Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -29,38 +29,37 @@ def init_conn(): | |
| 29 | 
             
                        "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
         | 
| 30 | 
             
                      }
         | 
| 31 |  | 
| 32 | 
            -
                       | 
| 33 | 
            -
                       | 
|  | |
| 34 |  | 
| 35 | 
            -
             | 
| 36 |  | 
| 37 | 
             
            freq_format = {'Proj Own': '{:.2%}', 'Exposure': '{:.2%}', 'Edge': '{:.2%}'}
         | 
| 38 |  | 
| 39 | 
             
            @st.cache_resource(ttl = 300)
         | 
| 40 | 
             
            def load_dk_player_projections():
         | 
| 41 | 
            -
                sh =  | 
| 42 | 
             
                worksheet = sh.worksheet('DK_ROO')
         | 
| 43 | 
             
                load_display = pd.DataFrame(worksheet.get_all_records())
         | 
| 44 | 
             
                load_display.replace('', np.nan, inplace=True)
         | 
| 45 | 
             
                raw_display = load_display.dropna(subset=['Median'])
         | 
| 46 | 
            -
                del load_display
         | 
| 47 |  | 
| 48 | 
             
                return raw_display
         | 
| 49 |  | 
| 50 | 
             
            @st.cache_resource(ttl = 300)
         | 
| 51 | 
             
            def load_fd_player_projections():
         | 
| 52 | 
            -
                sh =  | 
| 53 | 
             
                worksheet = sh.worksheet('FD_ROO')
         | 
| 54 | 
             
                load_display = pd.DataFrame(worksheet.get_all_records())
         | 
| 55 | 
             
                load_display.replace('', np.nan, inplace=True)
         | 
| 56 | 
             
                raw_display = load_display.dropna(subset=['Median'])
         | 
| 57 | 
            -
                del load_display
         | 
| 58 |  | 
| 59 | 
             
                return raw_display
         | 
| 60 |  | 
| 61 | 
             
            @st.cache_resource(ttl = 300)
         | 
| 62 | 
             
            def set_export_ids():
         | 
| 63 | 
            -
                sh =  | 
| 64 | 
             
                worksheet = sh.worksheet('DK_ROO')
         | 
| 65 | 
             
                load_display = pd.DataFrame(worksheet.get_all_records())
         | 
| 66 | 
             
                load_display.replace('', np.nan, inplace=True)
         | 
| @@ -72,61 +71,104 @@ def set_export_ids(): | |
| 72 | 
             
                load_display.replace('', np.nan, inplace=True)
         | 
| 73 | 
             
                raw_display = load_display.dropna(subset=['Median'])
         | 
| 74 | 
             
                fd_ids = dict(zip(raw_display['Player'], raw_display['player_id']))
         | 
| 75 | 
            -
                
         | 
| 76 | 
            -
                del load_display
         | 
| 77 | 
            -
                del raw_display
         | 
| 78 |  | 
| 79 | 
             
                return dk_ids, fd_ids
         | 
| 80 |  | 
| 81 | 
            -
             | 
| 82 | 
            -
             | 
| 83 | 
            -
             | 
|  | |
| 84 |  | 
| 85 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 86 | 
             
                RunsVar = 1
         | 
| 87 | 
             
                seed_depth_def = seed_depth1
         | 
| 88 | 
             
                Strength_var_def = Strength_var
         | 
| 89 | 
             
                strength_grow_def = strength_grow
         | 
| 90 | 
             
                Teams_used_def = Teams_used
         | 
| 91 | 
             
                Total_Runs_def = Total_Runs
         | 
|  | |
| 92 | 
             
                while RunsVar <= seed_depth_def:
         | 
| 93 | 
             
                    if RunsVar <= 3:
         | 
| 94 | 
             
                        FieldStrength = Strength_var_def
         | 
| 95 | 
            -
                        FinalPortfolio, maps_dict = get_correlated_portfolio_for_sim(Total_Runs_def * . | 
| 96 | 
            -
                        FinalPortfolio2, maps_dict2 = get_uncorrelated_portfolio_for_sim(Total_Runs_def * . | 
| 97 | 
            -
                         | 
| 98 | 
             
                        maps_dict.update(maps_dict2)
         | 
| 99 | 
            -
                        del FinalPortfolio2
         | 
| 100 | 
            -
                        del maps_dict2
         | 
| 101 | 
             
                    elif RunsVar > 3 and RunsVar <= 4:
         | 
| 102 | 
             
                        FieldStrength += (strength_grow_def + ((30 - len(Teams_used_def)) * .001))
         | 
| 103 | 
            -
                        FinalPortfolio3, maps_dict3 = get_correlated_portfolio_for_sim(Total_Runs_def * . | 
| 104 | 
            -
                        FinalPortfolio4, maps_dict4 = get_uncorrelated_portfolio_for_sim(Total_Runs_def * . | 
| 105 | 
            -
                         | 
| 106 | 
            -
                         | 
| 107 | 
            -
                         | 
| 108 | 
             
