Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -33,7 +33,7 @@ def init_conn():
|
|
| 33 |
gc = gspread.service_account_from_dict(credentials)
|
| 34 |
return gc
|
| 35 |
|
| 36 |
-
|
| 37 |
|
| 38 |
game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}',
|
| 39 |
'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'}
|
|
@@ -41,1192 +41,112 @@ game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%
|
|
| 41 |
player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}',
|
| 42 |
'4x%': '{:.2%}','GPP%': '{:.2%}'}
|
| 43 |
|
| 44 |
-
all_dk_player_projections = 'https://docs.google.com/spreadsheets/d/
|
| 45 |
-
|
| 46 |
-
@st.cache_resource(ttl=3600)
|
| 47 |
-
def set_slate_teams():
|
| 48 |
-
sh = gc.open_by_url(all_dk_player_projections)
|
| 49 |
-
worksheet = sh.worksheet('Site_Info')
|
| 50 |
-
raw_display = pd.DataFrame(worksheet.get_all_records())
|
| 51 |
-
|
| 52 |
-
return raw_display
|
| 53 |
|
| 54 |
@st.cache_resource(ttl=600)
|
| 55 |
def player_stat_table():
|
| 56 |
-
sh =
|
| 57 |
-
worksheet = sh.worksheet('
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
return raw_display
|
| 61 |
-
|
| 62 |
-
@st.cache_resource(ttl=600)
|
| 63 |
-
def load_dk_player_projections():
|
| 64 |
-
sh = gc.open_by_url(all_dk_player_projections)
|
| 65 |
-
worksheet = sh.worksheet('DK_ROO')
|
| 66 |
-
load_display = pd.DataFrame(worksheet.get_all_records())
|
| 67 |
-
load_display.replace('', np.nan, inplace=True)
|
| 68 |
-
raw_display = load_display.dropna(subset=['Median'])
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
def load_fd_player_projections():
|
| 74 |
-
sh = gc.open_by_url(all_dk_player_projections)
|
| 75 |
-
worksheet = sh.worksheet('FD_ROO')
|
| 76 |
-
load_display = pd.DataFrame(worksheet.get_all_records())
|
| 77 |
-
load_display.replace('', np.nan, inplace=True)
|
| 78 |
-
raw_display = load_display.dropna(subset=['Median'])
|
| 79 |
-
|
| 80 |
-
return raw_display
|
| 81 |
-
|
| 82 |
-
@st.cache_resource(ttl=600)
|
| 83 |
-
def load_dk_stacks():
|
| 84 |
-
sh = gc.open_by_url(all_dk_player_projections)
|
| 85 |
-
worksheet = sh.worksheet('DK_Stacks')
|
| 86 |
-
load_display = pd.DataFrame(worksheet.get_all_records())
|
| 87 |
-
raw_display = load_display
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
sh =
|
| 94 |
-
worksheet = sh.worksheet('
|
| 95 |
-
|
| 96 |
-
raw_display = load_display
|
| 97 |
|
| 98 |
-
return
|
| 99 |
|
| 100 |
@st.cache_data
|
| 101 |
def convert_df_to_csv(df):
|
| 102 |
return df.to_csv().encode('utf-8')
|
| 103 |
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
fd_stacks_raw = load_fd_stacks()
|
| 107 |
-
dk_roo_raw = load_dk_player_projections()
|
| 108 |
-
fd_roo_raw = load_fd_player_projections()
|
| 109 |
-
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
| 110 |
-
site_slates = set_slate_teams()
|
| 111 |
|
| 112 |
-
tab1, tab2, tab3
|
| 113 |
|
| 114 |
with tab1:
|
| 115 |
-
col1, col2 = st.columns([1,
|
| 116 |
with col1:
|
| 117 |
st.info(t_stamp)
|
| 118 |
if st.button("Load/Reset Data", key='reset1'):
|
| 119 |
st.cache_data.clear()
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
fd_stacks_raw = load_fd_stacks()
|
| 123 |
-
dk_roo_raw = load_dk_player_projections()
|
| 124 |
-
fd_roo_raw = load_fd_player_projections()
|
| 125 |
-
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
| 126 |
-
site_slates = set_slate_teams()
|
| 127 |
-
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Thurs-Mon Slate'), key='slate_var1')
|
| 128 |
site_var1 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var1')
|
| 129 |
-
|
| 130 |
-
if
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
if split_var1 == 'Specific Games':
|
| 141 |
-
team_var1 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var1')
|
| 142 |
-
elif split_var1 == 'Full Slate Run':
|
| 143 |
-
team_var1 = raw_baselines.Team.values.tolist()
|
| 144 |
-
if custom_var1 == 'Yes':
|
| 145 |
-
contest_var1 = st.selectbox("What contest type are you running for?", ('Cash', 'Small Field GPP', 'Large Field GPP'), key='contest_var1')
|
| 146 |
-
if site_var1 == 'Draftkings':
|
| 147 |
-
raw_baselines = dk_stacks_raw[dk_stacks_raw['slate'] == str(slate_var1)]
|
| 148 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
|
| 149 |
-
elif site_var1 == 'Fanduel':
|
| 150 |
-
raw_baselines = fd_stacks_raw[fd_stacks_raw['slate'] == str(slate_var1)]
|
| 151 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
|
| 152 |
-
split_var1 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var1')
|
| 153 |
-
if split_var1 == 'Specific Games':
|
| 154 |
-
team_var1 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var1')
|
| 155 |
-
elif split_var1 == 'Full Slate Run':
|
| 156 |
-
team_var1 = raw_baselines.Team.values.tolist()
|
| 157 |
-
|
| 158 |
|
| 159 |
with col2:
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
working_roo.replace('', 0, inplace=True)
|
| 177 |
-
if site_var1 == 'Fanduel':
|
| 178 |
-
working_roo = player_stats
|
| 179 |
-
working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "Half_PPR": "Fantasy"}, inplace = True)
|
| 180 |
-
working_roo.replace('', 0, inplace=True)
|
| 181 |
-
working_roo = working_roo[working_roo['Team'].isin(team_var1)]
|
| 182 |
-
|
| 183 |
-
total_sims = 1000
|
| 184 |
-
|
| 185 |
-
salary_dict = dict(zip(working_roo.name, working_roo.Salary))
|
| 186 |
-
own_dict = dict(zip(working_roo.name, working_roo.Own))
|
| 187 |
-
fantasy_dict = dict(zip(working_roo.name, working_roo.Fantasy))
|
| 188 |
-
|
| 189 |
-
QB_group = working_roo.loc[working_roo['Position'] == 'QB']
|
| 190 |
-
stacks_df = pd.DataFrame(columns=['Team','QB', 'WR1', 'WR2_TE'])
|
| 191 |
-
|
| 192 |
-
for stack in range(0,len(QB_group)):
|
| 193 |
-
team_var = QB_group.iat[stack,1]
|
| 194 |
-
WR_group_1 = working_roo.loc[working_roo['Position'] == 'WR']
|
| 195 |
-
WR_group_2 = WR_group_1.loc[working_roo['Team'] == team_var]
|
| 196 |
-
TE_group_1 = working_roo.loc[working_roo['Position'] == 'TE']
|
| 197 |
-
TE_group_2 = TE_group_1.loc[working_roo['Team'] == team_var]
|
| 198 |
-
cur_list = []
|
| 199 |
-
qb_piece = QB_group.iat[stack,0]
|
| 200 |
-
wr_piece = WR_group_2.iat[0,0]
|
| 201 |
-
te_piece = TE_group_2.iat[0,0]
|
| 202 |
-
cur_list.append(team_var)
|
| 203 |
-
cur_list.append(qb_piece)
|
| 204 |
-
cur_list.append(wr_piece)
|
| 205 |
-
cur_list.append(te_piece)
|
| 206 |
-
stacks_df.loc[len(stacks_df)] = cur_list
|
| 207 |
-
cur_list = []
|
| 208 |
-
qb_piece = QB_group.iat[stack,0]
|
| 209 |
-
wr_piece = WR_group_2.iat[1,0]
|
| 210 |
-
te_piece = TE_group_2.iat[0,0]
|
| 211 |
-
cur_list.append(team_var)
|
| 212 |
-
cur_list.append(qb_piece)
|
| 213 |
-
cur_list.append(wr_piece)
|
| 214 |
-
cur_list.append(te_piece)
|
| 215 |
-
stacks_df.loc[len(stacks_df)] = cur_list
|
| 216 |
-
cur_list = []
|
| 217 |
-
qb_piece = QB_group.iat[stack,0]
|
| 218 |
-
wr_piece = WR_group_2.iat[0,0]
|
| 219 |
-
te_piece = WR_group_2.iat[1,0]
|
| 220 |
-
cur_list.append(team_var)
|
| 221 |
-
cur_list.append(qb_piece)
|
| 222 |
-
cur_list.append(wr_piece)
|
| 223 |
-
cur_list.append(te_piece)
|
| 224 |
-
stacks_df.loc[len(stacks_df)] = cur_list
|
| 225 |
-
|
| 226 |
-
stacks_df['Salary'] = sum([stacks_df['QB'].map(salary_dict),
|
| 227 |
-
stacks_df['WR1'].map(salary_dict),
|
| 228 |
-
stacks_df['WR2_TE'].map(salary_dict)])
|
| 229 |
-
|
| 230 |
-
stacks_df['Fantasy'] = sum([stacks_df['QB'].map(fantasy_dict),
|
| 231 |
-
stacks_df['WR1'].map(fantasy_dict),
|
| 232 |
-
stacks_df['WR2_TE'].map(fantasy_dict)])
|
| 233 |
-
|
| 234 |
-
stacks_df['Own'] = sum([stacks_df['QB'].map(own_dict),
|
| 235 |
-
stacks_df['WR1'].map(own_dict),
|
| 236 |
-
stacks_df['WR2_TE'].map(own_dict)])
|
| 237 |
-
|
| 238 |
-
stacks_df['team_combo'] = stacks_df['Team'] + " " + stacks_df['QB'] + " " + stacks_df['WR1'] + " " + stacks_df['WR2_TE']
|
| 239 |
-
|
| 240 |
-
own_dict = dict(zip(stacks_df.team_combo, stacks_df.Own))
|
| 241 |
-
qb_dict = dict(zip(stacks_df.team_combo, stacks_df.QB))
|
| 242 |
-
wr1_dict = dict(zip(stacks_df.team_combo, stacks_df.WR1))
|
| 243 |
-
wr2_dict = dict(zip(stacks_df.team_combo, stacks_df.WR2_TE))
|
| 244 |
-
team_dict = dict(zip(stacks_df.team_combo, stacks_df.Team))
|
| 245 |
-
|
| 246 |
-
flex_file = stacks_df[['team_combo', 'Salary', 'Fantasy']]
|
| 247 |
-
flex_file.rename(columns={"Fantasy": "Median"}, inplace = True)
|
| 248 |
-
flex_file['Floor'] = flex_file['Median']*.25
|
| 249 |
-
flex_file['Ceiling'] = flex_file['Median'] + flex_file['Floor']
|
| 250 |
-
flex_file['STD'] = flex_file['Median']/4
|
| 251 |
-
flex_file = flex_file[['team_combo', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
|
| 252 |
-
hold_file = flex_file
|
| 253 |
-
overall_file = flex_file
|
| 254 |
-
salary_file = flex_file
|
| 255 |
-
|
| 256 |
-
overall_players = overall_file[['team_combo']]
