Spaces:
Sleeping
Sleeping
James McCool
commited on
Commit
·
3d00450
1
Parent(s):
6493759
Refactor app.py to replace Google Sheets integration with MongoDB. Removed gspread and related credentials, added pymongo for database connection. Updated data retrieval methods to fetch data from MongoDB collections. Adjusted UI elements and cleaned up unused code.
Browse files- app.py +19 -207
- requirements.txt +1 -1
app.py
CHANGED
|
@@ -5,36 +5,21 @@ for name in dir():
|
|
| 5 |
if not name.startswith('_'):
|
| 6 |
del globals()[name]
|
| 7 |
|
| 8 |
-
import pulp
|
| 9 |
import numpy as np
|
| 10 |
import pandas as pd
|
| 11 |
import streamlit as st
|
| 12 |
-
import gspread
|
| 13 |
import gc
|
|
|
|
| 14 |
|
| 15 |
@st.cache_resource
|
| 16 |
def init_conn():
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
credentials = {
|
| 21 |
-
"type": "service_account",
|
| 22 |
-
"project_id": "sheets-api-connect-378620",
|
| 23 |
-
"private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
|
| 24 |
-
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
|
| 25 |
-
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
|
| 26 |
-
"client_id": "106625872877651920064",
|
| 27 |
-
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
|
| 28 |
-
"token_uri": "https://oauth2.googleapis.com/token",
|
| 29 |
-
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
|
| 30 |
-
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
|
| 31 |
-
}
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
gcservice_account = init_conn()
|
| 38 |
|
| 39 |
dk_player_url = 'https://docs.google.com/spreadsheets/d/1lMLxWdvCnOFBtG9dhM0zv2USuxZbkogI_2jnxFfQVVs/edit#gid=1828092624'
|
| 40 |
CSV_URL = 'https://docs.google.com/spreadsheets/d/1lMLxWdvCnOFBtG9dhM0zv2USuxZbkogI_2jnxFfQVVs/edit#gid=1828092624'
|
|
@@ -44,50 +29,41 @@ player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_fi
|
|
| 44 |
|
| 45 |
@st.cache_resource(ttl = 600)
|
| 46 |
def init_baselines():
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
data_cols =
|
| 51 |
-
|
| 52 |
-
roo_data =
|
| 53 |
-
|
| 54 |
-
worksheet = sh.worksheet('DK_CSV')
|
| 55 |
-
draftkings_data = pd.DataFrame(worksheet.get_all_records())
|
| 56 |
-
draftkings_data.rename(columns={"Name": "Player"}, inplace = True)
|
| 57 |
|
| 58 |
-
return roo_data
|
| 59 |
|
| 60 |
def convert_df_to_csv(df):
|
| 61 |
return df.to_csv().encode('utf-8')
|
| 62 |
|
| 63 |
-
roo_data
|
| 64 |
hold_display = roo_data
|
| 65 |
-
csv_data = draftkings_data
|
| 66 |
-
csv_merge = pd.merge(csv_data, hold_display, how='left', left_on=['Player'], right_on = ['Player'])
|
| 67 |
-
id_dict = dict(zip(csv_merge['Player'], csv_merge['Name + ID']))
|
| 68 |
lineup_display = []
|
| 69 |
check_list = []
|
| 70 |
rand_player = 0
|
| 71 |
boost_player = 0
|
| 72 |
salaryCut = 0
|
| 73 |
|
| 74 |
-
tab1, tab2 = st.tabs(["Player Overall Projections", "
|
| 75 |
|
| 76 |
with tab1:
|
