Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -43,7 +43,7 @@ wr_te_util = {'Routes%': '{:.2%}','Targets%': '{:.2%}', 'Air Yards%': '{:.2%}',
|
|
| 43 |
all_dk_player_projections = 'https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=179416653'
|
| 44 |
|
| 45 |
@st.cache_resource(ttl = 300)
|
| 46 |
-
def
|
| 47 |
sh = gc.open_by_url(all_dk_player_projections)
|
| 48 |
worksheet = sh.worksheet('RB_Util')
|
| 49 |
raw_display = pd.DataFrame(worksheet.get_all_records())
|
|
@@ -56,7 +56,7 @@ def rb_util_season():
|
|
| 56 |
return raw_display
|
| 57 |
|
| 58 |
@st.cache_resource(ttl = 300)
|
| 59 |
-
def
|
| 60 |
sh = gc.open_by_url(all_dk_player_projections)
|
| 61 |
worksheet = sh.worksheet('WR_TE_Util')
|
| 62 |
raw_display = pd.DataFrame(worksheet.get_all_records())
|
|
@@ -68,6 +68,32 @@ def wr_te_util_season():
|
|
| 68 |
raw_display = raw_display.sort_values(by='Utilization Rank', ascending=True)
|
| 69 |
return raw_display
|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
@st.cache_resource(ttl = 300)
|
| 72 |
def macro_pull():
|
| 73 |
sh = gc.open_by_url(all_dk_player_projections)
|
|
@@ -80,9 +106,10 @@ def macro_pull():
|
|
| 80 |
@st.cache_data
|
| 81 |
def convert_df_to_csv(df):
|
| 82 |
return df.to_csv().encode('utf-8')
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
|
|
|
| 86 |
macro_data = macro_pull()
|
| 87 |
pos_list = ['RB', 'WR', 'TE']
|
| 88 |
|
|
@@ -94,7 +121,7 @@ with col1:
|
|
| 94 |
rb_search = rb_util_season()
|
| 95 |
wr_search = wr_te_util_season()
|
| 96 |
macro_data = macro_pull()
|
| 97 |
-
stat_type_var1 = st.radio("What table are you loading?", ('Macro Table', 'RB Usage', 'WR/TE Usage'), key='stat_type_var1')
|
| 98 |
split_var1 = st.radio("Are you running the the whole league or certain teams?", ('All Teams', 'Specific Teams'), key='split_var1')
|
| 99 |
pos_split1 = st.radio("Are you viewing all positions or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split1')
|
| 100 |
if pos_split1 == 'Specific Positions':
|
|
@@ -108,26 +135,38 @@ with col1:
|
|
| 108 |
if stat_type_var1 == 'Macro Table':
|
| 109 |
table_instance = macro_data
|
| 110 |
table_instance = table_instance.set_index('team')
|
| 111 |
-
elif stat_type_var1 == 'RB Usage':
|
| 112 |
table_instance = rb_search
|
| 113 |
table_instance = table_instance[table_instance['Team-Season'].isin(team_var1)]
|
| 114 |
table_instance = table_instance[table_instance['Position'].isin(pos_var1)]
|
| 115 |
-
elif stat_type_var1 == 'WR/TE Usage':
|
| 116 |
table_instance = wr_search
|
| 117 |
table_instance = table_instance[table_instance['Team-Season'].isin(team_var1)]
|
| 118 |
table_instance = table_instance[table_instance['Position'].isin(pos_var1)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
with col2:
|
| 121 |
if stat_type_var1 == 'Macro Table':
|
| 122 |
st.dataframe(table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').format(game_format, precision=2), use_container_width = True)
|
| 123 |
-
elif stat_type_var1 == 'RB Usage':
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
st.dataframe(table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').background_gradient(cmap='RdYlGn_r', subset = 'Utilization Rank').format(rb_util, precision=2), use_container_width = True)
|
| 125 |
-
elif stat_type_var1 == 'WR/TE Usage':
|
| 126 |
st.dataframe(table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').background_gradient(cmap='RdYlGn_r', subset = 'Utilization Rank').format(wr_te_util, precision=2), use_container_width = True)