                        maps_dict.update(maps_dict3)
         | 
| 109 | 
             
                        maps_dict.update(maps_dict4)
         | 
| 110 | 
            -
                        del FinalPortfolio3
         | 
| 111 | 
            -
                        del maps_dict3
         | 
| 112 | 
            -
                        del FinalPortfolio4
         | 
| 113 | 
            -
                        del maps_dict4
         | 
| 114 | 
             
                    elif RunsVar > 4:
         | 
| 115 | 
             
                        FieldStrength = 1
         | 
| 116 | 
            -
                         | 
| 117 | 
            -
                         | 
| 118 | 
            -
                         | 
| 119 | 
            -
                         | 
| 120 | 
            -
                         | 
| 121 | 
            -
                        maps_dict.update( | 
| 122 | 
            -
                        maps_dict.update( | 
| 123 | 
            -
                        del FinalPortfolio3
         | 
| 124 | 
            -
                        del maps_dict3
         | 
| 125 | 
            -
                        del FinalPortfolio4
         | 
| 126 | 
            -
                        del maps_dict4
         | 
| 127 | 
             
                    RunsVar += 1
         | 
| 128 | 
            -
             | 
| 129 | 
            -
                return  | 
| 130 |  | 
| 131 | 
             
            def create_stack_options(player_data, wr_var):
         | 
| 132 | 
             
                    merged_frame = pd.DataFrame(columns = ['QB', 'Player'])
         | 
| @@ -142,9 +184,6 @@ def create_stack_options(player_data, wr_var): | |
| 142 | 
             
                    merged_frame = merged_frame.reset_index()
         | 
| 143 | 
             
                    correl_dict = dict(zip(merged_frame.QB, merged_frame.Player))
         | 
| 144 |  | 
| 145 | 
            -
                    del merged_frame
         | 
| 146 | 
            -
                    del data_raw
         | 
| 147 | 
            -
                
         | 
| 148 | 
             
                    return correl_dict
         | 
| 149 |  | 
| 150 | 
             
            def create_overall_dfs(pos_players, table_name, dict_name, pos):
         | 
| @@ -154,17 +193,11 @@ def create_overall_dfs(pos_players, table_name, dict_name, pos): | |
| 154 | 
             
                    overall_table_name = table_name_raw.head(round(len(table_name_raw)))
         | 
| 155 | 
             
                    overall_table_name = overall_table_name.assign(Var = range(0,len(overall_table_name)))
         | 
| 156 | 
             
                    overall_dict_name = pd.Series(overall_table_name.Player.values, index=overall_table_name.Var).to_dict()
         | 
| 157 | 
            -
                    
         | 
| 158 | 
            -
                    del pos_players
         | 
| 159 | 
            -
                    del table_name_raw
         | 
| 160 | 
             
                elif pos != "FLEX":
         | 
| 161 | 
             
                    table_name_raw = pos_players[pos_players['Position'].str.contains(pos)].reset_index(drop=True)
         | 
| 162 | 
             
                    overall_table_name = table_name_raw.head(round(len(table_name_raw)))
         | 
| 163 | 
             
                    overall_table_name = overall_table_name.assign(Var = range(0,len(overall_table_name)))
         | 
| 164 | 
             
                    overall_dict_name = pd.Series(overall_table_name.Player.values, index=overall_table_name.Var).to_dict()
         | 
| 165 | 
            -
                    
         | 
| 166 | 
            -
                    del pos_players
         | 
| 167 | 
            -
                    del table_name_raw
         | 
| 168 |  | 
| 169 | 
             
                return overall_table_name, overall_dict_name
         | 
| 170 |  | 
| @@ -182,17 +215,20 @@ def get_overall_merged_df(): | |
| 182 |  | 
| 183 | 
             
                df_out = pd.concat(ref_dict['pos_dfs'], ignore_index=True)
         | 
| 184 |  | 
| 185 | 
            -
                return  | 
| 186 |  | 
| 187 | 
             
            def calculate_range_var(count, min_val, FieldStrength, field_growth):
         | 
| 188 | 
             
                var = round(len(count[0]) * FieldStrength)
         | 
| 189 | 
             
                var = max(var, min_val)
         | 
| 190 | 
             
                var += round(field_growth)
         | 
|  | |
| 191 | 
             
                return min(var, len(count[0]))
         | 
| 192 |  | 
| 193 | 
            -
            def create_random_portfolio(Total_Sample_Size, raw_baselines):
         | 
|  | |
|  | |
| 194 |  | 
| 195 | 
            -
                         | 
| 196 | 
             
                        max_var = len(raw_baselines[raw_baselines['Position'] == 'QB'])
         | 
| 197 |  | 
| 198 | 
             
                        field_growth_rounded = round(field_growth)
         | 
| @@ -211,9 +247,6 @@ def create_random_portfolio(Total_Sample_Size, raw_baselines): | |
| 211 | 
             