| 77 |
if st.button("Reset Data", key='reset1'):
|
| 78 |
# Clear values from *all* all in-memory and on-disk data caches:
|
| 79 |
# i.e. clear values from both square and cube
|
| 80 |
st.cache_data.clear()
|
| 81 |
-
roo_data
|
| 82 |
hold_display = roo_data
|
| 83 |
-
csv_data = draftkings_data
|
| 84 |
-
csv_merge = pd.merge(csv_data, hold_display, how='left', left_on=['Player'], right_on = ['Player'])
|
| 85 |
-
id_dict = dict(zip(csv_merge['Player'], csv_merge['Name + ID']))
|
| 86 |
lineup_display = []
|
| 87 |
check_list = []
|
| 88 |
rand_player = 0
|
| 89 |
boost_player = 0
|
| 90 |
salaryCut = 0
|
|
|
|
| 91 |
hold_container = st.empty()
|
| 92 |
display = hold_display.set_index('Player')
|
| 93 |
st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), height=750, use_container_width = True)
|
|
@@ -99,168 +75,4 @@ with tab1:
|
|
| 99 |
)
|
| 100 |
|
| 101 |
with tab2:
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
with col1:
|
| 105 |
-
|
| 106 |
-
max_sal = st.number_input('Max Salary', min_value = 35000, max_value = 50000, value = 50000, step = 100)
|
| 107 |
-
min_sal = st.number_input('Min Salary', min_value = 35000, max_value = 49900, value = 49000, step = 100)
|
| 108 |
-
proj_cut = st.number_input('Lowest median allowed', min_value = 0, max_value = 100, value = 25, step = 1)
|
| 109 |
-
slack_var = st.number_input('Median randomness', min_value = 0, max_value = 5, value = 0, step = 1)
|
| 110 |
-
totalRuns_raw = st.number_input('How many Lineups', min_value = 1, max_value = 1000, value = 5, step = 1)
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
totalRuns = totalRuns_raw
|
| 114 |
-
cut_group_1 = []
|
| 115 |
-
cut_group_2 = []
|
| 116 |
-
force_group_1 = []
|
| 117 |
-
force_group_2 = []
|
| 118 |
-
avoid_players = []
|
| 119 |
-
lock_player = []
|
| 120 |
-
lineups = []
|
| 121 |
-
player_pool_raw = []
|
| 122 |
-
|
| 123 |
-
player_pool = []
|
| 124 |
-
player_count = []
|
| 125 |
-
player_trim_pool = []
|
| 126 |
-
portfolio = pd.DataFrame()
|
| 127 |
-
x = 1
|
| 128 |
-
|
| 129 |
-
if st.button('Optimize'):
|
| 130 |
-
max_proj = 1000
|
| 131 |
-
max_own = 1000
|
| 132 |
-
total_proj = 0
|
| 133 |
-
total_own = 0
|
| 134 |
-
|
| 135 |
-
with col2:
|
| 136 |
-
with st.spinner('Wait for it...'):
|
| 137 |
-
with hold_container.container():
|
| 138 |
-
|
| 139 |
-
while x <= totalRuns:
|
| 140 |
-
|
| 141 |
-
raw_proj_file = hold_display
|
| 142 |
-
raw_flex_file = raw_proj_file.dropna(how='all')
|
| 143 |
-
raw_flex_file = raw_flex_file.loc[raw_flex_file['Median'] > 0]
|
| 144 |
-
raw_flex_file = raw_flex_file.loc[raw_flex_file['Median'] > proj_cut]
|
| 145 |
-
flex_file = raw_flex_file
|
| 146 |
-
flex_file = flex_file[['Player', 'Salary', 'Median', 'Own', 'LevX']]
|
| 147 |
-
flex_file.rename(columns={"Own": "Proj DK Own%"}, inplace = True)
|
| 148 |
-
flex_file['name_var'] = flex_file['Player']
|
| 149 |
-
