Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -34,6 +34,11 @@ def init_conn():
|
|
| 34 |
gspreadcon = init_conn()
|
| 35 |
|
| 36 |
master_hold = 'https://docs.google.com/spreadsheets/d/1NmKa-b-2D3w7rRxwMPSchh31GKfJ1XcDI2GU8rXWnHI/edit#gid=195454038'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
@st.cache_resource(ttl=300)
|
| 39 |
def pull_baselines():
|
|
@@ -48,24 +53,29 @@ def pull_baselines():
|
|
| 48 |
prop_table = prop_display[['Player', 'Position', 'Team', 'Opp', 'Team_Total', 'Player SOG', 'Player Goals', 'Player Assists',
|
| 49 |
'Player TP', 'Player Blocks', 'Player Saves']]
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
worksheet = sh.worksheet('Timestamp')
|
| 52 |
timestamp = worksheet.acell('A1').value
|
| 53 |
|
| 54 |
-
return prop_table, timestamp
|
| 55 |
|
| 56 |
def convert_df_to_csv(df):
|
| 57 |
return df.to_csv().encode('utf-8')
|
| 58 |
|
| 59 |
-
prop_display, timestamp = pull_baselines()
|
| 60 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
| 61 |
|
| 62 |
-
tab1, tab2 = st.tabs(["Player Stat Table", '
|
| 63 |
|
| 64 |
with tab1:
|
| 65 |
st.info(t_stamp)
|
| 66 |
if st.button("Reset Data", key='reset1'):
|
| 67 |
st.cache_data.clear()
|
| 68 |
-
prop_display, timestamp = pull_baselines()
|
| 69 |
prop_frame = prop_display
|
| 70 |
st.dataframe(prop_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
| 71 |
|
|
@@ -78,4 +88,264 @@ with tab1:
|
|
| 78 |
)
|
| 79 |
|
| 80 |
with tab2:
|
| 81 |
-
st.info(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
gspreadcon = init_conn()
|
| 35 |
|
| 36 |
master_hold = 'https://docs.google.com/spreadsheets/d/1NmKa-b-2D3w7rRxwMPSchh31GKfJ1XcDI2GU8rXWnHI/edit#gid=195454038'
|
| 37 |
+
prop_table_options = ['SOG', 'points', 'blocked_shots', 'assists']
|
| 38 |
+
prop_format = {'L5 Success': '{:.2%}', 'L10_Success': '{:.2%}', 'L20_success': '{:.2%}', 'Matchup Boost': '{:.2%}', 'Trending Over': '{:.2%}', 'Trending Under': '{:.2%}',
|
| 39 |
+
'Implied Over': '{:.2%}', 'Implied Under': '{:.2%}', 'Over Edge': '{:.2%}', 'Under Edge': '{:.2%}'}
|
| 40 |
+
all_sim_vars = ['SOG', 'points', 'blocked_shots', 'assists']
|
| 41 |
+
sim_all_hold = pd.DataFrame(columns=['Player', 'Prop type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge'])
|
| 42 |
|
| 43 |
@st.cache_resource(ttl=300)
|
| 44 |
def pull_baselines():
|
|
|
|
| 53 |
prop_table = prop_display[['Player', 'Position', 'Team', 'Opp', 'Team_Total', 'Player SOG', 'Player Goals', 'Player Assists',
|
| 54 |
'Player TP', 'Player Blocks', 'Player Saves']]
|
| 55 |
|
| 56 |
+
worksheet = sh.worksheet('prop_trends')
|
| 57 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
| 58 |
+
raw_display.replace('', np.nan, inplace=True)
|
| 59 |
+
prop_trends = raw_display.dropna(subset='Player')
|
| 60 |
+
|
| 61 |
worksheet = sh.worksheet('Timestamp')
|
| 62 |
timestamp = worksheet.acell('A1').value
|
| 63 |
|
| 64 |
+
return prop_table, prop_trends, timestamp
|
| 65 |
|
| 66 |
def convert_df_to_csv(df):
|
| 67 |
return df.to_csv().encode('utf-8')
|
| 68 |
|
| 69 |
+
prop_display, prop_trends, timestamp = pull_baselines()
|
| 70 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
| 71 |
|
| 72 |
+
tab1, tab2, tab3 = st.tabs(["Player Stat Table", 'Prop Trend Table', 'Stat Specific Simulations'])
|
| 73 |
|
| 74 |
with tab1:
|
| 75 |
st.info(t_stamp)
|
| 76 |
if st.button("Reset Data", key='reset1'):
|
| 77 |
st.cache_data.clear()
|
| 78 |
+
prop_display, prop_trends, timestamp = pull_baselines()
|
| 79 |
prop_frame = prop_display
|
| 80 |
st.dataframe(prop_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
| 81 |
|
|
|
|
| 88 |
)
|
| 89 |
|
| 90 |
with tab2:
|
| 91 |
+
st.info(t_stamp)
|
| 92 |
+
if st.button("Reset Data", key='reset3'):
|
| 93 |
+
st.cache_data.clear()
|
| 94 |
+
prop_display, prop_trends, timestamp = pull_baselines()
|
| 95 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
| 96 |
+
split_var5 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var5')
|
| 97 |
+
if split_var5 == 'Specific Teams':
|
| 98 |
+
team_var5 = st.multiselect('Which teams would you like to include in the tables?', options = prop_trends['Team'].unique(), key='team_var5')
|
| 99 |
+
elif split_var5 == 'All':
|
| 100 |
+
team_var5 = prop_trends.Team.values.tolist()
|