|
| 257 |
-
|
| 258 |
-
for x in range(0,total_sims):
|
| 259 |
-
salary_file[x] = salary_file['Salary']
|
| 260 |
-
|
| 261 |
-
salary_file=salary_file.drop(['team_combo', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
| 262 |
-
salary_file.astype('int').dtypes
|
| 263 |
-
|
| 264 |
-
salary_file = salary_file.div(1000)
|
| 265 |
-
|
| 266 |
-
for x in range(0,total_sims):
|
| 267 |
-
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
| 268 |
-
|
| 269 |
-
overall_file=overall_file.drop(['team_combo', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
| 270 |
-
overall_file.astype('int').dtypes
|
| 271 |
-
|
| 272 |
-
players_only = hold_file[['team_combo']]
|
| 273 |
-
raw_lineups_file = players_only
|
| 274 |
-
|
| 275 |
-
for x in range(0,total_sims):
|
| 276 |
-
maps_dict = {'proj_map':dict(zip(hold_file.team_combo,hold_file[x]))}
|
| 277 |
-
raw_lineups_file[x] = sum([raw_lineups_file['team_combo'].map(maps_dict['proj_map'])])
|
| 278 |
-
players_only[x] = raw_lineups_file[x].rank(ascending=False)
|
| 279 |
-
|
| 280 |
-
players_only=players_only.drop(['team_combo'], axis=1)
|
| 281 |
-
players_only.astype('int').dtypes
|
| 282 |
-
|
| 283 |
-
salary_2x_check = (overall_file - (salary_file*2))
|
| 284 |
-
salary_3x_check = (overall_file - (salary_file*3))
|
| 285 |
-
salary_4x_check = (overall_file - (salary_file*4))
|
| 286 |
-
|
| 287 |
-
players_only['Average_Rank'] = players_only.mean(axis=1)
|
| 288 |
-
players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
|
| 289 |
-
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
|
| 290 |
-
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
|
| 291 |
-
players_only['60+%'] = overall_file[overall_file >= 60].count(axis=1)/float(total_sims)
|
| 292 |
-
players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
|
| 293 |
-
players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
|
| 294 |
-
players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
|
| 295 |
-
|
| 296 |
-
players_only['team_combo'] = hold_file[['team_combo']]
|
| 297 |
-
|
| 298 |
-
final_outcomes = players_only[['team_combo', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '60+%', '2x%', '3x%', '4x%']]
|
| 299 |
-
|
| 300 |
-
final_stacks = pd.merge(hold_file, final_outcomes, on="team_combo")
|
| 301 |
-
final_stacks = final_stacks[['team_combo', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '60+%', '2x%', '3x%', '4x%']]
|
| 302 |
-
final_stacks['Own'] = final_stacks['team_combo'].map(own_dict)
|
| 303 |
-
final_stacks = final_stacks[['team_combo', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '60+%', '2x%', '3x%', '4x%', 'Own']]
|
| 304 |
-
final_stacks['Projection Rank'] = final_stacks.Median.rank(pct = True)
|
| 305 |
-
final_stacks['Own Rank'] = final_stacks.Own.rank(pct = True)
|
| 306 |
-
final_stacks['LevX'] = final_stacks['Projection Rank'] - final_stacks['Own Rank']
|
| 307 |
-
final_stacks['Team'] = final_stacks['team_combo'].map(team_dict)
|
| 308 |
-
final_stacks['QB'] = final_stacks['team_combo'].map(qb_dict)
|
| 309 |
-
final_stacks['WR1_TE'] = final_stacks['team_combo'].map(wr1_dict)
|
| 310 |
-
final_stacks['WR2_TE'] = final_stacks['team_combo'].map(wr2_dict)
|
| 311 |
-
|
| 312 |
-
final_stacks = final_stacks[['Team', 'QB', 'WR1_TE', 'WR2_TE', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish',
|
| 313 |
-
'Top_10_finish', '60+%', '2x%', '3x%', '4x%', 'Own', 'LevX']]
|
| 314 |
-
|
| 315 |
-
final_stacks = final_stacks.sort_values(by='Median', ascending=False)
|
| 316 |
-
|
| 317 |
-
with hold_container:
|
| 318 |
-
hold_container = st.empty()
|
| 319 |
-
final_stacks = final_stacks
|
| 320 |
-
st.dataframe(final_stacks.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
|
| 321 |
-
|
| 322 |
-
st.download_button(
|
| 323 |
-
label="Export Tables",
|
| 324 |
-
data=convert_df_to_csv(final_stacks),
|
| 325 |
-
file_name='Custom_NFL_stacks_export.csv',
|
| 326 |
-
mime='text/csv',
|
| 327 |
-
)
|
| 328 |
|
| 329 |
with tab2:
|
| 330 |
-
col1, col2 = st.columns([1,
|
| 331 |
with col1:
|
| 332 |
st.info(t_stamp)
|
| 333 |
if st.button("Load/Reset Data", key='reset2'):
|
| 334 |
st.cache_data.clear()
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
fd_stacks_raw = load_fd_stacks()
|
| 338 |
-
dk_roo_raw = load_dk_player_projections()
|
| 339 |
-
fd_roo_raw = load_fd_player_projections()
|
| 340 |
-
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
| 341 |
-
site_slates = set_slate_teams()
|
| 342 |
-
slate_var2 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Thurs-Mon Slate'), key='slate_var2')
|
| 343 |
site_var2 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var2')
|
| 344 |
-
custom_var2 = st.radio("Are you creating a custom table?", ('No', 'Yes'), key='custom_var2')
|
| 345 |
-
if custom_var2 == 'No':
|
| 346 |
-
if site_var2 == 'Draftkings':
|
| 347 |
-
raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var2)]
|
| 348 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
|
| 349 |
-
raw_baselines = raw_baselines.iloc[:,:-2]
|
| 350 |
-
elif site_var2 == 'Fanduel':
|
| 351 |
-
raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var2)]
|
| 352 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
|
| 353 |
-
raw_baselines = raw_baselines.iloc[:,:-2]
|
| 354 |
-
split_var2 = st.radio("Would you like to view the whole slate or just specific games?", ('Full Slate Run', 'Specific Games'), key='split_var2')
|
| 355 |
-
if split_var2 == 'Specific Games':
|
| 356 |
-
team_var2 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var2')
|
| 357 |
-
elif split_var2 == 'Full Slate Run':
|
| 358 |
-
team_var2 = raw_baselines.Team.values.tolist()
|
| 359 |
-
pos_split2 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split2')
|
| 360 |
-
if pos_split2 == 'Specific Positions':
|
| 361 |
-
pos_var2 = st.multiselect('What Positions would you like to view?', options = ['QB', 'RB', 'WR', 'TE'])
|
| 362 |
-
elif pos_split2 == 'All Positions':
|
| 363 |
-
pos_var2 = 'All'
|
| 364 |
-
sal_var2 = st.slider("Is there a certain price range you want to view?", 2000, 10000, (2000, 10000), key='sal_var2')
|
| 365 |
-
if custom_var2 == 'Yes':
|
| 366 |
-
contest_var2 = st.selectbox("What contest type are you running for?", ('Cash', 'Small Field GPP', 'Large Field GPP'), key='contest_var2')
|
| 367 |
-
if site_var2 == 'Draftkings':
|
| 368 |
-
raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var2)]
|
| 369 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
|
| 370 |
-
elif site_var2 == 'Fanduel':
|
| 371 |
-
raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var2)]
|
| 372 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
|
| 373 |
-
split_var2 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var2')
|
| 374 |
-
if split_var2 == 'Specific Games':
|
| 375 |
-
team_var2 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var2')
|
| 376 |
-
elif split_var2 == 'Full Slate Run':
|
| 377 |
-
team_var2 = raw_baselines.Team.values.tolist()
|
| 378 |
-
pos_split2 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split2')
|
| 379 |
-
if pos_split2 == 'Specific Positions':
|
| 380 |
-
pos_var2 = st.multiselect('What Positions would you like to view?', options = ['QB', 'RB', 'WR', 'TE'])
|
| 381 |
-
elif pos_split2 == 'All Positions':
|
| 382 |
-
pos_var2 = 'All'
|
| 383 |
-
sal_var2 = st.slider("Is there a certain price range you want to view?", 2000, 10000, (2000, 10000), key='sal_var2')
|
| 384 |
-
|
| 385 |
|
| 386 |
with col2:
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
|
| 396 |
-
st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
|
| 397 |
-
st.download_button(
|
| 398 |
-
label="Export Tables",
|
| 399 |
-
data=convert_df_to_csv(final_Proj),
|
| 400 |
-
file_name='NFL_overall_export.csv',
|
| 401 |
-
mime='text/csv',
|
| 402 |
-
)
|
| 403 |
-
elif custom_var2 == 'Yes':
|
| 404 |
-
hold_container = st.empty()
|
| 405 |
-
if st.button('Create Range of Outcomes for Slate'):
|
| 406 |
-
with hold_container:
|
| 407 |
-
if site_var2 == 'Draftkings':
|
| 408 |
-
working_roo = player_stats
|
| 409 |
-
working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "PPR": "Fantasy"}, inplace = True)
|
| 410 |
-
working_roo.replace('', 0, inplace=True)
|
| 411 |
-
if site_var2 == 'Fanduel':
|
| 412 |
-
working_roo = player_stats
|
| 413 |
-
working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "Half_PPR": "Fantasy"}, inplace = True)
|
| 414 |
-
working_roo.replace('', 0, inplace=True)
|
| 415 |
-
working_roo = working_roo[working_roo['Team'].isin(team_var2)]
|
| 416 |
-
working_roo = working_roo[working_roo['Salary'] >= sal_var2[0]]
|
| 417 |
-
working_roo = working_roo[working_roo['Salary'] <= sal_var2[1]]
|
| 418 |
-
own_dict = dict(zip(working_roo.Player, working_roo.Own))
|
| 419 |
-