                        elif max_var > 16:
         | 
| 212 | 
             
                            ranges_dict['qb_range'] = round(max_var / 2)
         | 
| 213 | 
             
                            ranges_dict['dst_range'] = round(max_var)
         | 
| 214 | 
            -
                        # Generate unique ranges
         | 
| 215 | 
            -
                        # for key, value in ranges_dict.items():
         | 
| 216 | 
            -
                        #     ranges_dict[f"{key}_Uniques"] = list(range(0, value, 1))
         | 
| 217 |  | 
| 218 | 
             
                        # Generate random portfolios
         | 
| 219 | 
             
                        rng = np.random.default_rng()
         | 
| @@ -223,19 +256,14 @@ def create_random_portfolio(Total_Sample_Size, raw_baselines): | |
| 223 | 
             
                        all_choices = [rng.choice(ranges_dict[f"{key}_range"], size=(Total_Sample_Size, elem)) for key, elem in zip(keys, total_elements)]
         | 
| 224 | 
             
                        RandomPortfolio = pd.DataFrame(np.hstack(all_choices), columns=['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST'])
         | 
| 225 | 
             
                        RandomPortfolio['User/Field'] = 0
         | 
| 226 | 
            -
                        
         | 
| 227 | 
            -
                        del rng
         | 
| 228 | 
            -
                        del total_elements
         | 
| 229 | 
            -
                        del all_choices
         | 
| 230 | 
            -
                        del O_merge
         | 
| 231 |  | 
| 232 | 
             
                        return RandomPortfolio, maps_dict, ranges_dict, full_pos_player_dict
         | 
| 233 |  | 
| 234 | 
            -
            def get_correlated_portfolio_for_sim(Total_Sample_Size, sharp_split):
         | 
| 235 |  | 
| 236 | 
             
                sizesplit = round(Total_Sample_Size * sharp_split)
         | 
| 237 |  | 
| 238 | 
            -
                RandomPortfolio, maps_dict, ranges_dict, full_pos_player_dict = create_random_portfolio(sizesplit, raw_baselines)
         | 
| 239 | 
             
                stack_num = random.randint(1, 3)
         | 
| 240 | 
             
                stacking_dict = create_stack_options(raw_baselines, stack_num)
         | 
| 241 |  | 
| @@ -253,12 +281,6 @@ def get_correlated_portfolio_for_sim(Total_Sample_Size, sharp_split): | |
| 253 | 
             
                RandomPortfolio = RandomPortfolio[RandomPortfolio['plyr_count'] == 10].drop(columns=['plyr_list','plyr_count']).\
         | 
| 254 | 
             
                    reset_index(drop=True)
         | 
| 255 |  | 
| 256 | 
            -
                del sizesplit
         | 
| 257 | 
            -
                del full_pos_player_dict
         | 
| 258 | 
            -
                del ranges_dict
         | 
| 259 | 
            -
                del stack_num
         | 
| 260 | 
            -
                del stacking_dict    
         | 
| 261 | 
            -
                
         | 
| 262 | 
             
                RandomPortfolio['QBs'] = RandomPortfolio['QB'].map(maps_dict['Salary_map']).astype(np.int32)
         | 
| 263 | 
             
                RandomPortfolio['RB1s'] = RandomPortfolio['RB1'].map(maps_dict['Salary_map']).astype(np.int32)
         | 
| 264 | 
             
                RandomPortfolio['RB2s'] = RandomPortfolio['RB2'].map(maps_dict['Salary_map']).astype(np.int32)
         | 
| @@ -290,7 +312,6 @@ def get_correlated_portfolio_for_sim(Total_Sample_Size, sharp_split): | |
| 290 | 
             
                RandomPortfolio['DSTo'] = RandomPortfolio['DST'].map(maps_dict['Own_map']).astype(np.float16)
         | 
| 291 |  | 
| 292 | 
             
                RandomPortArray = RandomPortfolio.to_numpy()
         | 
| 293 | 
            -
                del RandomPortfolio
         | 
| 294 |  | 
| 295 | 
             
                RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,10:19].astype(int))]
         | 
| 296 | 
             
                RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,19:28].astype(np.double))]
         | 
| @@ -299,8 +320,6 @@ def get_correlated_portfolio_for_sim(Total_Sample_Size, sharp_split): | |
| 299 | 
             
                RandomPortArrayOut = np.delete(RandomPortArray, np.s_[10:37], axis=1)
         | 
| 300 | 
             
                RandomPortfolioDF = pd.DataFrame(RandomPortArrayOut, columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'User/Field', 'Salary', 'Projection', 'Own'])
         | 
| 301 | 
             