| 101 |
+
prop_type_var2 = st.selectbox('Select type of prop are you wanting to view', options = prop_table_options)
|
| 102 |
+
prop_frame_disp = prop_trends[prop_trends['Team'].isin(team_var5)]
|
| 103 |
+
prop_frame_disp = prop_frame_disp[prop_frame_disp['prop_type'] == prop_type_var2]
|
| 104 |
+
prop_frame_disp = prop_frame_disp.set_index('Player')
|
| 105 |
+
prop_frame_disp = prop_frame_disp.sort_values(by='Trending Over', ascending=False)
|
| 106 |
+
st.dataframe(prop_frame_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(prop_format, precision=2), use_container_width = True)
|
| 107 |
+
st.download_button(
|
| 108 |
+
label="Export Prop Trends Model",
|
| 109 |
+
data=convert_df_to_csv(prop_frame),
|
| 110 |
+
file_name='NHL_prop_trends_export.csv',
|
| 111 |
+
mime='text/csv',
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
with tab3:
|
| 115 |
+
st.info(t_stamp)
|
| 116 |
+
st.info('The Over and Under percentages are a composite percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
|
| 117 |
+
if st.button("Reset Data/Load Data", key='reset5'):
|
| 118 |
+
st.cache_data.clear()
|
| 119 |
+
prop_display, prop_trends, timestamp = pull_baselines()
|
| 120 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
| 121 |
+
col1, col2 = st.columns([1, 5])
|
| 122 |
+
|
| 123 |
+
with col2:
|
| 124 |
+
df_hold_container = st.empty()
|
| 125 |
+
info_hold_container = st.empty()
|
| 126 |
+
plot_hold_container = st.empty()
|
| 127 |
+
export_container = st.empty()
|
| 128 |
+
|
| 129 |
+
with col1:
|
| 130 |
+
prop_type_var = st.selectbox('Select prop category', options = ['All Props', 'SOG', 'points', 'blocked_shots', 'assists'])
|
| 131 |
+
if prop_type_var == 'All Props':
|
| 132 |
+
st.info('please note that the All Props run can take some time, you will see progress as tables show up in the sim area to the right')
|
| 133 |
+
|
| 134 |
+
if st.button('Simulate Prop Category'):
|
| 135 |
+
with col2:
|
| 136 |
+
with df_hold_container.container():
|
| 137 |
+
if prop_type_var == 'All Props':
|
| 138 |
+
for prop in all_sim_vars:
|
| 139 |
+
|
| 140 |
+
prop_df = prop_trends[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
| 141 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == prop]
|
| 142 |
+
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
| 143 |
+
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
| 144 |
+
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
| 145 |
+
st.table(prop_df)
|
| 146 |
+
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
|
| 147 |
+
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
|
| 148 |
+
df = pd.merge(prop_display, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
| 149 |
+
|
| 150 |
+
prop_dict = dict(zip(df.Player, df.Prop))
|
| 151 |
+
over_dict = dict(zip(df.Player, df.Over))
|
| 152 |
+
under_dict = dict(zip(df.Player, df.Under))
|
| 153 |
+
|
| 154 |
+
total_sims = 5000
|
| 155 |
+
|
| 156 |
+
df.replace("", 0, inplace=True)
|
| 157 |
+
|
| 158 |
+
if prop == 'points':
|
| 159 |
+
df['Median'] = df['Player TP']
|
| 160 |
+
elif prop == 'SOG':
|
| 161 |
+
df['Median'] = df['Player SOG']
|
| 162 |
+
elif prop == 'assists':
|
| 163 |
+
df['Median'] = df['Player Assists']
|
| 164 |
+
elif prop == 'blocked_shots':
|
| 165 |
+
df['Median'] = df['Player Blocks']
|
| 166 |
+
|
| 167 |
+
flex_file = df
|
| 168 |
+
flex_file['Floor'] = (flex_file['Median'] * .15)
|
| 169 |
+
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * .85)
|
| 170 |
+
flex_file['STD'] = (flex_file['Median']/3)
|
| 171 |
+
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
|
| 172 |
+
flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
|
| 173 |
+
|
| 174 |
+
hold_file = flex_file
|
| 175 |
+
overall_file = flex_file
|
| 176 |
+
prop_file = flex_file
|
| 177 |
+
|
| 178 |
+
overall_players = overall_file[['Player']]
|
| 179 |
+
|
| 180 |
+
for x in range(0,total_sims):
|
| 181 |
+
prop_file[x] = prop_file['Prop']
|
| 182 |
+
|
| 183 |
+
prop_file = prop_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
| 184 |
+
|
| 185 |
+
for x in range(0,total_sims):
|
| 186 |
+
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
| 187 |
+
|
| 188 |
+
overall_file=overall_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
| 189 |
+
|
| 190 |
+