team_dict = dict(zip(working_roo.Player, working_roo.Team))
|
| 420 |
-
opp_dict = dict(zip(working_roo.Player, working_roo.Opp))
|
| 421 |
-
total_sims = 1000
|
| 422 |
-
|
| 423 |
-
flex_file = working_roo[['Player', 'Position', 'Salary', 'Fantasy', 'Rush Yards', 'Receptions']]
|
| 424 |
-
flex_file.rename(columns={"Fantasy": "Median", "Pos": "Position"}, inplace = True)
|
| 425 |
-
flex_file['Floor'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median']*.25) + (flex_file['Rush Yards']*.01),flex_file['Median']*.25)
|
| 426 |
-
flex_file['Ceiling'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median'] + flex_file['Floor']) + (flex_file['Rush Yards']*.01), flex_file['Median'] + flex_file['Floor'] + flex_file['Receptions'])
|
| 427 |
-
flex_file['STD'] = (flex_file['Median']/4) + flex_file['Receptions']
|
| 428 |
-
flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
|
| 429 |
-
hold_file = flex_file
|
| 430 |
-
overall_file = flex_file
|
| 431 |
-
salary_file = flex_file
|
| 432 |
-
|
| 433 |
-
overall_players = overall_file[['Player']]
|
| 434 |
-
|
| 435 |
-
for x in range(0,total_sims):
|
| 436 |
-
salary_file[x] = salary_file['Salary']
|
| 437 |
-
|
| 438 |
-
salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
| 439 |
-
salary_file.astype('int').dtypes
|
| 440 |
-
|
| 441 |
-
salary_file = salary_file.div(1000)
|
| 442 |
-
|
| 443 |
-
for x in range(0,total_sims):
|
| 444 |
-
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
| 445 |
-
|
| 446 |
-
overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
| 447 |
-
overall_file.astype('int').dtypes
|
| 448 |
-
|
| 449 |
-
players_only = hold_file[['Player']]
|
| 450 |
-
raw_lineups_file = players_only
|
| 451 |
-
|
| 452 |
-
for x in range(0,total_sims):
|
| 453 |
-
maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))}
|
| 454 |
-
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
|
| 455 |
-
players_only[x] = raw_lineups_file[x].rank(ascending=False)
|
| 456 |
-
|
| 457 |
-
players_only=players_only.drop(['Player'], axis=1)
|
| 458 |
-
players_only.astype('int').dtypes
|
| 459 |
-
|
| 460 |
-
salary_2x_check = (overall_file - (salary_file*2))
|
| 461 |
-
salary_3x_check = (overall_file - (salary_file*3))
|
| 462 |
-
salary_4x_check = (overall_file - (salary_file*4))
|
| 463 |
-
|
| 464 |
-
players_only['Average_Rank'] = players_only.mean(axis=1)
|
| 465 |
-
players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
|
| 466 |
-
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
|
| 467 |
-
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
|
| 468 |
-
players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
|
| 469 |
-
players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
|
| 470 |
-
players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
|
| 471 |
-
players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
|
| 472 |
-
|
| 473 |
-
players_only['Player'] = hold_file[['Player']]
|
| 474 |
-
|
| 475 |
-
final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
|
| 476 |
-
|
| 477 |
-
final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
|
| 478 |
-
final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
|
| 479 |
-
final_Proj['Own'] = final_Proj['Player'].map(own_dict)
|
| 480 |
-
final_Proj['Team'] = final_Proj['Player'].map(team_dict)
|
| 481 |
-
final_Proj['Opp'] = final_Proj['Player'].map(opp_dict)
|
| 482 |
-
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own']]
|
| 483 |
-
final_Proj['Projection Rank'] = final_Proj.Median.rank(pct = True)
|
| 484 |
-
final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
|
| 485 |
-
final_Proj['LevX'] = 0
|
| 486 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'QB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
| 487 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'TE', final_Proj[['Projection Rank', '2x%']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
| 488 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'RB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['20+%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
| 489 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'WR', final_Proj[['Projection Rank', 'Top_10_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
| 490 |
-
final_Proj['CPT_Own'] = final_Proj['Own'] / 4
|
| 491 |
-
|
| 492 |
-
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'CPT_Own', 'LevX']]
|
| 493 |
-
final_Proj = final_Proj.set_index('Player')
|
| 494 |
-
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
|
| 495 |
-
|
| 496 |
-
with hold_container:
|
| 497 |
-
hold_container = st.empty()
|
| 498 |
-
final_Proj = final_Proj
|
| 499 |
-
st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
|
| 500 |
-
|
| 501 |
-
st.download_button(
|
| 502 |
-
label="Export Tables",
|
| 503 |
-
data=convert_df_to_csv(final_Proj),
|
| 504 |
-
file_name='Custom_NFL_overall_export.csv',
|
| 505 |
-
mime='text/csv',
|
| 506 |
-
)
|
| 507 |
|
| 508 |
with tab3:
|
| 509 |
-
col1, col2 = st.columns([1,
|
| 510 |
with col1:
|
| 511 |
st.info(t_stamp)
|
| 512 |
if st.button("Load/Reset Data", key='reset3'):
|
| 513 |
st.cache_data.clear()
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
fd_stacks_raw = load_fd_stacks()
|
| 517 |
-
dk_roo_raw = load_dk_player_projections()
|
| 518 |
-
fd_roo_raw = load_fd_player_projections()
|
| 519 |
-
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
| 520 |
-
site_slates = set_slate_teams()
|
| 521 |
-
slate_var3 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Thurs-Mon Slate'), key='slate_var3')
|
| 522 |
site_var3 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var3')
|
| 523 |
-
custom_var3 = st.radio("Are you creating a custom table?", ('No', 'Yes'), key='custom_var3')
|
| 524 |
-
if custom_var3 == 'No':
|
| 525 |
-
if site_var3 == 'Draftkings':
|
| 526 |
-
raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var3)]
|
| 527 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'dk_qbs']
|
| 528 |
-
raw_baselines = raw_baselines.iloc[:,:-3]
|
| 529 |
-
elif site_var3 == 'Fanduel':
|
| 530 |
-
raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var3)]
|
| 531 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'fd_qbs']
|
| 532 |
-
raw_baselines = raw_baselines.iloc[:,:-3]
|
| 533 |
-
split_var3 = st.radio("Would you like to view the whole slate or just specific games?", ('Full Slate Run', 'Specific Games'), key='split_var3')
|
| 534 |
-
if split_var3 == 'Specific Games':
|
| 535 |
-
team_var3 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var3')
|
| 536 |
-
elif split_var3 == 'Full Slate Run':
|
| 537 |
-
team_var3 = raw_baselines.Team.values.tolist()
|
| 538 |
-
pos_split3 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split3')
|
| 539 |
-
if pos_split3 == 'Specific Positions':
|
| 540 |
-
pos_var3 = st.multiselect('What Positions would you like to view?', options = ['QB'], key='pos_var3')
|
| 541 |
-
elif pos_split3 == 'All Positions':
|
| 542 |
-
pos_var3 = 'All'
|
| 543 |
-
sal_var3 = st.slider("Is there a certain price range you want to view?", 2000, 10000, (2000, 10000), key='sal_var3')
|
| 544 |
-
if custom_var3 == 'Yes':
|
| 545 |
-
contest_var3 = st.selectbox("What contest type are you running for?", ('Cash', 'Small Field GPP', 'Large Field GPP'), key='contest_var3')
|
| 546 |
-
if site_var3 == 'Draftkings':
|
| 547 |
-
raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var3)]
|
| 548 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'dk_qbs']
|
| 549 |
-
raw_baselines = raw_baselines.iloc[:,:-3]
|
| 550 |
-
elif site_var3 == 'Fanduel':
|
| 551 |
-
raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var3)]
|
| 552 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'fd_qbs']
|
| 553 |
-
raw_baselines = raw_baselines.iloc[:,:-3]
|
| 554 |
-
split_var3 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var3')
|
| 555 |
-
if split_var3 == 'Specific Games':
|
| 556 |
-
team_var3 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var3')
|
| 557 |
-
elif split_var3 == 'Full Slate Run':
|
| 558 |
-
team_var3 = raw_baselines.Team.values.tolist()
|
| 559 |
-
pos_split3 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split3')
|
| 560 |
-
if pos_split3 == 'Specific Positions':
|
| 561 |
-
pos_var3 = st.multiselect('What Positions would you like to view?', options = ['QB'])
|
| 562 |
-
elif pos_split3 == 'All Positions':
|
| 563 |
-
pos_var3 = 'All'
|
| 564 |
-
sal_var3 = st.slider("Is there a certain price range you want to view?", 2000, 10000, (2000, 10000), key='sal_var3')
|
| 565 |
-
|
| 566 |
|
| 567 |
with col2:
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
|
| 577 |
-
st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
|
| 578 |
-
st.download_button(
|
| 579 |
-
label="Export Tables",
|
| 580 |
-
data=convert_df_to_csv(final_Proj),
|
