Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,567 Bytes
8fb99cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import math
import torch
import torchvision.transforms.functional as F
TOKENS = 75
def hook_forwards(self, root_module: torch.nn.Module):
for name, module in root_module.named_modules():
if "attn" in name and "transformer_blocks" in name and "single_transformer_blocks" not in name and module.__class__.__name__ == "Attention":
module.forward = FluxTransformerBlock_hook_forward(self, module)
elif "attn" in name and "single_transformer_blocks" in name and module.__class__.__name__ == "Attention":
module.forward = FluxSingleTransformerBlock_hook_forward(self, module)
def FluxSingleTransformerBlock_hook_forward(self, module):
def forward(hidden_states=None, encoder_hidden_states=None, image_rotary_emb=None, SR_encoder_hidden_states_list=None, SR_norm_encoder_hidden_states_list=None, SR_hidden_states_list=None, SR_norm_hidden_states_list=None):
flux_hidden_states=module.processor(module, hidden_states=hidden_states, image_rotary_emb=image_rotary_emb)
height = self.h
width = self.w
x_t = hidden_states.size()[1]-512
scale = round(math.sqrt(height * width / x_t))
latent_h = round(height / scale)
latent_w = round(width / scale)
ha, wa = x_t % latent_h, x_t % latent_w
if ha == 0:
latent_w = int(x_t / latent_h)
elif wa == 0:
latent_h = int(x_t / latent_w)
contexts_list = SR_norm_hidden_states_list
def single_matsepcalc(x, contexts_list, image_rotary_emb):
h_states = []
x_t = x.size()[1]-512
(latent_h,latent_w) = split_dims(x_t, height, width, self)
latent_out = latent_w
latent_in = latent_h
i = 0
sumout = 0
SR_all_out_list=[]
for drow in self.split_ratio:
v_states = []
sumin = 0
for dcell in drow.cols:
context = contexts_list[i]
i = i + 1 + dcell.breaks
SR_all_out = module.processor(module, hidden_states=context, image_rotary_emb=image_rotary_emb)
out = SR_all_out[:, 512 :, ...]
out = out.reshape(out.size()[0], latent_h, latent_w, out.size()[2])
addout = 0
addin = 0
sumin = sumin + int(latent_in*dcell.end) - int(latent_in*dcell.start)
if dcell.end >= 0.999:
addin = sumin - latent_in
sumout = sumout + int(latent_out*drow.end) - int(latent_out*drow.start)
if drow.end >= 0.999:
addout = sumout - latent_out
out = out[:, int(latent_h*drow.start) + addout:int(latent_h*drow.end),
int(latent_w*dcell.start) + addin:int(latent_w*dcell.end), :]
v_states.append(out)
SR_all_out_list.append(SR_all_out)
output_x = torch.cat(v_states,dim = 2)
h_states.append(output_x)
output_x = torch.cat(h_states,dim = 1)
output_x = output_x.reshape(x.size()[0], x.size()[1]-512, x.size()[2])
new_SR_all_out_list = []
for SR_all_out in SR_all_out_list:
SR_all_out[:, 512 :, ...] = output_x
new_SR_all_out_list.append(SR_all_out)
x[:, 512 :, ...] = output_x * self.SR_delta + x[:, 512 :, ...] * (1-self.SR_delta)
return x, new_SR_all_out_list
return single_matsepcalc(flux_hidden_states, contexts_list, image_rotary_emb)
return forward
def FluxTransformerBlock_hook_forward(self, module):
def forward(hidden_states=None, encoder_hidden_states=None, image_rotary_emb=None, SR_encoder_hidden_states_list=None, SR_norm_encoder_hidden_states_list=None, SR_hidden_states_list=None, SR_norm_hidden_states_list=None):
flux_hidden_states, flux_encoder_hidden_states = module.processor(module, hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, image_rotary_emb=image_rotary_emb)
height = self.h
width = self.w
x_t = hidden_states.size()[1]
scale = round(math.sqrt(height * width / x_t))
latent_h = round(height / scale)
latent_w = round(width / scale)
ha, wa = x_t % latent_h, x_t % latent_w
if ha == 0:
latent_w = int(x_t / latent_h)
elif wa == 0:
latent_h = int(x_t / latent_w)
contexts_list = SR_norm_encoder_hidden_states_list
def matsepcalc(x, contexts_list, image_rotary_emb):
h_states = []
x_t = x.size()[1]
(latent_h,latent_w) = split_dims(x_t, height, width, self)