players_only = hold_file[['Player']]
|
| 191 |
+
|
| 192 |
+
player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
|
| 193 |
+
|
| 194 |
+
prop_check = (overall_file - prop_file)
|
| 195 |
+
|
| 196 |
+
players_only['Mean_Outcome'] = overall_file.mean(axis=1)
|
| 197 |
+
players_only['10%'] = overall_file.quantile(0.1, axis=1)
|
| 198 |
+
players_only['90%'] = overall_file.quantile(0.9, axis=1)
|
| 199 |
+
players_only['Over'] = prop_check[prop_check > 0].count(axis=1)/float(total_sims)
|
| 200 |
+
players_only['Imp Over'] = players_only['Player'].map(over_dict)
|
| 201 |
+
players_only['Over%'] = players_only[["Over", "Imp Over"]].mean(axis=1)
|
| 202 |
+
players_only['Under'] = prop_check[prop_check < 0].count(axis=1)/float(total_sims)
|
| 203 |
+
players_only['Imp Under'] = players_only['Player'].map(under_dict)
|
| 204 |
+
players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
|
| 205 |
+
players_only['Prop'] = players_only['Player'].map(prop_dict)
|
| 206 |
+
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
|
| 207 |
+
players_only['prop_threshold'] = .10
|
| 208 |
+
players_only = players_only.loc[players_only['Mean_Outcome'] > 0]
|
| 209 |
+
players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
|
| 210 |
+
players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
|
| 211 |
+
players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff'])
|
| 212 |
+
players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
|
| 213 |
+
players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
|
| 214 |
+
players_only['Edge'] = players_only['Bet_check']
|
| 215 |
+
players_only['Prop type'] = prop
|
| 216 |
+
|
| 217 |
+
players_only['Player'] = hold_file[['Player']]
|
| 218 |
+
|
| 219 |
+
leg_outcomes = players_only[['Player', 'Prop type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
|
| 220 |
+
|
| 221 |
+
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
|
| 222 |
+
|
| 223 |
+
final_outcomes = sim_all_hold
|
| 224 |
+
|
| 225 |
+
elif prop_type_var != 'All Props':
|
| 226 |
+
if prop_type_var == "SOG":
|
| 227 |
+
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
| 228 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'SOG']
|
| 229 |
+
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
| 230 |
+
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
| 231 |
+
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
| 232 |
+
st.table(prop_df)
|
| 233 |
+
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
|
| 234 |
+
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
|
| 235 |
+
df = pd.merge(prop_display, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
| 236 |
+
elif prop_type_var == "points":
|
| 237 |
+
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
| 238 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'points']
|
| 239 |
+
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
| 240 |
+
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
| 241 |
+
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
| 242 |
+
st.table(prop_df)
|
| 243 |
+
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
|
| 244 |
+
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
|
| 245 |
+
df = pd.merge(prop_display, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
| 246 |
+
elif prop_type_var == "assists":
|
| 247 |
+
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
| 248 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'assists']
|
| 249 |
+
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
| 250 |
+
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
| 251 |
+
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
| 252 |
+
st.table(prop_df)
|
| 253 |
+
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
|
| 254 |
+
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
|
| 255 |
+
df = pd.merge(prop_display, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
| 256 |
+
elif prop_type_var == "blocked_shots":
|
| 257 |
+
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
| 258 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'blocked_shots']
|
| 259 |
+
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
| 260 |
+
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
| 261 |
+
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
| 262 |