| 581 |
-
file_name='NFL_qb_export.csv',
|
| 582 |
-
mime='text/csv',
|
| 583 |
-
)
|
| 584 |
-
elif custom_var3 == 'Yes':
|
| 585 |
-
hold_container = st.empty()
|
| 586 |
-
if st.button('Create Range of Outcomes for Slate'):
|
| 587 |
-
with hold_container:
|
| 588 |
-
if site_var3 == 'Draftkings':
|
| 589 |
-
working_roo = player_stats
|
| 590 |
-
working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "PPR": "Fantasy"}, inplace = True)
|
| 591 |
-
working_roo.replace('', 0, inplace=True)
|
| 592 |
-
working_roo = working_roo[working_roo['Position'] == 'QB']
|
| 593 |
-
if site_var3 == 'Fanduel':
|
| 594 |
-
working_roo = player_stats
|
| 595 |
-
working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "Half_PPR": "Fantasy"}, inplace = True)
|
| 596 |
-
working_roo.replace('', 0, inplace=True)
|
| 597 |
-
working_roo = working_roo[working_roo['Position'] == 'QB']
|
| 598 |
-
working_roo = working_roo[working_roo['Team'].isin(team_var3)]
|
| 599 |
-
working_roo = working_roo[working_roo['Salary'] >= sal_var2[0]]
|
| 600 |
-
working_roo = working_roo[working_roo['Salary'] <= sal_var2[1]]
|
| 601 |
-
own_dict = dict(zip(working_roo.Player, working_roo.Own))
|
| 602 |
-
team_dict = dict(zip(working_roo.Player, working_roo.Team))
|
| 603 |
-
opp_dict = dict(zip(working_roo.Player, working_roo.Opp))
|
| 604 |
-
total_sims = 1000
|
| 605 |
-
|
| 606 |
-
flex_file = working_roo[['Player', 'Position', 'Salary', 'Fantasy', 'Rush Yards', 'Receptions']]
|
| 607 |
-
flex_file.rename(columns={"Fantasy": "Median", "Pos": "Position"}, inplace = True)
|
| 608 |
-
flex_file['Floor'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median']*.25) + (flex_file['Rush Yards']*.01),flex_file['Median']*.25)
|
| 609 |
-
flex_file['Ceiling'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median'] + flex_file['Floor']) + (flex_file['Rush Yards']*.01), flex_file['Median'] + flex_file['Floor'] + flex_file['Receptions'])
|
| 610 |
-
flex_file['STD'] = (flex_file['Median']/4) + flex_file['Receptions']
|
| 611 |
-
flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
|
| 612 |
-
hold_file = flex_file
|
| 613 |
-
overall_file = flex_file
|
| 614 |
-
salary_file = flex_file
|
| 615 |
-
|
| 616 |
-
overall_players = overall_file[['Player']]
|
| 617 |
-
|
| 618 |
-
for x in range(0,total_sims):
|
| 619 |
-
salary_file[x] = salary_file['Salary']
|
| 620 |
-
|
| 621 |
-
salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
| 622 |
-
salary_file.astype('int').dtypes
|
| 623 |
-
|
| 624 |
-
salary_file = salary_file.div(1000)
|
| 625 |
-
|
| 626 |
-
for x in range(0,total_sims):
|
| 627 |
-
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
| 628 |
-
|
| 629 |
-
overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
| 630 |
-
overall_file.astype('int').dtypes
|
| 631 |
-
|
| 632 |
-
players_only = hold_file[['Player']]
|
| 633 |
-
raw_lineups_file = players_only
|
| 634 |
-
|
| 635 |
-
for x in range(0,total_sims):
|
| 636 |
-
maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))}
|
| 637 |
-
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
|
| 638 |
-
players_only[x] = raw_lineups_file[x].rank(ascending=False)
|
| 639 |
-
|
| 640 |
-
players_only=players_only.drop(['Player'], axis=1)
|
| 641 |
-
players_only.astype('int').dtypes
|
| 642 |
-
|
| 643 |
-
salary_2x_check = (overall_file - (salary_file*2))
|
| 644 |
-
salary_3x_check = (overall_file - (salary_file*3))
|
| 645 |
-
salary_4x_check = (overall_file - (salary_file*4))
|
| 646 |
-
|
| 647 |
-
players_only['Average_Rank'] = players_only.mean(axis=1)
|
| 648 |
-
players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
|
| 649 |
-
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
|
| 650 |
-
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
|
| 651 |
-
players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
|
| 652 |
-
players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
|
| 653 |
-
players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
|
| 654 |
-
players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
|
| 655 |
-
|
| 656 |
-
players_only['Player'] = hold_file[['Player']]
|
| 657 |
-
|
| 658 |
-
final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
|
| 659 |
-
|
| 660 |
-
final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
|
| 661 |
-
final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
|
| 662 |
-
final_Proj['Own'] = final_Proj['Player'].map(own_dict)
|
| 663 |
-
final_Proj['Team'] = final_Proj['Player'].map(team_dict)
|
| 664 |
-
final_Proj['Opp'] = final_Proj['Player'].map(opp_dict)
|
| 665 |
-
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own']]
|
| 666 |
-
final_Proj['Projection Rank'] = final_Proj.Median.rank(pct = True)
|
| 667 |
-
final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
|
| 668 |
-
final_Proj['LevX'] = 0
|
| 669 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'QB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
| 670 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'TE', final_Proj[['Projection Rank', '2x%']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
| 671 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'RB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['20+%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
| 672 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'WR', final_Proj[['Projection Rank', 'Top_10_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
| 673 |
-
final_Proj['CPT_Own'] = final_Proj['Own'] / 4
|
| 674 |
-
|
| 675 |
-
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'CPT_Own', 'LevX']]
|
| 676 |
-
final_Proj = final_Proj.set_index('Player')
|
| 677 |
-
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
|
| 678 |
-
|
| 679 |
-
with hold_container:
|
| 680 |
-
hold_container = st.empty()
|
| 681 |
-
final_Proj = final_Proj
|
| 682 |
-
st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
|
| 683 |
-
|
| 684 |
-
st.download_button(
|
| 685 |
-
label="Export Tables",
|
| 686 |
-
data=convert_df_to_csv(final_Proj),
|
| 687 |
-
file_name='Custom_NFL_qb_export.csv',
|
| 688 |
-
mime='text/csv',
|
| 689 |
-
)
|
| 690 |
-
|
| 691 |
-
with tab4:
|
| 692 |
-
col1, col2 = st.columns([1, 5])
|
| 693 |
-
with col1:
|
| 694 |
-
st.info(t_stamp)
|
| 695 |
-
if st.button("Load/Reset Data", key='reset4'):
|
| 696 |
-
st.cache_data.clear()
|
| 697 |
-
player_stats = player_stat_table()
|
| 698 |
-
dk_stacks_raw = load_dk_stacks()
|
| 699 |
-
fd_stacks_raw = load_fd_stacks()
|
| 700 |
-
dk_roo_raw = load_dk_player_projections()
|
| 701 |
-
fd_roo_raw = load_fd_player_projections()
|
| 702 |
-
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
| 703 |
-
site_slates = set_slate_teams()
|
| 704 |
-
slate_var4 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Thurs-Mon Slate'), key='slate_var4')
|
| 705 |
-
site_var4 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var4')
|
| 706 |
-
custom_var4 = st.radio("Are you creating a custom table?", ('No', 'Yes'), key='custom_var4')
|
| 707 |
-
if custom_var4 == 'No':
|
| 708 |
-
if site_var4 == 'Draftkings':
|
| 709 |
-
raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var4)]
|
| 710 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'dk_rbs']
|
| 711 |
-
raw_baselines = raw_baselines.iloc[:,:-3]
|
| 712 |
-
elif site_var4 == 'Fanduel':
|
| 713 |
-
raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var4)]
|
| 714 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'fd_rbs']
|
| 715 |
-
raw_baselines = raw_baselines.iloc[:,:-3]
|
| 716 |
-
split_var4 = st.radio("Would you like to view the whole slate or just specific games?", ('Full Slate Run', 'Specific Games'), key='split_var4')
|
| 717 |
-
if split_var4 == 'Specific Games':
|
| 718 |
-
team_var4 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var4')
|
| 719 |
-
elif split_var4 == 'Full Slate Run':
|
| 720 |
-
team_var4 = raw_baselines.Team.values.tolist()
|
| 721 |
-
pos_split4 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split4')
|
| 722 |
-
if pos_split4 == 'Specific Positions':
|
| 723 |
-
pos_var4 = st.multiselect('What Positions would you like to view?', options = ['RB'], key='pos_var4')
|
| 724 |
-
elif pos_split4 == 'All Positions':
|
| 725 |
-
pos_var4 = 'All'
|
| 726 |
-
sal_var4 = st.slider("Is there a certain price range you want to view?", 2000, 10000, (2000, 10000), key='sal_var4')
|
| 727 |
-
if custom_var4 == 'Yes':
|
| 728 |
-
contest_var4 = st.selectbox("What contest type are you running for?", ('Cash', 'Small Field GPP', 'Large Field GPP'), key='contest_var4')
|
| 729 |
-
if site_var4 == 'Draftkings':
|
| 730 |
-
raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var4)]
|
| 731 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'dk_rbs']
|
| 732 |
-
elif site_var4 == 'Fanduel':
|
| 733 |
-
raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var4)]
|
| 734 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'fd_rbs']
|
| 735 |
-
split_var4 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var4')
|
| 736 |
-
if split_var4 == 'Specific Games':
|
| 737 |
-
team_var4 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var4')
|
| 738 |
-
elif split_var4 == 'Full Slate Run':
|
| 739 |
-
team_var4 = raw_baselines.Team.values.tolist()
|
| 740 |
-
pos_split4 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split4')
|
| 741 |
-
if pos_split4 == 'Specific Positions':
|
| 742 |
-
pos_var4 = st.multiselect('What Positions would you like to view?', options = ['RB'])
|
| 743 |
-
elif pos_split4 == 'All Positions':
|
| 744 |
-
pos_var4 = 'All'
|
| 745 |
-
sal_var4 = st.slider("Is there a certain price range you want to view?", 2000, 10000, (2000, 10000), key='sal_var4')
|
| 746 |
-
|
| 747 |
-
|
| 748 |
-
with col2:
|
| 749 |
-
if custom_var4 == 'No':
|
| 750 |
-
final_Proj = raw_baselines[raw_baselines['Team'].isin(team_var4)]
|
| 751 |
-
final_Proj = final_Proj[final_Proj['Salary'] >= sal_var4[0]]
|
| 752 |
-
final_Proj = final_Proj[final_Proj['Salary'] <= sal_var4[1]]
|
| 753 |
-
if pos_var4 != 'All':
|
| 754 |
-
final_Proj = raw_baselines[raw_baselines['Position'].str.contains('|'.join(pos_var4))]
|
| 755 |
-
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'CPT_Own', 'LevX']]
|
| 756 |
-
final_Proj = final_Proj.set_index('Player')
|
| 757 |
-
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
|
| 758 |
-
st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
|
| 759 |
-
st.download_button(
|
| 760 |
-
label="Export Tables",
|
| 761 |
-
data=convert_df_to_csv(final_Proj),
|
| 762 |
-
file_name='NFL_rb_export.csv',
|
| 763 |
-
mime='text/csv',
|
| 764 |
-
)
|
| 765 |
-
elif custom_var4 == 'Yes':
|
| 766 |
-
hold_container = st.empty()
|
| 767 |
-
if st.button('Create Range of Outcomes for Slate'):
|
| 768 |
-
with hold_container:
|
| 769 |
-
if site_var4 == 'Draftkings':
|
| 770 |
-
working_roo = player_stats
|
| 771 |
-
working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "PPR": "Fantasy"}, inplace = True)
|
| 772 |
-
working_roo.replace('', 0, inplace=True)
|
| 773 |
-
working_roo = working_roo[working_roo['Position'] == 'RB']
|
| 774 |
-
if site_var4 == 'Fanduel':
|
| 775 |
-
working_roo = player_stats
|
| 776 |
-
working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "Half_PPR": "Fantasy"}, inplace = True)
|
| 777 |
-
working_roo.replace('', 0, inplace=True)
|
| 778 |
-
working_roo = working_roo[working_roo['Position'] == 'RB']
|
| 779 |
-
working_roo = working_roo[working_roo['Team'].isin(team_var4)]
|
| 780 |
-
working_roo = working_roo[working_roo['Salary'] >= sal_var4[0]]
|
| 781 |
-
working_roo = working_roo[working_roo['Salary'] <= sal_var4[1]]
|
| 782 |
-
own_dict = dict(zip(working_roo.Player, working_roo.Own))
|
| 783 |
-
team_dict = dict(zip(working_roo.Player, working_roo.Team))
|
| 784 |
-
opp_dict = dict(zip(working_roo.Player, working_roo.Opp))
|
| 785 |
-
total_sims = 1000
|
| 786 |
-
|
| 787 |
-
flex_file = working_roo[['Player', 'Position', 'Salary', 'Fantasy', 'Rush Yards', 'Receptions']]
|
| 788 |
-
flex_file.rename(columns={"Fantasy": "Median", "Pos": "Position"}, inplace = True)
|
| 789 |
-
flex_file['Floor'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median']*.25) + (flex_file['Rush Yards']*.01),flex_file['Median']*.25)
|
| 790 |
-
flex_file['Ceiling'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median'] + flex_file['Floor']) + (flex_file['Rush Yards']*.01), flex_file['Median'] + flex_file['Floor'] + flex_file['Receptions'])
|
| 791 |
-
flex_file['STD'] = (flex_file['Median']/4) + flex_file['Receptions']
|
| 792 |
-
flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
|
| 793 |
-
hold_file = flex_file
|
| 794 |
-
overall_file = flex_file
|
| 795 |
-
salary_file = flex_file
|
| 796 |
-
|
| 797 |
-
overall_players = overall_file[['Player']]
|
| 798 |
-
|
| 799 |
-
for x in range(0,total_sims):
|
| 800 |
-
salary_file[x] = salary_file['Salary']
|
| 801 |
-
|
| 802 |
-
salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
| 803 |
-
salary_file.astype('int').dtypes
|
| 804 |
-
|
| 805 |
-
salary_file = salary_file.div(1000)
|
| 806 |
-
|
| 807 |
-
for x in range(0,total_sims):
|
| 808 |
-
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
| 809 |
-
|
| 810 |
-
overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
| 811 |
-
overall_file.astype('int').dtypes
|
| 812 |
-
|
| 813 |
-
players_only = hold_file[['Player']]
|
| 814 |
-
raw_lineups_file = players_only
|
| 815 |
-
|
| 816 |
-
for x in range(0,total_sims):
|
| 817 |
-
maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))}
|
| 818 |
-
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
|
| 819 |
-
players_only[x] = raw_lineups_file[x].rank(ascending=False)
|
| 820 |
-
|
| 821 |
-
players_only=players_only.drop(['Player'], axis=1)
|
| 822 |
-
players_only.astype('int').dtypes
|
| 823 |
-
|
| 824 |
-
salary_2x_check = (overall_file - (salary_file*2))
|
| 825 |
-
salary_3x_check = (overall_file - (salary_file*3))
|
| 826 |
-
salary_4x_check = (overall_file - (salary_file*4))
|
| 827 |
-
|
| 828 |
-
players_only['Average_Rank'] = players_only.mean(axis=1)
|
| 829 |
-
players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
|
| 830 |
-
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
|
| 831 |
-
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
|
| 832 |
-
players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
|
| 833 |
-
players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
|
| 834 |
-
players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
|
| 835 |
-
players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
|
| 836 |
-
|
| 837 |
-
players_only['Player'] = hold_file[['Player']]
|
| 838 |
-
|
| 839 |
-
final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
|
| 840 |
-
|
| 841 |
-
final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
|
| 842 |
-
final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
|
| 843 |
-
final_Proj['Own'] = final_Proj['Player'].map(own_dict)
|
| 844 |
-
final_Proj['Team'] = final_Proj['Player'].map(team_dict)
|
| 845 |
-
final_Proj['Opp'] = final_Proj['Player'].map(opp_dict)
|
| 846 |
-
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own']]
|
| 847 |
-
final_Proj['Projection Rank'] = final_Proj.Median.rank(pct = True)
|
| 848 |
-
final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
|
| 849 |
-
final_Proj['LevX'] = 0
|
| 850 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'QB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
| 851 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'TE', final_Proj[['Projection Rank', '2x%']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
| 852 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'RB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['20+%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
| 853 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'WR', final_Proj[['Projection Rank', 'Top_10_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
| 854 |
-
final_Proj['CPT_Own'] = final_Proj['Own'] / 4
|
| 855 |
-
|
| 856 |
-
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'CPT_Own', 'LevX']]
|
| 857 |
-
final_Proj = final_Proj.set_index('Player')
|
| 858 |
-
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
|
| 859 |
-
|
| 860 |
-
with hold_container:
|
| 861 |
-
hold_container = st.empty()
|
| 862 |
-
final_Proj = final_Proj
|
| 863 |
-
st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
|
| 864 |
-
|
| 865 |
-
st.download_button(
|
| 866 |
-
label="Export Tables",
|
| 867 |
-
data=convert_df_to_csv(final_Proj),
|
| 868 |
-
file_name='Custom_NFL_rb_export.csv',
|
| 869 |
-
mime='text/csv',
|
| 870 |
-
)
|
| 871 |
-
|
| 872 |
-
with tab5:
|
| 873 |
-
col1, col2 = st.columns([1, 5])
|
| 874 |
-
with col1:
|
| 875 |
-
st.info(t_stamp)
|
| 876 |
-
if st.button("Load/Reset Data", key='reset5'):
|
| 877 |
-
st.cache_data.clear()
|
| 878 |
-
player_stats = player_stat_table()
|
| 879 |
-
dk_stacks_raw = load_dk_stacks()
|
| 880 |
-
fd_stacks_raw = load_fd_stacks()
|
| 881 |
-
dk_roo_raw = load_dk_player_projections()
|
| 882 |
-
fd_roo_raw = load_fd_player_projections()
|
| 883 |
-
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
| 884 |
-
site_slates = set_slate_teams()
|
| 885 |
-
slate_var5 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Thurs-Mon Slate'), key='slate_var5')
|
| 886 |
-
site_var5 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var5')
|
| 887 |
-
custom_var5 = st.radio("Are you creating a custom table?", ('No', 'Yes'), key='custom_var5')
|
| 888 |
-
if custom_var5 == 'No':
|
| 889 |
-
if site_var5 == 'Draftkings':
|
| 890 |
-
raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var5)]
|
| 891 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'dk_wrs']
|
| 892 |
-
raw_baselines = raw_baselines.iloc[:,:-3]
|
| 893 |
-
elif site_var5 == 'Fanduel':
|
| 894 |
-
raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var5)]
|
| 895 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'fd_wrs']
|
| 896 |
-
raw_baselines = raw_baselines.iloc[:,:-3]
|
| 897 |
-
split_var5 = st.radio("Would you like to view the whole slate or just specific games?", ('Full Slate Run', 'Specific Games'), key='split_var5')
|
| 898 |
-
if split_var5 == 'Specific Games':
|
| 899 |
-
team_var5 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var5')
|
| 900 |
-
elif split_var5 == 'Full Slate Run':
|
| 901 |
-
team_var5 = raw_baselines.Team.values.tolist()
|
| 902 |
-
pos_split5 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split5')
|
| 903 |
-
if pos_split5 == 'Specific Positions':
|
| 904 |
-
pos_var5 = st.multiselect('What Positions would you like to view?', options = ['WR'], key='pos_var5')
|
| 905 |
-
elif pos_split5 == 'All Positions':
|
| 906 |
-
pos_var5 = 'All'
|
| 907 |
-
sal_var5 = st.slider("Is there a certain price range you want to view?", 2000, 10000, (2000, 10000), key='sal_var5')
|
| 908 |
-
if custom_var5 == 'Yes':
|
| 909 |
-
contest_var5 = st.selectbox("What contest type are you running for?", ('Cash', 'Small Field GPP', 'Large Field GPP'), key='contest_var5')
|
| 910 |
-
if site_var5 == 'Draftkings':
|
| 911 |
-
raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var5)]
|
| 912 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'dk_wrs']
|
| 913 |
-
elif site_var5 == 'Fanduel':
|
| 914 |
-
raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var5)]
|
| 915 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'fd_wrs']
|
| 916 |
-
split_var5 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var5')
|
| 917 |
-
if split_var5 == 'Specific Games':
|
| 918 |
-
team_var5 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var5')
|
| 919 |
-
elif split_var5 == 'Full Slate Run':
|
| 920 |
-
team_var5 = raw_baselines.Team.values.tolist()
|
| 921 |
-
pos_split5 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split5')
|
| 922 |
-
if pos_split5 == 'Specific Positions':
|
| 923 |
-
pos_var5 = st.multiselect('What Positions would you like to view?', options = ['WR'])
|
| 924 |
-
elif pos_split5 == 'All Positions':
|
| 925 |
-
pos_var5 = 'All'
|
| 926 |
-
sal_var5 = st.slider("Is there a certain price range you want to view?", 2000, 10000, (2000, 10000), key='sal_var5')
|
| 927 |
-
|
| 928 |
-
|
| 929 |
-
with col2:
|
| 930 |
-
if custom_var5 == 'No':
|
| 931 |
-
final_Proj = raw_baselines[raw_baselines['Team'].isin(team_var5)]
|
| 932 |
-
final_Proj = final_Proj[final_Proj['Salary'] >= sal_var5[0]]
|
| 933 |
-
final_Proj = final_Proj[final_Proj['Salary'] <= sal_var5[1]]
|
| 934 |
-
if pos_var5 != 'All':
|
| 935 |
-
final_Proj = raw_baselines[raw_baselines['Position'].str.contains('|'.join(pos_var5))]
|
| 936 |
-
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'CPT_Own', 'LevX']]
|
| 937 |
-
final_Proj = final_Proj.set_index('Player')
|
| 938 |
-
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
|
| 939 |
-
st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
|
| 940 |
-
st.download_button(
|
| 941 |
-
label="Export Tables",
|
| 942 |
-
data=convert_df_to_csv(final_Proj),
|
| 943 |
-
file_name='NFL_wr_export.csv',
|
| 944 |
-
mime='text/csv',
|
| 945 |
-
)
|
| 946 |
-
elif custom_var5 == 'Yes':
|
| 947 |
-
hold_container = st.empty()
|
| 948 |
-
if st.button('Create Range of Outcomes for Slate'):
|
| 949 |
-
with hold_container:
|
| 950 |
-
if site_var5 == 'Draftkings':
|
| 951 |
-
working_roo = player_stats
|
| 952 |
-
working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "PPR": "Fantasy"}, inplace = True)
|
| 953 |
-
working_roo.replace('', 0, inplace=True)
|
| 954 |
-
working_roo = working_roo[working_roo['Position'] == 'WR']
|
| 955 |
-
if site_var5 == 'Fanduel':
|
| 956 |
-
working_roo = player_stats
|
| 957 |
-
working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "Half_PPR": "Fantasy"}, inplace = True)
|
| 958 |
-
working_roo.replace('', 0, inplace=True)
|
| 959 |
-
working_roo = working_roo[working_roo['Position'] == 'WR']
|
| 960 |
-
working_roo = working_roo[working_roo['Team'].isin(team_var5)]
|
| 961 |
-
working_roo = working_roo[working_roo['Salary'] >= sal_var5[0]]
|
| 962 |
-
working_roo = working_roo[working_roo['Salary'] <= sal_var5[1]]
|
| 963 |
-
own_dict = dict(zip(working_roo.Player, working_roo.Own))
|
| 964 |
-
team_dict = dict(zip(working_roo.Player, working_roo.Team))
|
| 965 |
-
opp_dict = dict(zip(working_roo.Player, working_roo.Opp))
|
| 966 |
-
total_sims = 1000
|
| 967 |
-
|
| 968 |
-
flex_file = working_roo[['Player', 'Position', 'Salary', 'Fantasy', 'Rush Yards', 'Receptions']]
|
| 969 |
-
flex_file.rename(columns={"Fantasy": "Median", "Pos": "Position"}, inplace = True)
|
| 970 |
-
flex_file['Floor'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median']*.25) + (flex_file['Rush Yards']*.01),flex_file['Median']*.25)
|
| 971 |
-
flex_file['Ceiling'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median'] + flex_file['Floor']) + (flex_file['Rush Yards']*.01), flex_file['Median'] + flex_file['Floor'] + flex_file['Receptions'])
|
| 972 |
-
flex_file['STD'] = (flex_file['Median']/4) + flex_file['Receptions']
|
| 973 |
-
flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
|
| 974 |
-
hold_file = flex_file
|
| 975 |
-
overall_file = flex_file
|
| 976 |
-
salary_file = flex_file
|
| 977 |
-
|
| 978 |
-
overall_players = overall_file[['Player']]
|
| 979 |
-
|
| 980 |
-
for x in range(0,total_sims):
|
| 981 |
-
salary_file[x] = salary_file['Salary']
|
| 982 |
-
|
| 983 |
-
salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
| 984 |
-
salary_file.astype('int').dtypes
|
| 985 |
-
|
| 986 |
-
salary_file = salary_file.div(1000)
|
| 987 |
-
|
| 988 |
-
for x in range(0,total_sims):
|
| 989 |
-
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
| 990 |
-
|
| 991 |
-
overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
| 992 |
-
overall_file.astype('int').dtypes
|
| 993 |
-
|
| 994 |
-
players_only = hold_file[['Player']]
|
| 995 |
-
raw_lineups_file = players_only
|
| 996 |
-
|
| 997 |
-
for x in range(0,total_sims):
|
| 998 |
-
maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))}
|
| 999 |
-
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
|
| 1000 |
-
players_only[x] = raw_lineups_file[x].rank(ascending=False)
|
| 1001 |
-
|
| 1002 |
-
players_only=players_only.drop(['Player'], axis=1)
|
| 1003 |
-
players_only.astype('int').dtypes
|
| 1004 |
-
|
| 1005 |
-
salary_2x_check = (overall_file - (salary_file*2))
|
| 1006 |
-
salary_3x_check = (overall_file - (salary_file*3))
|
| 1007 |
-
salary_4x_check = (overall_file - (salary_file*4))
|
| 1008 |
-
|
| 1009 |
-
players_only['Average_Rank'] = players_only.mean(axis=1)
|
| 1010 |
-
players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
|
| 1011 |
-
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
|
| 1012 |
-
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
|
| 1013 |
-
players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
|
| 1014 |
-
players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
|
| 1015 |
-
players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
|
| 1016 |
-
players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
|
| 1017 |
-
|
| 1018 |
-
players_only['Player'] = hold_file[['Player']]
|
| 1019 |
-
|
| 1020 |
-
final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
|
| 1021 |
-
|
| 1022 |
-
final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
|
| 1023 |
-
final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
|
| 1024 |
-
final_Proj['Own'] = final_Proj['Player'].map(own_dict)
|
| 1025 |
-
final_Proj['Team'] = final_Proj['Player'].map(team_dict)
|
| 1026 |
-
final_Proj['Opp'] = final_Proj['Player'].map(opp_dict)
|
| 1027 |
-
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own']]
|
| 1028 |
-
final_Proj['Projection Rank'] = final_Proj.Median.rank(pct = True)
|
| 1029 |
-
final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
|
| 1030 |
-
final_Proj['LevX'] = 0
|
| 1031 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'QB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
| 1032 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'TE', final_Proj[['Projection Rank', '2x%']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
| 1033 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'RB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['20+%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