latent_out = latent_w
latent_in = latent_h
i = 0
sumout = 0
SR_context_attn_output_list = []
for drow in self.split_ratio:
v_states = []
sumin = 0
for dcell in drow.cols:
context = contexts_list[i]
i = i + 1 + dcell.breaks
out,SR_context_attn_output = module.processor(module, hidden_states=x, encoder_hidden_states=context, image_rotary_emb=image_rotary_emb)
out = out.reshape(out.size()[0], latent_h, latent_w, out.size()[2])
addout = 0
addin = 0
sumin = sumin + int(latent_in*dcell.end) - int(latent_in*dcell.start)
if dcell.end >= 0.999:
addin = sumin - latent_in
sumout = sumout + int(latent_out*drow.end) - int(latent_out*drow.start)
if drow.end >= 0.999:
addout = sumout - latent_out
out = out[:, int(latent_h*drow.start) + addout:int(latent_h*drow.end),
int(latent_w*dcell.start) + addin:int(latent_w*dcell.end), :]
v_states.append(out)
SR_context_attn_output_list.append(SR_context_attn_output)
output_x = torch.cat(v_states,dim = 2)
h_states.append(output_x)
output_x = torch.cat(h_states,dim = 1)
output_x = output_x.reshape(x.size()[0],x.size()[1],x.size()[2])
return output_x * self.SR_delta + flux_hidden_states * (1-self.SR_delta), flux_encoder_hidden_states, SR_context_attn_output_list
return matsepcalc(hidden_states, contexts_list, image_rotary_emb)
return forward
def split_dims(x_t, height, width, self=None):
"""Split an attention layer dimension to height + width.
The original estimate was latent_h = sqrt(hw_ratio*x_t),
rounding to the nearest value. However, this proved inaccurate.
The actual operation seems to be as follows:
- Divide h,w by 8, rounding DOWN.
- For every new layer (of 4), divide both by 2 and round UP (then back up).
- Multiply h*w to yield x_t.
There is no inverse function to this set of operations,
so instead we mimic them without the multiplication part using the original h+w.
It's worth noting that no known checkpoints follow a different system of layering,
but it's theoretically possible. Please report if encountered.
"""
scale = math.ceil(math.log2(math.sqrt(height * width / x_t)))
latent_h = repeat_div(height, scale)
latent_w = repeat_div(width, scale)
if x_t > latent_h * latent_w and hasattr(self, "nei_multi"):
latent_h, latent_w = self.nei_multi[1], self.nei_multi[0]
while latent_h * latent_w != x_t:
latent_h, latent_w = latent_h // 2, latent_w // 2
return latent_h, latent_w
def repeat_div(x,y):
"""Imitates dimension halving common in convolution operations.
This is a pretty big assumption of the model,
but then if some model doesn't work like that it will be easy to spot.
"""
while y > 0:
x = math.ceil(x / 2)
y = y - 1
return x
def init_forwards(self, root_module: torch.nn.Module):
for name, module in root_module.named_modules():
if "attn" in name and "transformer_blocks" in name and "single_transformer_blocks" not in name and module.__class__.__name__ == "Attention":
module.forward = FluxTransformerBlock_init_forward(self, module)
elif "attn" in name and "single_transformer_blocks" in name and module.__class__.__name__ == "Attention":
module.forward = FluxSingleTransformerBlock_init_forward(self, module)
def FluxSingleTransformerBlock_init_forward(self, module):
def forward(hidden_states=None, encoder_hidden_states=None, image_rotary_emb=None,RPG_encoder_hidden_states_list=None,RPG_norm_encoder_hidden_states_list=None,RPG_hidden_states_list=None,RPG_norm_hidden_states_list=None):
return module.processor(module, hidden_states=hidden_states, image_rotary_emb=image_rotary_emb)
return forward
def FluxTransformerBlock_init_forward(self, module):
def forward(hidden_states=None, encoder_hidden_states=None, image_rotary_emb=None,RPG_encoder_hidden_states_list=None,RPG_norm_encoder_hidden_states_list=None,RPG_hidden_states_list=None,RPG_norm_hidden_states_list=None):
return module.processor(module, hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, image_rotary_emb=image_rotary_emb)
return forward |