| print("Usage: python prepare_data.py save_directory user password") | |
| sys.exit() | |
| DIR, USER["user"], USER["password"] = sys.argv[1], sys.argv[2], sys.argv[3] | |
| for SUBSET in SUBSETS: | |
| processor(DIR, SUBSET, False) | |