| 1034 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'WR', final_Proj[['Projection Rank', 'Top_10_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
| 1035 |
-
final_Proj['CPT_Own'] = final_Proj['Own'] / 4
|
| 1036 |
-
|
| 1037 |
-
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'CPT_Own', 'LevX']]
|
| 1038 |
-
final_Proj = final_Proj.set_index('Player')
|
| 1039 |
-
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
|
| 1040 |
-
|
| 1041 |
-
with hold_container:
|
| 1042 |
-
hold_container = st.empty()
|
| 1043 |
-
final_Proj = final_Proj
|
| 1044 |
-
st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
|
| 1045 |
-
|
| 1046 |
-
st.download_button(
|
| 1047 |
-
label="Export Tables",
|
| 1048 |
-
data=convert_df_to_csv(final_Proj),
|
| 1049 |
-
file_name='Custom_NFL_wr_export.csv',
|
| 1050 |
-
mime='text/csv',
|
| 1051 |
-
)
|
| 1052 |
-
|
| 1053 |
-
with tab6:
|
| 1054 |
-
col1, col2 = st.columns([1, 5])
|
| 1055 |
-
with col1:
|
| 1056 |
-
st.info(t_stamp)
|
| 1057 |
-
if st.button("Load/Reset Data", key='reset6'):
|
| 1058 |
-
st.cache_data.clear()
|
| 1059 |
-
player_stats = player_stat_table()
|
| 1060 |
-
dk_stacks_raw = load_dk_stacks()
|
| 1061 |
-
fd_stacks_raw = load_fd_stacks()
|
| 1062 |
-
dk_roo_raw = load_dk_player_projections()
|
| 1063 |
-
fd_roo_raw = load_fd_player_projections()
|
| 1064 |
-
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
| 1065 |
-
site_slates = set_slate_teams()
|
| 1066 |
-
slate_var6 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Thurs-Mon Slate'), key='slate_var6')
|
| 1067 |
-
site_var6 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var6')
|
| 1068 |
-
custom_var6 = st.radio("Are you creating a custom table?", ('No', 'Yes'), key='custom_var6')
|
| 1069 |
-
if custom_var6 == 'No':
|
| 1070 |
-
if site_var6 == 'Draftkings':
|
| 1071 |
-
raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var6)]
|
| 1072 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'dk_tes']
|
| 1073 |
-
raw_baselines = raw_baselines.iloc[:,:-3]
|
| 1074 |
-
elif site_var6 == 'Fanduel':
|
| 1075 |
-
raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var6)]
|
| 1076 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'fd_tes']
|
| 1077 |
-
raw_baselines = raw_baselines.iloc[:,:-3]
|
| 1078 |
-
split_var6 = st.radio("Would you like to view the whole slate or just specific games?", ('Full Slate Run', 'Specific Games'), key='split_var6')
|
| 1079 |
-
if split_var6 == 'Specific Games':
|
| 1080 |
-
team_var6 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var6')
|
| 1081 |
-
elif split_var6 == 'Full Slate Run':
|
| 1082 |
-
team_var6 = raw_baselines.Team.values.tolist()
|
| 1083 |
-
pos_split6 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split6')
|
| 1084 |
-
if pos_split6 == 'Specific Positions':
|
| 1085 |
-
pos_var6 = st.multiselect('What Positions would you like to view?', options = ['TE'], key='pos_var6')
|
| 1086 |
-
elif pos_split5 == 'All Positions':
|
| 1087 |
-
pos_var6 = 'All'
|
| 1088 |
-
sal_var6 = st.slider("Is there a certain price range you want to view?", 2000, 10000, (2000, 10000), key='sal_var6')
|
| 1089 |
-
if custom_var6 == 'Yes':
|
| 1090 |
-
contest_var6 = st.selectbox("What contest type are you running for?", ('Cash', 'Small Field GPP', 'Large Field GPP'), key='contest_var6')
|
| 1091 |
-
if site_var6 == 'Draftkings':
|
| 1092 |
-
raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var6)]
|
| 1093 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'dk_tes']
|
| 1094 |
-
elif site_var6 == 'Fanduel':
|
| 1095 |
-
raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var6)]
|
| 1096 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'fd_tes']
|
| 1097 |
-
split_var6 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var6')
|
| 1098 |
-
if split_var6 == 'Specific Games':
|
| 1099 |
-
team_var6 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var6')
|
| 1100 |
-
elif split_var6 == 'Full Slate Run':
|
| 1101 |
-
team_var6 = raw_baselines.Team.values.tolist()
|
| 1102 |
-
pos_split6 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split6')
|
| 1103 |
-
if pos_split6 == 'Specific Positions':
|
| 1104 |
-
pos_var6 = st.multiselect('What Positions would you like to view?', options = ['TE'])
|
| 1105 |
-
elif pos_split6 == 'All Positions':
|
| 1106 |
-
pos_var6 = 'All'
|
| 1107 |
-
sal_var6 = st.slider("Is there a certain price range you want to view?", 2000, 10000, (2000, 10000), key='sal_var6')
|
| 1108 |
-
|
| 1109 |
-
|
| 1110 |
-
with col2:
|
| 1111 |
-
if custom_var6 == 'No':
|
| 1112 |
-
final_Proj = raw_baselines[raw_baselines['Team'].isin(team_var6)]
|
| 1113 |
-
final_Proj = final_Proj[final_Proj['Salary'] >= sal_var6[0]]
|
| 1114 |
-
final_Proj = final_Proj[final_Proj['Salary'] <= sal_var6[1]]
|
| 1115 |
-
if pos_var6 != 'All':
|
| 1116 |
-
final_Proj = raw_baselines[raw_baselines['Position'].str.contains('|'.join(pos_var6))]
|
| 1117 |
-
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'CPT_Own', 'LevX']]
|
| 1118 |
-
final_Proj = final_Proj.set_index('Player')
|
| 1119 |
-
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
|
| 1120 |
-
st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
|
| 1121 |
-
st.download_button(
|
| 1122 |
-
label="Export Tables",
|
| 1123 |
-
data=convert_df_to_csv(final_Proj),
|
| 1124 |
-
file_name='NFL_te_export.csv',
|
| 1125 |
-
mime='text/csv',
|
| 1126 |
-
)
|
| 1127 |
-
elif custom_var6 == 'Yes':
|
| 1128 |
-
hold_container = st.empty()
|
| 1129 |
-
if st.button('Create Range of Outcomes for Slate'):
|
| 1130 |
-
with hold_container:
|
| 1131 |
-
if site_var6 == 'Draftkings':
|
| 1132 |
-
working_roo = player_stats
|
| 1133 |
-
working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "PPR": "Fantasy"}, inplace = True)
|
| 1134 |
-
working_roo.replace('', 0, inplace=True)
|
| 1135 |
-
working_roo = working_roo[working_roo['Position'] == 'TE']
|
| 1136 |
-
if site_var6 == 'Fanduel':
|
| 1137 |
-
working_roo = player_stats
|
| 1138 |
-
working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "Half_PPR": "Fantasy"}, inplace = True)
|
| 1139 |
-
working_roo.replace('', 0, inplace=True)
|
| 1140 |
-
working_roo = working_roo[working_roo['Position'] == 'TE']
|
| 1141 |
-
working_roo = working_roo[working_roo['Team'].isin(team_var6)]
|
| 1142 |
-
working_roo = working_roo[working_roo['Salary'] >= sal_var6[0]]
|
| 1143 |
-
working_roo = working_roo[working_roo['Salary'] <= sal_var6[1]]
|
| 1144 |
-
own_dict = dict(zip(working_roo.Player, working_roo.Own))
|
| 1145 |
-
team_dict = dict(zip(working_roo.Player, working_roo.Team))
|
| 1146 |
-
opp_dict = dict(zip(working_roo.Player, working_roo.Opp))
|
| 1147 |
-
total_sims = 1000
|
| 1148 |
-
|
| 1149 |
-
flex_file = working_roo[['Player', 'Position', 'Salary', 'Fantasy', 'Rush Yards', 'Receptions']]
|
| 1150 |
-
flex_file.rename(columns={"Fantasy": "Median", "Pos": "Position"}, inplace = True)
|
| 1151 |
-
flex_file['Floor'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median']*.25) + (flex_file['Rush Yards']*.01),flex_file['Median']*.25)
|
| 1152 |
-
flex_file['Ceiling'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median'] + flex_file['Floor']) + (flex_file['Rush Yards']*.01), flex_file['Median'] + flex_file['Floor'] + flex_file['Receptions'])
|
| 1153 |
-
flex_file['STD'] = (flex_file['Median']/4) + flex_file['Receptions']
|
| 1154 |
-
flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
|
| 1155 |
-
hold_file = flex_file
|
| 1156 |
-
overall_file = flex_file
|
| 1157 |
-
salary_file = flex_file
|
| 1158 |
-
|
| 1159 |
-
overall_players = overall_file[['Player']]
|
| 1160 |
-
|
| 1161 |
-
for x in range(0,total_sims):
|
| 1162 |
-
salary_file[x] = salary_file['Salary']
|
| 1163 |
-
|
| 1164 |
-
salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
| 1165 |
-
salary_file.astype('int').dtypes
|
| 1166 |
-
|
| 1167 |
-
salary_file = salary_file.div(1000)
|
| 1168 |
-
|
| 1169 |
-
for x in range(0,total_sims):
|
| 1170 |
-
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
| 1171 |
-
|
| 1172 |
-
overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
| 1173 |
-
overall_file.astype('int').dtypes
|
| 1174 |
-
|
| 1175 |
-
players_only = hold_file[['Player']]
|
| 1176 |
-
raw_lineups_file = players_only
|
| 1177 |
-
|
| 1178 |
-
for x in range(0,total_sims):
|
| 1179 |
-
maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))}
|
| 1180 |
-
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
|
| 1181 |
-
players_only[x] = raw_lineups_file[x].rank(ascending=False)
|
| 1182 |
-
|
| 1183 |
-
players_only=players_only.drop(['Player'], axis=1)
|
| 1184 |
-
players_only.astype('int').dtypes
|
| 1185 |
-
|
| 1186 |
-
salary_2x_check = (overall_file - (salary_file*2))
|
| 1187 |
-
salary_3x_check = (overall_file - (salary_file*3))
|
| 1188 |
-
salary_4x_check = (overall_file - (salary_file*4))