                RandomPortfolioDF = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
         | 
| 302 | 
            -
                del RandomPortArray
         | 
| 303 | 
            -
                del RandomPortArrayOut
         | 
| 304 |  | 
| 305 | 
             
                if insert_port == 1:
         | 
| 306 | 
             
                    CleanPortfolio['Salary'] = sum([CleanPortfolio['QB'].map(maps_dict['Salary_map']),
         | 
| @@ -345,17 +364,15 @@ def get_correlated_portfolio_for_sim(Total_Sample_Size, sharp_split): | |
| 345 |  | 
| 346 | 
             
                RandomPortfolio = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
         | 
| 347 |  | 
| 348 | 
            -
                del RandomPortfolioDF
         | 
| 349 | 
            -
                
         | 
| 350 | 
             
                RandomPortfolio = RandomPortfolio[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'User/Field', 'Salary', 'Projection', 'Own']]
         | 
| 351 |  | 
| 352 | 
             
                return RandomPortfolio, maps_dict
         | 
| 353 |  | 
| 354 | 
            -
            def get_uncorrelated_portfolio_for_sim(Total_Sample_Size, sharp_split):
         | 
| 355 |  | 
| 356 | 
             
                sizesplit = round(Total_Sample_Size * (1-sharp_split))
         | 
| 357 |  | 
| 358 | 
            -
                RandomPortfolio, maps_dict, ranges_dict, full_pos_player_dict = create_random_portfolio(sizesplit, raw_baselines)
         | 
| 359 |  | 
| 360 | 
             
                RandomPortfolio['QB'] = pd.Series(list(RandomPortfolio['QB'].map(qb_dict)), dtype="string[pyarrow]")
         | 
| 361 | 
             
                RandomPortfolio['RB1'] = pd.Series(list(RandomPortfolio['RB1'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
         | 
| @@ -371,10 +388,6 @@ def get_uncorrelated_portfolio_for_sim(Total_Sample_Size, sharp_split): | |
| 371 | 
             
                RandomPortfolio = RandomPortfolio[RandomPortfolio['plyr_count'] == 10].drop(columns=['plyr_list','plyr_count']).\
         | 
| 372 | 
             
                    reset_index(drop=True)
         | 
| 373 |  | 
| 374 | 
            -
                del sizesplit
         | 
| 375 | 
            -
                del full_pos_player_dict
         | 
| 376 | 
            -
                del ranges_dict
         | 
| 377 | 
            -
                
         | 
| 378 | 
             
                RandomPortfolio['QBs'] = RandomPortfolio['QB'].map(maps_dict['Salary_map']).astype(np.int32)
         | 
| 379 | 
             
                RandomPortfolio['RB1s'] = RandomPortfolio['RB1'].map(maps_dict['Salary_map']).astype(np.int32)
         | 
| 380 | 
             
                RandomPortfolio['RB2s'] = RandomPortfolio['RB2'].map(maps_dict['Salary_map']).astype(np.int32)
         | 
| @@ -406,7 +419,6 @@ def get_uncorrelated_portfolio_for_sim(Total_Sample_Size, sharp_split): | |
| 406 | 
             
                RandomPortfolio['DSTo'] = RandomPortfolio['DST'].map(maps_dict['Own_map']).astype(np.float16)
         | 
| 407 |  | 
| 408 | 
             
                RandomPortArray = RandomPortfolio.to_numpy()
         | 
| 409 | 
            -
                del RandomPortfolio
         | 
| 410 |  | 
| 411 | 
             
                RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,10:19].astype(int))]
         | 
| 412 | 
             
                RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,19:28].astype(np.double))]
         | 
| @@ -415,9 +427,6 @@ def get_uncorrelated_portfolio_for_sim(Total_Sample_Size, sharp_split): | |
| 415 | 
             
                RandomPortArrayOut = np.delete(RandomPortArray, np.s_[10:37], axis=1)
         | 
| 416 | 
             
                RandomPortfolioDF = pd.DataFrame(RandomPortArrayOut, columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'User/Field', 'Salary', 'Projection', 'Own'])
         | 
| 417 | 
             
                RandomPortfolioDF = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
         | 
| 418 | 
            -
                del RandomPortArray
         | 
| 419 | 
            -
                del RandomPortArrayOut
         | 
| 420 | 
            -
                # st.table(RandomPortfolioDF.head(50))
         | 
| 421 |  | 
| 422 | 
             
                if insert_port == 1:
         | 
| 423 | 
             
                    CleanPortfolio['Salary'] = sum([CleanPortfolio['QB'].map(maps_dict['Salary_map']),
         | 
| @@ -464,19 +473,8 @@ def get_uncorrelated_portfolio_for_sim(Total_Sample_Size, sharp_split): | |
| 464 |  | 
| 465 | 
             
