from diffusers import DiffusionPipeline import gradio as gr import torch import math orig_start_prompt = "a photograph of an adult lion" orig_end_prompt = "a photograph of a lion cub" if torch.cuda.is_available(): device = "cuda" dtype = torch.float16 else: device = "cpu" dtype = torch.bfloat16 pipe = DiffusionPipeline.from_pretrained("kakaobrain/karlo-v1-alpha", torch_dtype=dtype, custom_pipeline='unclip_text_interpolation') pipe.to(device) def unclip_text_interpolation( start_prompt, end_prompt, steps, seed ): generator = torch.Generator() generator.manual_seed(seed) output = pipe(start_prompt, end_prompt, steps, enable_sequential_cpu_offload=False, generator=generator) return output.images inputs = [ gr.Textbox(lines=2, default=orig_start_prompt, label="Start Prompt"), gr.Textbox(lines=2, default=orig_end_prompt, label="End Prompt"), gr.Slider(minimum=2, maximum=12, default=5, step=1, label="Steps"), gr.Number(0, label="Seed", precision=0) ] output = gr.Gallery( label="Generated images", show_label=False, elem_id="gallery" ).style(grid=[2], height="auto") examples = [ [orig_start_prompt, orig_end_prompt, 5, 42], ["a photo of a landscape in winter","a photo of a landscape in fall", 5, 20], ["a photo of a victorian house", "a photo of a modern house", 5, 20] ] title = "UnClip Text Interpolation Pipeline" demo_app = gr.Interface( fn=unclip_text_interpolation, inputs=inputs, outputs=output, title=title, theme='huggingface', examples=examples, cache_examples=False ) demo_app.launch(debug=True, enable_queue=True)