+
st.table(prop_df)
|
| 263 |
+
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
|
| 264 |
+
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
|
| 265 |
+
df = pd.merge(prop_display, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
| 266 |
+
|
| 267 |
+
prop_dict = dict(zip(df.Player, df.Prop))
|
| 268 |
+
over_dict = dict(zip(df.Player, df.Over))
|
| 269 |
+
under_dict = dict(zip(df.Player, df.Under))
|
| 270 |
+
|
| 271 |
+
total_sims = 5000
|
| 272 |
+
|
| 273 |
+
df.replace("", 0, inplace=True)
|
| 274 |
+
|
| 275 |
+
if prop == 'points':
|
| 276 |
+
df['Median'] = df['Player TP']
|
| 277 |
+
elif prop == 'SOG':
|
| 278 |
+
df['Median'] = df['Player SOG']
|
| 279 |
+
elif prop == 'assists':
|
| 280 |
+
df['Median'] = df['Player Assists']
|
| 281 |
+
elif prop == 'blocked_shots':
|
| 282 |
+
df['Median'] = df['Player Blocks']
|
| 283 |
+
|
| 284 |
+
flex_file = df
|
| 285 |
+
flex_file['Floor'] = (flex_file['Median'] * .15)
|
| 286 |
+
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * .85)
|
| 287 |
+
flex_file['STD'] = (flex_file['Median']/3)
|
| 288 |
+
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
|
| 289 |
+
flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
|
| 290 |
+
|
| 291 |
+
hold_file = flex_file
|
| 292 |
+
overall_file = flex_file
|
| 293 |
+
prop_file = flex_file
|
| 294 |
+
|
| 295 |
+
overall_players = overall_file[['Player']]
|
| 296 |
+
|
| 297 |
+
for x in range(0,total_sims):
|
| 298 |
+
prop_file[x] = prop_file['Prop']
|
| 299 |
+
|
| 300 |
+
prop_file = prop_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
| 301 |
+
|
| 302 |
+
for x in range(0,total_sims):
|
| 303 |
+
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
| 304 |
+
|
| 305 |
+
overall_file=overall_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
| 306 |
+
|
| 307 |
+
players_only = hold_file[['Player']]
|
| 308 |
+
|
| 309 |
+
player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
|
| 310 |
+
|
| 311 |
+
prop_check = (overall_file - prop_file)
|
| 312 |
+
|
| 313 |
+
players_only['Mean_Outcome'] = overall_file.mean(axis=1)
|
| 314 |
+
players_only['10%'] = overall_file.quantile(0.1, axis=1)
|
| 315 |
+
players_only['90%'] = overall_file.quantile(0.9, axis=1)
|
| 316 |
+
players_only['Over'] = prop_check[prop_check > 0].count(axis=1)/float(total_sims)
|
| 317 |
+
players_only['Imp Over'] = players_only['Player'].map(over_dict)
|
| 318 |
+
players_only['Over%'] = players_only[["Over", "Imp Over"]].mean(axis=1)
|
| 319 |
+
players_only['Under'] = prop_check[prop_check < 0].count(axis=1)/float(total_sims)
|
| 320 |
+
players_only['Imp Under'] = players_only['Player'].map(under_dict)
|
| 321 |
+
players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
|
| 322 |
+
players_only['Prop'] = players_only['Player'].map(prop_dict)
|
| 323 |
+
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
|
| 324 |
+
players_only['prop_threshold'] = .10
|
| 325 |
+
players_only = players_only.loc[players_only['Mean_Outcome'] > 0]
|
| 326 |
+
players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
|
| 327 |
+
players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
|
| 328 |
+
players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff'])
|
| 329 |
+
players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
|
| 330 |
+
players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
|
| 331 |
+
players_only['Edge'] = players_only['Bet_check']
|
| 332 |
+
|
| 333 |
+
players_only['Player'] = hold_file[['Player']]
|
| 334 |
+
|
| 335 |
+
final_outcomes = players_only[['Player', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
|
| 336 |
+
|
| 337 |
+
final_outcomes = final_outcomes[final_outcomes['Prop'] > 0]
|
| 338 |
+
final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False)
|
| 339 |
+
|
| 340 |
+
with df_hold_container:
|
| 341 |
+
df_hold_container = st.empty()
|
| 342 |
+
st.dataframe(final_outcomes.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
| 343 |
+
with export_container:
|
| 344 |
+
export_container = st.empty()
|
| 345 |
+
st.download_button(
|
| 346 |
+
label="Export Projections",
|
| 347 |
+
data=convert_df_to_csv(final_outcomes),
|
| 348 |
+
file_name='Nba_prop_proj.csv',
|
| 349 |
+
mime='text/csv',
|
| 350 |
+
key='prop_proj',
|
| 351 |
+
)
|