flex_file['lock'] = flex_file['Player'].isin(lock_player)*1
|
| 150 |
-
flex_file['Pos'] = 'G'
|
| 151 |
-
flex_file = flex_file[['Player', 'name_var', 'Pos', 'Salary', 'Median', 'Proj DK Own%', 'lock', 'LevX']]
|
| 152 |
-
if x > 1:
|
| 153 |
-
if slack_var > 0:
|
| 154 |
-
flex_file['randNumCol'] = np.random.randint(-int(slack_var),int(slack_var), flex_file.shape[0])
|
| 155 |
-
elif slack_var ==0:
|
| 156 |
-
flex_file['randNumCol'] = 0
|
| 157 |
-
elif x == 1:
|
| 158 |
-
flex_file['randNumCol'] = 0
|
| 159 |
-
flex_file['Median'] = flex_file['Median'] + flex_file['randNumCol']
|
| 160 |
-
flex_file_check = flex_file
|
| 161 |
-
check_list.append(flex_file['Median'][4])
|
| 162 |
-
player_ids = flex_file.index
|
| 163 |
-
|
| 164 |
-
overall_players = flex_file[['Player']]
|
| 165 |
-
overall_players['player_var_add'] = flex_file.index
|
| 166 |
-
overall_players['player_var'] = 'player_vars_' + overall_players['player_var_add'].astype(str)
|
| 167 |
-
|
| 168 |
-
player_vars = pulp.LpVariable.dicts("player_vars", flex_file.index, 0, 1, pulp.LpInteger)
|
| 169 |
-
total_score = pulp.LpProblem("Fantasy_Points_Problem", pulp.LpMaximize)
|
| 170 |
-
player_match = dict(zip(overall_players['player_var'], overall_players['Player']))
|
| 171 |
-
player_index_match = dict(zip(overall_players['player_var'], overall_players['player_var_add']))
|
| 172 |
-
player_own = dict(zip(flex_file['Player'], flex_file['Proj DK Own%']))
|
| 173 |
-
player_sal = dict(zip(flex_file['Player'], flex_file['Salary']))
|
| 174 |
-
player_lev = dict(zip(flex_file['Player'], flex_file['LevX']))
|
| 175 |
-
player_proj = dict(zip(flex_file['Player'], flex_file['Median']))
|
| 176 |
-
|
| 177 |
-
obj_points = {idx: (flex_file['Median'][idx]) for idx in flex_file.index}
|
| 178 |
-
total_score += sum([player_vars[idx]*obj_points[idx] for idx in flex_file.index])
|
| 179 |
-
|
| 180 |
-
obj_points_max = {idx: (flex_file['Median'][idx]) for idx in flex_file.index}
|
| 181 |
-
obj_own_max = {idx: (flex_file['Proj DK Own%'][idx]) for idx in flex_file.index}
|
| 182 |
-
|
| 183 |
-
obj_salary = {idx: (flex_file['Salary'][idx]) for idx in flex_file.index}
|
| 184 |
-
total_score += pulp.lpSum([player_vars[idx]*obj_salary[idx] for idx in flex_file.index]) <= max_sal
|
| 185 |
-
total_score += pulp.lpSum([player_vars[idx]*obj_salary[idx] for idx in flex_file.index]) >= min_sal
|
| 186 |
-
|
| 187 |
-
for flex in flex_file['Pos'].unique():
|
| 188 |
-
sub_idx = flex_file[flex_file['Pos'] != "Var"].index
|
| 189 |
-
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 6
|
| 190 |
-
|
| 191 |
-
player_count = []
|
| 192 |
-
player_trim = []
|
| 193 |
-
lineup_list = []
|
| 194 |
-
|
| 195 |
-
total_score += pulp.lpSum([player_vars[idx]*obj_points_max[idx] for idx in flex_file.index]) <= max_proj - .01
|
| 196 |
-
|
| 197 |
-
total_score.solve()
|
| 198 |
-
for v in total_score.variables():
|
| 199 |
-
if v.varValue > 0:
|
| 200 |
-
lineup_list.append(v.name)
|
| 201 |
-
df = pd.DataFrame(lineup_list)
|
| 202 |
-
df['Names'] = df[0].map(player_match)
|
| 203 |
-
df['Cost'] = df['Names'].map(player_sal)
|
| 204 |
-
df['Proj'] = df['Names'].map(player_proj)
|
| 205 |
-
df['Own'] = df['Names'].map(player_own)
|
| 206 |
-
total_cost = sum(df['Cost'])
|
| 207 |
-
total_own = sum(df['Own'])
|
| 208 |
-
total_proj = sum(df['Proj'])
|
| 209 |
-
lineup_raw = pd.DataFrame(lineup_list)
|
| 210 |
-
lineup_raw['Names'] = lineup_raw[0].map(player_match)
|
| 211 |
-
lineup_raw['value'] = lineup_raw[0].map(player_index_match)
|
| 212 |
-
lineup_final = lineup_raw.sort_values(by=['value'])
|
| 213 |
-
del lineup_final[lineup_final.columns[0]]
|
| 214 |
-
del lineup_final[lineup_final.columns[1]]
|
| 215 |
-
lineup_final = lineup_final.reset_index(drop=True)
|
| 216 |
-
lineup_test = lineup_final
|
| 217 |
-
lineup_final = lineup_final.T
|
| 218 |
-
lineup_final['Cost'] = total_cost
|
| 219 |
-
lineup_final['Proj'] = total_proj
|
| 220 |
-
lineup_final['Own'] = total_own
|
| 221 |
-
|
| 222 |
-
if total_cost < 50001:
|
| 223 |
-
lineups.append(lineup_final)
|
| 224 |
-
|
| 225 |
-
lineup_test['Salary'] = lineup_test['Names'].map(player_sal)
|
| 226 |
-
lineup_test['Proj'] = lineup_test['Names'].map(player_proj)
|
| 227 |
-
lineup_test['Own'] = lineup_test['Names'].map(player_own)
|
| 228 |
-
lineup_test['LevX'] = lineup_test['Names'].map(player_lev)
|
| 229 |
-
lineup_test.loc['Column_Total'] = lineup_test.sum(numeric_only=True, axis=0)
|
| 230 |
-
|
| 231 |
-
lineup_display.append(lineup_test)
|
| 232 |
-
|
| 233 |
-
with col2:
|
| 234 |
-
with st.container():
|
| 235 |
-
st.table(lineup_test)
|
| 236 |
-
|
| 237 |
-
max_proj = total_proj
|
| 238 |
-
max_own = total_own
|
| 239 |
-
|
| 240 |
-
check_list.append(total_proj)
|
| 241 |
-
|
| 242 |
-
portfolio = pd.concat([portfolio, lineup_final], ignore_index=True)
|
| 243 |
-
|
| 244 |
-
x += 1
|
| 245 |
-
|
| 246 |
-
portfolio.rename(columns={0: "Player_1", 1: "Player_2", 2: "Player_3", 3: "Player_4", 4: "Player_5", 5: "Player_6"}, inplace = True)
|
| 247 |
-
portfolio = portfolio.dropna()
|
| 248 |
-
|
| 249 |
-
final_outcomes = portfolio
|
| 250 |
-
final_outcomes['p1 id'] = final_outcomes['Player_1'].map(id_dict)
|
| 251 |
-
final_outcomes['p2 id'] = final_outcomes['Player_2'].map(id_dict)
|
| 252 |
-
final_outcomes['p3 id'] = final_outcomes['Player_3'].map(id_dict)
|
| 253 |
-
final_outcomes['p4 id'] = final_outcomes['Player_4'].map(id_dict)
|
| 254 |
-
final_outcomes['p5 id'] = final_outcomes['Player_5'].map(id_dict)
|
| 255 |
-
final_outcomes['p6 id'] = final_outcomes['Player_6'].map(id_dict)
|
| 256 |
-
final_outcomes = final_outcomes[['p1 id', 'p2 id', 'p3 id', 'p4 id', 'p5 id', 'p6 id']]
|
| 257 |
-
with col1:
|
| 258 |
-
st.download_button(
|
| 259 |
-
label="Export Lineups",
|
| 260 |
-
data=convert_df_to_csv(final_outcomes),
|
| 261 |
-