                RandomPortfolio = RandomPortfolio[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'User/Field', 'Salary', 'Projection', 'Own']]
         | 
| 466 |  | 
| 467 | 
            -
                del RandomPortfolioDF
         | 
| 468 | 
            -
                
         | 
| 469 | 
             
                return RandomPortfolio, maps_dict
         | 
| 470 |  | 
| 471 | 
            -
             | 
| 472 | 
            -
            dk_roo_raw = load_dk_player_projections()
         | 
| 473 | 
            -
            fd_roo_raw = load_fd_player_projections()
         | 
| 474 | 
            -
            t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
         | 
| 475 | 
            -
            dkid_dict, fdid_dict = set_export_ids()
         | 
| 476 | 
            -
             | 
| 477 | 
            -
            static_exposure = pd.DataFrame(columns=['Player', 'count'])
         | 
| 478 | 
            -
            overall_exposure = pd.DataFrame(columns=['Player', 'count'])
         | 
| 479 | 
            -
             | 
| 480 | 
             
            tab1, tab2 = st.tabs(['Uploads', 'Contest Sim'])
         | 
| 481 |  | 
| 482 | 
             
            with tab1:
         | 
| @@ -509,7 +507,6 @@ with tab1: | |
| 509 | 
             
                                          player_salary_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Salary))
         | 
| 510 | 
             
                                          player_proj_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Median))
         | 
| 511 | 
             
                                          player_own_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Own))
         | 
| 512 | 
            -
                                          player_team_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Team))
         | 
| 513 |  | 
| 514 | 
             
                      with col2:
         | 
| 515 | 
             
                                st.info("The Portfolio file must contain only columns in order and explicitly named: 'QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', and 'DST'. Upload your projections first to avoid an error message.")
         | 
| @@ -577,23 +574,6 @@ with tab1: | |
| 577 | 
             
                                                          split_portfolio['TE'].map(player_own_dict),
         | 
| 578 | 
             
                                                          split_portfolio['FLEX'].map(player_own_dict),
         | 
| 579 | 
             
                                                          split_portfolio['DST'].map(player_own_dict)])
         | 
| 580 | 
            -
                                                
         | 
| 581 | 
            -
                                                split_portfolio['QB_team'] = split_portfolio['QB'].map(player_team_dict)
         | 
| 582 | 
            -
                                                split_portfolio['RB1_team'] = split_portfolio['RB1'].map(player_team_dict)
         | 
| 583 | 
            -
                                                split_portfolio['RB2_team'] = split_portfolio['RB2'].map(player_team_dict)
         | 
| 584 | 
            -
                                                split_portfolio['WR1_team'] = split_portfolio['WR1'].map(player_team_dict)
         | 
| 585 | 
            -
                                                split_portfolio['WR2_team'] = split_portfolio['WR2'].map(player_team_dict)
         | 
| 586 | 
            -
                                                split_portfolio['WR3_team'] = split_portfolio['WR3'].map(player_team_dict)
         | 
| 587 | 
            -
                                                split_portfolio['TE_team'] = split_portfolio['TE'].map(player_team_dict)
         | 
| 588 | 
            -
                                                split_portfolio['FLEX_team'] = split_portfolio['FLEX'].map(player_team_dict)
         | 
| 589 | 
            -
                                                split_portfolio['DST_team'] = split_portfolio['DST'].map(player_team_dict)
         | 
| 590 | 
            -
                  
         | 
| 591 | 
            -
                                                split_portfolio = split_portfolio[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'Salary', 'Projection', 'Ownership', 'QB_team',
         | 
| 592 | 
            -
                                                                                    'RB1_team', 'RB2_team', 'WR1_team', 'WR2_team', 'WR3_team', 'TE_team', 'FLEX_team', 'DST_team']]
         | 
| 593 | 
            -
                  
         | 
| 594 | 
            -
                                                split_portfolio['Main_Stack'] = split_portfolio.iloc[:, 15:19].apply(lambda row: row.value_counts().nlargest(2).index[0],axis=1)
         | 
| 595 | 
            -
                                                split_portfolio['Main_Stack_Size'] = split_portfolio.iloc[:, 15:19].apply(lambda row: row.value_counts().nlargest(2).values[0],axis=1)
         | 
| 596 | 
            -
                                                split_portfolio['Main_Stack_Size'] = split_portfolio['Main_Stack_Size'] - 1
         | 
| 597 |  | 
| 598 |  | 
| 599 | 
             