|
| 127 |
|
| 128 |
st.download_button(
|
| 129 |
label="Export Tables",
|
| 130 |
data=convert_df_to_csv(table_instance),
|
| 131 |
-
file_name='
|
| 132 |
mime='text/csv',
|
| 133 |
)
|
|
|
|
| 43 |
all_dk_player_projections = 'https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=179416653'
|
| 44 |
|
| 45 |
@st.cache_resource(ttl = 300)
|
| 46 |
+
def rb_util_weekly():
|
| 47 |
sh = gc.open_by_url(all_dk_player_projections)
|
| 48 |
worksheet = sh.worksheet('RB_Util')
|
| 49 |
raw_display = pd.DataFrame(worksheet.get_all_records())
|
|
|
|
| 56 |
return raw_display
|
| 57 |
|
| 58 |
@st.cache_resource(ttl = 300)
|
| 59 |
+
def wr_te_util_weekly():
|
| 60 |
sh = gc.open_by_url(all_dk_player_projections)
|
| 61 |
worksheet = sh.worksheet('WR_TE_Util')
|
| 62 |
raw_display = pd.DataFrame(worksheet.get_all_records())
|
|
|
|
| 68 |
raw_display = raw_display.sort_values(by='Utilization Rank', ascending=True)
|
| 69 |
return raw_display
|
| 70 |
|
| 71 |
+
@st.cache_resource(ttl = 300)
|
| 72 |
+
def rb_util_season():
|
| 73 |
+
sh = gc.open_by_url(all_dk_player_projections)
|
| 74 |
+
worksheet = sh.worksheet('RB_Util_Season')
|
| 75 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
| 76 |
+
raw_display = raw_display.replace('', np.nan)
|
| 77 |
+
raw_display = raw_display[['player_name', 'position', 'team_season', 'player_snaps_per', 'rush_attempts_per', 'routes_per', 'targets_per',
|
| 78 |
+
'tprr', 'player_SDD_snaps_per', 'inside_five_rush_per', 'player_LDD_snaps_per', 'two_min_per', 'exPPR', 'ppr_fantasy', 'UR_Rank']]
|
| 79 |
+
raw_display = raw_display.set_axis(['Player', 'Position', 'Week', 'Team-Season', 'Player Snaps%', 'Rush Att%', 'Routes%', 'Targets%',
|
| 80 |
+
'TPRR', 'SDD Snaps%', 'i5 Rush%', 'LDD Snaps%', '2-min%', 'Expected PPR', 'PPR', 'Utilization Rank'], axis='columns')
|
| 81 |
+
raw_display = raw_display.sort_values(by='Utilization Rank', ascending=True)
|
| 82 |
+
return raw_display
|
| 83 |
+
|
| 84 |
+
@st.cache_resource(ttl = 300)
|
| 85 |
+
def wr_te_util_season():
|
| 86 |
+
sh = gc.open_by_url(all_dk_player_projections)
|
| 87 |
+
worksheet = sh.worksheet('WR_TE_Util_Season')
|
| 88 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
| 89 |
+
raw_display = raw_display.replace('', np.nan)
|
| 90 |
+
raw_display = raw_display[['player_name', 'position', 'team_season', 'routes_per', 'targets_per', 'tprr' , 'adot', 'air_yards_per',
|
| 91 |
+
'ayprr', 'endzone_targets_per', 'third_fourth_per', 'third_fourth_target_per', 'play_action_targets_per', 'exPPR', 'ppr_fantasy', 'UR_Rank']]
|
| 92 |
+
raw_display = raw_display.set_axis(['Player', 'Position', 'Week', 'Team-Season', 'Routes%', 'Targets%', 'TPRR' , 'ADOT', 'Air Yards%',
|
| 93 |
+
'AYPRR', 'Endzone Targets%', 'Third/Fourth%', 'Third/Fourth Targets%', 'Play Action Targets%', 'Expected PPR', 'PPR', 'Utilization Rank'], axis='columns')
|
| 94 |
+
raw_display = raw_display.sort_values(by='Utilization Rank', ascending=True)
|
| 95 |
+
return raw_display
|
| 96 |
+
|
| 97 |
@st.cache_resource(ttl = 300)
|
| 98 |
def macro_pull():
|
| 99 |
sh = gc.open_by_url(all_dk_player_projections)
|
|
|
|
| 106 |
@st.cache_data
|
| 107 |
def convert_df_to_csv(df):
|
| 108 |
return df.to_csv().encode('utf-8')
|
| 109 |
+
rb_search = rb_util_weekly()
|
| 110 |
+
wr_search = wr_te_util_weekly()
|
| 111 |
+
rb_season = rb_util_season()
|
| 112 |
+
wr_season = wr_te_util_season()