file_name='PGA_DFS_export.csv',
|
| 262 |
-
mime='text/csv',
|
| 263 |
-
)
|
| 264 |
-
|
| 265 |
-
with hold_container:
|
| 266 |
-
hold_container = st.empty()
|
|
|
|
| 5 |
if not name.startswith('_'):
|
| 6 |
del globals()[name]
|
| 7 |
|
|
|
|
| 8 |
import numpy as np
|
| 9 |
import pandas as pd
|
| 10 |
import streamlit as st
|
|
|
|
| 11 |
import gc
|
| 12 |
+
import pymongo
|
| 13 |
|
| 14 |
@st.cache_resource
|
| 15 |
def init_conn():
|
| 16 |
+
uri = st.secrets['mongo_uri']
|
| 17 |
+
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
|
| 18 |
+
db = client["PGA_Database"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
return db
|
| 21 |
+
|
| 22 |
+
db = init_conn()
|
|
|
|
|
|
|
| 23 |
|
| 24 |
dk_player_url = 'https://docs.google.com/spreadsheets/d/1lMLxWdvCnOFBtG9dhM0zv2USuxZbkogI_2jnxFfQVVs/edit#gid=1828092624'
|
| 25 |
CSV_URL = 'https://docs.google.com/spreadsheets/d/1lMLxWdvCnOFBtG9dhM0zv2USuxZbkogI_2jnxFfQVVs/edit#gid=1828092624'
|
|
|
|
| 29 |
|
| 30 |
@st.cache_resource(ttl = 600)
|
| 31 |
def init_baselines():
|
| 32 |
+
collection = db["PGA_Range_of_Outcomes"]
|
| 33 |
+
cursor = collection.find()
|
| 34 |
+
player_frame = pd.DataFrame(cursor)
|
| 35 |
+
data_cols = player_frame.columns.drop('Player')
|
| 36 |
+
player_frame[data_cols] = player_frame[data_cols].apply(pd.to_numeric, errors='coerce')
|
| 37 |
+
roo_data = player_frame
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
+
return roo_data
|
| 40 |
|
| 41 |
def convert_df_to_csv(df):
|
| 42 |
return df.to_csv().encode('utf-8')
|
| 43 |
|
| 44 |
+
roo_data = init_baselines()
|
| 45 |
hold_display = roo_data
|
|
|
|
|
|
|
|
|
|
| 46 |
lineup_display = []
|
| 47 |
check_list = []
|
| 48 |
rand_player = 0
|
| 49 |
boost_player = 0
|
| 50 |
salaryCut = 0
|
| 51 |
|
| 52 |
+
tab1, tab2 = st.tabs(["Player Overall Projections", "Not Ready Yet"])
|
| 53 |
|
| 54 |
with tab1:
|
| 55 |
if st.button("Reset Data", key='reset1'):
|
| 56 |
# Clear values from *all* all in-memory and on-disk data caches:
|
| 57 |
# i.e. clear values from both square and cube
|
| 58 |
st.cache_data.clear()
|
| 59 |
+
roo_data = init_baselines()
|
| 60 |
hold_display = roo_data
|
|
|
|
|
|
|
|
|
|
| 61 |
lineup_display = []
|
| 62 |
check_list = []
|
| 63 |
rand_player = 0
|
| 64 |
boost_player = 0
|
| 65 |
salaryCut = 0
|
| 66 |
+
|
| 67 |
hold_container = st.empty()
|
| 68 |
display = hold_display.set_index('Player')
|
| 69 |
st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), height=750, use_container_width = True)
|
|
|
|
| 75 |
)
|
| 76 |
|
| 77 |
with tab2:
|
| 78 |
+
st.write("Not Ready Yet")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
|
@@ -2,7 +2,7 @@ streamlit
|
|
| 2 |
gspread
|
| 3 |
openpyxl
|
| 4 |
matplotlib
|
| 5 |
-
|
| 6 |
pulp
|
| 7 |
docker
|
| 8 |
plotly
|
|
|
|
| 2 |
gspread
|
| 3 |
openpyxl
|
| 4 |
matplotlib
|
| 5 |
+
pymongo
|
| 6 |
pulp
|
| 7 |
docker
|
| 8 |
plotly
|