                                            except:
         | 
| @@ -650,23 +630,6 @@ with tab1: | |
| 650 | 
             
                                                          split_portfolio['TE'].map(player_own_dict),
         | 
| 651 | 
             
                                                          split_portfolio['FLEX'].map(player_own_dict),
         | 
| 652 | 
             
                                                          split_portfolio['DST'].map(player_own_dict)])
         | 
| 653 | 
            -
                                                
         | 
| 654 | 
            -
                                                split_portfolio['QB_team'] = split_portfolio['QB'].map(player_team_dict)
         | 
| 655 | 
            -
                                                split_portfolio['RB1_team'] = split_portfolio['RB1'].map(player_team_dict)
         | 
| 656 | 
            -
                                                split_portfolio['RB2_team'] = split_portfolio['RB2'].map(player_team_dict)
         | 
| 657 | 
            -
                                                split_portfolio['WR1_team'] = split_portfolio['WR1'].map(player_team_dict)
         | 
| 658 | 
            -
                                                split_portfolio['WR2_team'] = split_portfolio['WR2'].map(player_team_dict)
         | 
| 659 | 
            -
                                                split_portfolio['WR3_team'] = split_portfolio['WR3'].map(player_team_dict)
         | 
| 660 | 
            -
                                                split_portfolio['TE_team'] = split_portfolio['TE'].map(player_team_dict)
         | 
| 661 | 
            -
                                                split_portfolio['FLEX_team'] = split_portfolio['FLEX'].map(player_team_dict)
         | 
| 662 | 
            -
                                                split_portfolio['DST_team'] = split_portfolio['DST'].map(player_team_dict)
         | 
| 663 | 
            -
                  
         | 
| 664 | 
            -
                                                split_portfolio = split_portfolio[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'Salary', 'Projection', 'Ownership', 'QB_team',
         | 
| 665 | 
            -
                                                                                    'RB1_team', 'RB2_team', 'WR1_team', 'WR2_team', 'WR3_team', 'TE_team', 'FLEX_team', 'DST_team']]
         | 
| 666 | 
            -
                  
         | 
| 667 | 
            -
                                                split_portfolio['Main_Stack'] = split_portfolio.iloc[:, 15:19].apply(lambda row: row.value_counts().nlargest(2).index[0],axis=1)
         | 
| 668 | 
            -
                                                split_portfolio['Main_Stack_Size'] = split_portfolio.iloc[:, 15:19].apply(lambda row: row.value_counts().nlargest(2).values[0],axis=1)
         | 
| 669 | 
            -
                                                split_portfolio['Main_Stack_Size'] = split_portfolio['Main_Stack_Size'] - 1
         | 
| 670 |  | 
| 671 | 
             
                                        except:
         | 
| 672 | 
             
                                             split_portfolio = portfolio_dataframe
         | 
| @@ -700,97 +663,9 @@ with tab1: | |
| 700 | 
             
                                                       split_portfolio['TE'].map(player_own_dict),
         | 
| 701 | 
             
                                                       split_portfolio['FLEX'].map(player_own_dict),
         | 
| 702 | 
             
                                                       split_portfolio['DST'].map(player_own_dict)])
         | 
| 703 | 
            -
             | 
| 704 | 
            -
                                         | 
| 705 | 
            -
                                        split_portfolio['RB1_team'] = split_portfolio['RB1'].map(player_team_dict)
         | 
| 706 | 
            -
                                        split_portfolio['RB2_team'] = split_portfolio['RB2'].map(player_team_dict)
         | 
| 707 | 
            -
                                        split_portfolio['WR1_team'] = split_portfolio['WR1'].map(player_team_dict)
         | 
| 708 | 
            -
                                        split_portfolio['WR2_team'] = split_portfolio['WR2'].map(player_team_dict)
         | 
| 709 | 
            -
                                        split_portfolio['WR3_team'] = split_portfolio['WR3'].map(player_team_dict)
         | 
| 710 | 
            -
                                        split_portfolio['TE_team'] = split_portfolio['TE'].map(player_team_dict)
         | 
| 711 | 
            -
                                        split_portfolio['FLEX_team'] = split_portfolio['FLEX'].map(player_team_dict)
         | 
| 712 | 
            -
                                        split_portfolio['DST_team'] = split_portfolio['DST'].map(player_team_dict)
         | 
| 713 | 
            -
              
         | 
| 714 | 
            -
                                        split_portfolio = split_portfolio[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'Salary', 'Projection', 'Ownership', 'QB_team',
         | 
| 715 | 
            -
                                                                            'RB1_team', 'RB2_team', 'WR1_team', 'WR2_team', 'WR3_team', 'TE_team', 'FLEX_team', 'DST_team']]
         | 
| 716 | 
            -
              
         | 
| 717 | 
            -
                                        split_portfolio['Main_Stack'] = split_portfolio.iloc[:, 15:19].apply(lambda row: row.value_counts().nlargest(2).index[0],axis=1)
         | 
| 718 | 
            -
                                        split_portfolio['Main_Stack_Size'] = split_portfolio.iloc[:, 15:19].apply(lambda row: row.value_counts().nlargest(2).values[0],axis=1)
         | 
| 719 | 
            -
                                        split_portfolio['Main_Stack_Size'] = split_portfolio['Main_Stack_Size'] - 1
         | 
| 720 | 
            -
                                          