|
| 113 |
macro_data = macro_pull()
|
| 114 |
pos_list = ['RB', 'WR', 'TE']
|
| 115 |
|
|
|
|
| 121 |
rb_search = rb_util_season()
|
| 122 |
wr_search = wr_te_util_season()
|
| 123 |
macro_data = macro_pull()
|
| 124 |
+
stat_type_var1 = st.radio("What table are you loading?", ('Macro Table', 'RB Usage (Weekly)', 'WR/TE Usage (Weekly)', 'RB Usage (Season)', 'WR/TE Usage (Season)'), key='stat_type_var1')
|
| 125 |
split_var1 = st.radio("Are you running the the whole league or certain teams?", ('All Teams', 'Specific Teams'), key='split_var1')
|
| 126 |
pos_split1 = st.radio("Are you viewing all positions or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split1')
|
| 127 |
if pos_split1 == 'Specific Positions':
|
|
|
|
| 135 |
if stat_type_var1 == 'Macro Table':
|
| 136 |
table_instance = macro_data
|
| 137 |
table_instance = table_instance.set_index('team')
|
| 138 |
+
elif stat_type_var1 == 'RB Usage (Weekly)':
|
| 139 |
table_instance = rb_search
|
| 140 |
table_instance = table_instance[table_instance['Team-Season'].isin(team_var1)]
|
| 141 |
table_instance = table_instance[table_instance['Position'].isin(pos_var1)]
|
| 142 |
+
elif stat_type_var1 == 'WR/TE Usage (Weekly)':
|
| 143 |
table_instance = wr_search
|
| 144 |
table_instance = table_instance[table_instance['Team-Season'].isin(team_var1)]
|
| 145 |
table_instance = table_instance[table_instance['Position'].isin(pos_var1)]
|
| 146 |
+
elif stat_type_var1 == 'RB Usage (Season)':
|
| 147 |
+
table_instance = rb_season
|
| 148 |
+
table_instance = table_instance[table_instance['Team-Season'].isin(team_var1)]
|
| 149 |
+
table_instance = table_instance[table_instance['Position'].isin(pos_var1)]
|
| 150 |
+
elif stat_type_var1 == 'WR/TE Usage (Season)':
|
| 151 |
+
table_instance = wr_season
|
| 152 |
+
table_instance = table_instance[table_instance['Team-Season'].isin(team_var1)]
|
| 153 |
+
table_instance = table_instance[table_instance['Position'].isin(pos_var1)]
|
| 154 |
|
| 155 |
with col2:
|
| 156 |
if stat_type_var1 == 'Macro Table':
|
| 157 |
st.dataframe(table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').format(game_format, precision=2), use_container_width = True)
|
| 158 |
+
elif stat_type_var1 == 'RB Usage (Weekly)':
|
| 159 |
+
st.dataframe(table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').background_gradient(cmap='RdYlGn_r', subset = 'Utilization Rank').format(rb_util, precision=2), use_container_width = True)
|
| 160 |
+
elif stat_type_var1 == 'WR/TE Usage (Weekly)':
|
| 161 |
+
st.dataframe(table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').background_gradient(cmap='RdYlGn_r', subset = 'Utilization Rank').format(wr_te_util, precision=2), use_container_width = True)
|
| 162 |
+
elif stat_type_var1 == 'RB Usage (Season)':
|
| 163 |
st.dataframe(table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').background_gradient(cmap='RdYlGn_r', subset = 'Utilization Rank').format(rb_util, precision=2), use_container_width = True)
|
| 164 |
+
elif stat_type_var1 == 'WR/TE Usage (Season)':
|
| 165 |
st.dataframe(table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').background_gradient(cmap='RdYlGn_r', subset = 'Utilization Rank').format(wr_te_util, precision=2), use_container_width = True)
|
| 166 |
|
| 167 |
st.download_button(
|
| 168 |
label="Export Tables",
|
| 169 |
data=convert_df_to_csv(table_instance),
|
| 170 |
+
file_name='NFL_Research_export.csv',
|
| 171 |
mime='text/csv',
|
| 172 |
)
|