|
| 1189 |
-
|
| 1190 |
-
players_only['Average_Rank'] = players_only.mean(axis=1)
|
| 1191 |
-
players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
|
| 1192 |
-
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
|
| 1193 |
-
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
|
| 1194 |
-
players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
|
| 1195 |
-
players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
|
| 1196 |
-
players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
|
| 1197 |
-
players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
|
| 1198 |
-
|
| 1199 |
-
players_only['Player'] = hold_file[['Player']]
|
| 1200 |
-
|
| 1201 |
-
final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
|
| 1202 |
-
|
| 1203 |
-
final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
|
| 1204 |
-
final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
|
| 1205 |
-
final_Proj['Own'] = final_Proj['Player'].map(own_dict)
|
| 1206 |
-
final_Proj['Team'] = final_Proj['Player'].map(team_dict)
|
| 1207 |
-
final_Proj['Opp'] = final_Proj['Player'].map(opp_dict)
|
| 1208 |
-
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own']]
|
| 1209 |
-
final_Proj['Projection Rank'] = final_Proj.Median.rank(pct = True)
|
| 1210 |
-
final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
|
| 1211 |
-
final_Proj['LevX'] = 0
|
| 1212 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'QB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
| 1213 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'TE', final_Proj[['Projection Rank', '2x%']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
| 1214 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'RB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['20+%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
| 1215 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'WR', final_Proj[['Projection Rank', 'Top_10_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
| 1216 |
-
final_Proj['CPT_Own'] = final_Proj['Own'] / 4
|
| 1217 |
-
|
| 1218 |
-
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'CPT_Own', 'LevX']]
|
| 1219 |
-
final_Proj = final_Proj.set_index('Player')
|
| 1220 |
-
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
|
| 1221 |
-
|
| 1222 |
-
with hold_container:
|
| 1223 |
-
hold_container = st.empty()
|
| 1224 |
-
final_Proj = final_Proj
|
| 1225 |
-
st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
|
| 1226 |
-
|
| 1227 |
-
st.download_button(
|
| 1228 |
-
label="Export Tables",
|
| 1229 |
-
data=convert_df_to_csv(final_Proj),
|
| 1230 |
-
file_name='Custom_NFL_te_export.csv',
|
| 1231 |
-
mime='text/csv',
|
| 1232 |
-
)
|
|
|
|
| 33 |
gc = gspread.service_account_from_dict(credentials)
|
| 34 |
return gc
|
| 35 |
|
| 36 |
+
gspreadcon = init_conn()
|
| 37 |
|
| 38 |
game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}',
|
| 39 |
'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'}
|
|
|
|
| 41 |
player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}',
|
| 42 |
'4x%': '{:.2%}','GPP%': '{:.2%}'}
|
| 43 |
|
| 44 |
+
all_dk_player_projections = 'https://docs.google.com/spreadsheets/d/1NmKa-b-2D3w7rRxwMPSchh31GKfJ1XcDI2GU8rXWnHI/edit#gid=1401252991'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
@st.cache_resource(ttl=600)
|
| 47 |
def player_stat_table():
|
| 48 |
+
sh = gspreadcon.open_by_url(all_dk_player_projections)
|
| 49 |
+
worksheet = sh.worksheet('Player_Level_ROO')
|
| 50 |
+
player_frame = pd.DataFrame(worksheet.get_all_records())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
+
sh = gspreadcon.open_by_url(all_dk_player_projections)
|
| 53 |
+
worksheet = sh.worksheet('Player_Lines_ROO')
|
| 54 |
+
line_frame = pd.DataFrame(worksheet.get_all_records())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
+
sh = gspreadcon.open_by_url(all_dk_player_projections)
|
| 57 |
+
worksheet = sh.worksheet('Player_PowerPlay_ROO')
|
| 58 |
+
pp_frame = pd.DataFrame(worksheet.get_all_records())
|
| 59 |
+
|
| 60 |
+
sh = gspreadcon.open_by_url(all_dk_player_projections)
|
| 61 |
+
worksheet = sh.worksheet('Timestamp')
|
| 62 |
+
pp_frame = pd.DataFrame(worksheet.acell('A1').value)
|
|
|
|
| 63 |
|
| 64 |
+
return player_frame, line_frame, pp_frame, timestamp
|
| 65 |
|
| 66 |
@st.cache_data
|
| 67 |
def convert_df_to_csv(df):
|
| 68 |
return df.to_csv().encode('utf-8')
|
| 69 |
|
| 70 |
+
player_frame, line_frame, pp_frame, timestamp = player_stat_table()
|
| 71 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
+
tab1, tab2, tab3 = st.tabs(["Player Range of Outcomes", "Line Combo Range of Outcomes", "Power Play Range of Outcomes"])
|
| 74 |
|
| 75 |
with tab1:
|
| 76 |
+
col1, col2 = st.columns([1, 7])
|
| 77 |
with col1:
|
| 78 |
st.info(t_stamp)
|
| 79 |
if st.button("Load/Reset Data", key='reset1'):
|
| 80 |
st.cache_data.clear()
|
| 81 |
+
player_frame, line_frame, pp_frame, timestamp = player_stat_table()
|
| 82 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
site_var1 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var1')
|
| 84 |
+
split_var1 = st.radio("Would you like to view the whole slate or just specific games?", ('Full Slate Run', 'Specific Games'), key='split_var1')
|
| 85 |
+
if split_var1 == 'Specific Games':
|
| 86 |
+
team_var1 = st.multiselect('Which teams would you like to include in the ROO?', options = player_frame['Team'].unique(), key='team_var1')
|
| 87 |
+
elif split_var1 == 'Full Slate Run':
|
| 88 |
+
team_var1 = player_frame.Team.values.tolist()
|
| 89 |
+
pos_split1 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split1')
|
| 90 |
+
if pos_split1 == 'Specific Positions':
|
| 91 |
+
pos_var1 = st.multiselect('What Positions would you like to view?', options = ['QB', 'RB', 'WR', 'TE'])
|
| 92 |
+
elif pos_split1 == 'All Positions':
|
| 93 |
+
pos_var1 = 'All'
|
| 94 |
+
sal_var1 = st.slider("Is there a certain price range you want to view?", 2000, 10000, (2000, 10000), key='sal_var1')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
with col2:
|
| 97 |
+
final_Proj = player_frame[player_frame['Site'] == str(site_var1)]
|
| 98 |
+
final_Proj = final_Proj[player_frame['Team'].isin(team_var1)]
|
| 99 |
+
final_Proj = final_Proj[final_Proj['Salary'] >= sal_var1[0]]
|
| 100 |
+
final_Proj = final_Proj[final_Proj['Salary'] <= sal_var1[1]]
|
| 101 |
+
if pos_var1 != 'All':
|
| 102 |
+
final_Proj = final_Proj[final_Proj['Position'].str.contains('|'.join(pos_var1))]
|
| 103 |
+
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'CPT_Own', 'LevX']]
|
| 104 |
+
final_Proj = final_Proj.set_index('Player')
|
| 105 |
+
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
|
| 106 |
+
st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
| 107 |
+
st.download_button(
|
| 108 |
+
label="Export Tables",
|
| 109 |
+
data=convert_df_to_csv(final_Proj),
|
| 110 |
+
file_name='NHL_player_export.csv',
|
| 111 |
+
mime='text/csv',
|
| 112 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
with tab2:
|
| 115 |
+
col1, col2 = st.columns([1, 7])
|
| 116 |
with col1:
|
| 117 |
st.info(t_stamp)
|
| 118 |
if st.button("Load/Reset Data", key='reset2'):
|
| 119 |
st.cache_data.clear()
|
| 120 |
+
player_frame, line_frame, pp_frame, timestamp = player_stat_table()
|
| 121 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
site_var2 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var2')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
with col2:
|
| 125 |
+
final_line_combos = line_frame[line_frame['Site'] == str(site_var2)]
|
| 126 |
+
st.dataframe(final_line_combos.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
| 127 |
+
st.download_button(
|
| 128 |
+
label="Export Tables",
|
| 129 |
+
data=convert_df_to_csv(final_Proj),
|
| 130 |
+
file_name='NHL_linecombos_export.csv',
|
| 131 |
+
mime='text/csv',
|
| 132 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
with tab3:
|
| 135 |
+
col1, col2 = st.columns([1, 7])
|
| 136 |
with col1:
|
| 137 |
st.info(t_stamp)
|
| 138 |
if st.button("Load/Reset Data", key='reset3'):
|
| 139 |
st.cache_data.clear()
|
| 140 |
+
player_frame, line_frame, pp_frame, timestamp = player_stat_table()
|
| 141 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
site_var3 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var3')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
with col2:
|
| 145 |
+
final_pp_combos = pp_frame[pp_frame['Site'] == str(site_var3)]
|
| 146 |
+
st.dataframe(final_pp_combos.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
| 147 |
+
st.download_button(
|
| 148 |
+
label="Export Tables",
|
| 149 |
+
data=convert_df_to_csv(final_Proj),
|
| 150 |
+
file_name='NHL_powerplay_export.csv',
|
| 151 |
+
mime='text/csv',
|
| 152 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|