         | 
| 721 | 
            -
                                        for player_cols in split_portfolio.iloc[:, :9]:
         | 
| 722 | 
            -
                                                  static_col_raw = split_portfolio[player_cols].value_counts()
         | 
| 723 | 
            -
                                                  static_col = static_col_raw.to_frame()
         | 
| 724 | 
            -
                                                  static_col.reset_index(inplace=True)
         | 
| 725 | 
            -
                                                  static_col.columns = ['Player', 'count']
         | 
| 726 | 
            -
                                                  static_exposure = pd.concat([static_exposure, static_col], ignore_index=True)
         | 
| 727 | 
            -
                                        static_exposure['Exposure'] = static_exposure['count'] / len(split_portfolio)
         | 
| 728 | 
            -
                                        static_exposure = static_exposure[['Player', 'Exposure']]
         | 
| 729 |  | 
| 730 | 
            -
                                        del player_salary_dict
         | 
| 731 | 
            -
                                        del player_proj_dict
         | 
| 732 | 
            -
                                        del player_own_dict
         | 
| 733 | 
            -
                                        del player_team_dict
         | 
| 734 | 
            -
                                        del static_col_raw
         | 
| 735 | 
            -
                                        del static_col
         | 
| 736 | 
            -
                with st.container():
         | 
| 737 | 
            -
                      col1, col2 = st.columns([3, 3])
         | 
| 738 | 
            -
                      
         | 
| 739 | 
            -
                      if portfolio_file is not None:
         | 
| 740 | 
            -
                                with col1:
         | 
| 741 | 
            -
                                          team_split_var1 = st.radio("Are you wanting to isolate any lineups with specific main stacks?", ('Full Portfolio', 'Specific Stacks'))
         | 
| 742 | 
            -
                                          if team_split_var1 == 'Specific Stacks':
         | 
| 743 | 
            -
                                                    team_var1 = st.multiselect('Which main stacks would you like to include in the Portfolio?', options = split_portfolio['Main_Stack'].unique())
         | 
| 744 | 
            -
                                          elif team_split_var1 == 'Full Portfolio':
         | 
| 745 | 
            -
                                                    team_var1 = split_portfolio.Main_Stack.values.tolist()
         | 
| 746 | 
            -
                                with col2:
         | 
| 747 | 
            -
                                          player_split_var1 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'))
         | 
| 748 | 
            -
                                          if player_split_var1 == 'Specific Players':
         | 
| 749 | 
            -
                                                    find_var1 = st.multiselect('Which players must be included in the lineups?', options = static_exposure['Player'].unique())
         | 
| 750 | 
            -
                                          elif player_split_var1 == 'Full Players':
         | 
| 751 | 
            -
                                                    find_var1 = static_exposure.Player.values.tolist()
         | 
| 752 | 
            -
             | 
| 753 | 
            -
                                split_portfolio = split_portfolio[split_portfolio['Main_Stack'].isin(team_var1)]
         | 
| 754 | 
            -
                                if player_split_var1 == 'Specific Players':
         | 
| 755 | 
            -
                                          split_portfolio = split_portfolio[np.equal.outer(split_portfolio.to_numpy(copy=False),  find_var1).any(axis=1).all(axis=1)]
         | 
| 756 | 
            -
                                elif player_split_var1 == 'Full Players':
         | 
| 757 | 
            -
                                          split_portfolio = split_portfolio
         | 
| 758 | 
            -
             | 
| 759 | 
            -
                                for player_cols in split_portfolio.iloc[:, :9]:
         | 
| 760 | 
            -
                                          exposure_col_raw = split_portfolio[player_cols].value_counts()
         | 
| 761 | 
            -
                                          exposure_col = exposure_col_raw.to_frame()
         | 
| 762 | 
            -
                                          exposure_col.reset_index(inplace=True)
         | 
| 763 | 
            -
                                          exposure_col.columns = ['Player', 'count']
         | 
| 764 | 
            -
                                          overall_exposure = pd.concat([overall_exposure, exposure_col], ignore_index=True)
         | 
| 765 | 
            -
                                overall_exposure['Exposure'] = overall_exposure['count'] / len(split_portfolio)
         | 
| 766 | 
            -
                                overall_exposure = overall_exposure.groupby('Player').sum()
         | 
| 767 | 
            -
                                overall_exposure.reset_index(inplace=True)
         | 
| 768 | 
            -
                                overall_exposure = overall_exposure[['Player', 'Exposure']]
         | 
| 769 | 
            -
                                overall_exposure = overall_exposure.set_index('Player')
         | 
| 770 | 
            -
                                overall_exposure = overall_exposure.sort_values(by='Exposure', ascending=False)
         | 
| 771 | 
            -
                                overall_exposure['Exposure'] = overall_exposure['Exposure'].astype(float).map(lambda n: '{:.2%}'.format(n))
         | 
| 772 | 
            -
                                
         | 
| 773 | 
            -
                                del static_exposure
         | 
| 774 | 
            -
                                
         | 
| 775 | 
            -
                with st.container():
         | 
| 776 | 
            -
                      col1, col2 = st.columns([1, 6])
         | 
| 777 | 
            -
                      
         | 
| 778 | 
            -
                      with col1:
         | 
| 779 | 
            -
                                if portfolio_file is not None:
         | 
| 780 | 
            -
                                          st.header('Exposure View')
         | 
| 781 | 
            -
                                          st.dataframe(overall_exposure)
         | 
| 782 | 
            -
             | 
| 783 | 
            -
                      with col2:
         | 
| 784 | 
            -
                                if portfolio_file is not None:
         | 
| 785 | 
            -
                                          st.header('Portfolio View')
         | 
| 786 | 
            -
                                          split_portfolio = split_portfolio.reset_index()
         | 
| 787 | 
            -
                                          split_portfolio['Lineup'] = split_portfolio['index'] + 1
         | 
| 788 | 
            -
                                          display_portfolio = split_portfolio[['Lineup', 'QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'Salary', 'Main_Stack', 'Main_Stack_Size', 'Projection', 'Ownership']]
         | 
| 789 | 
            -
                                          display_portfolio = display_portfolio.set_index('Lineup')
         | 
| 790 | 
            -
                                          st.dataframe(display_portfolio.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Ownership']).format(precision=2))
         | 
| 791 | 
            -
                                          del split_portfolio
         | 
| 792 | 
            -
                                          del exposure_col_raw
         | 
| 793 | 
            -
                                          del exposure_col
         | 
| 794 | 
             
            with tab2:
         | 
| 795 | 
             
                col1, col2 = st.columns([1, 7])
         | 
| 796 | 
             
                with col1:
         | 
| @@ -818,8 +693,7 @@ with tab2: | |
| 818 | 
             
                          elif slate_var1 != 'User':
         | 
| 819 | 
             
                              raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var1)]
         | 
| 820 | 
             
                              raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
         | 
| 821 | 
            -
             | 
| 822 | 
            -
                    del fd_roo_raw
         | 
| 823 | 
             
                    st.info("If you are uploading a portfolio, note that there is an adjustments to projections and deviation mapping to prevent 'Projection Bias' and create a fair simulation")
         | 
| 824 | 
             
                    insert_port1 = st.selectbox("Are you uploading a portfolio?", ('No', 'Yes'), key='insert_port1')
         | 
| 825 | 
             
                    if insert_port1 == 'Yes':
         | 
| @@ -833,7 +707,6 @@ with tab2: | |
| 833 | 
             
                        Contest_Size = 5000
         | 
| 834 | 
             
                    elif contest_var1 == 'Large':
         | 
| 835 | 
             
                        Contest_Size = 10000
         | 
| 836 | 
            -
                    linenum_var1 = 2500
         | 
| 837 | 
             
                    strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Not Very', 'Average', 'Very'))
         | 
| 838 | 
             
                    if strength_var1 == 'Not Very':
         | 
| 839 | 
             
                        sharp_split = .33
         | 
| @@ -847,81 +720,78 @@ with tab2: | |
| 847 | 
             
                        sharp_split = .75
         | 
| 848 | 
             
                        Strength_var = .01
         | 
| 849 | 
             
                        scaling_var = 15
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 850 |  | 
| 851 | 
             
                with col2:
         | 
| 852 | 
             
                    with st.container():
         | 
| 853 | 
             
                        if st.button("Simulate Contest"):
         | 
| 854 | 
             
                            with st.container():
         | 
| 855 | 
            -
                                st.write('Contest Simulation Starting')
         | 
| 856 | 
             
                                for key in st.session_state.keys():
         | 
| 857 | 
             
                                    del st.session_state[key]
         | 
| 858 | 
            -
                                seed_depth1 = 10
         | 
| 859 | 
            -
                                Total_Runs = 1000000
         | 
| 860 | 
            -
                                if Contest_Size <= 1000:
         | 
| 861 | 
            -
                                    strength_grow = .01
         | 
| 862 | 
            -
                                elif Contest_Size > 1000 and Contest_Size <= 2500:
         | 
| 863 | 
            -
                                    strength_grow = .025
         | 
| 864 | 
            -
                                elif Contest_Size > 2500 and Contest_Size <= 5000:
         | 
| 865 | 
            -
                                    strength_grow = .05
         | 
| 866 | 
            -
                                elif Contest_Size > 5000 and Contest_Size <= 20000:
         | 
| 867 | 
            -
                                    strength_grow = .075
         | 
| 868 | 
            -
                                elif Contest_Size > 20000:
         | 
| 869 | 
            -
                                    strength_grow = .1
         | 
| 870 | 
            -
                                    
         | 
| 871 | 
            -
                                field_growth = 100 * strength_grow
         | 
| 872 | 
            -
                        
         | 
| 873 | 
            -
                                Sort_function = 'Median'
         | 
| 874 | 
            -
                                if Sort_function == 'Median':
         | 
| 875 | 
            -
                                    Sim_function = 'Projection'
         | 
| 876 | 
            -
                                elif Sort_function == 'Own':
         | 
| 877 | 
            -
                                    Sim_function = 'Own'
         | 
| 878 |  | 
| 879 | 
             
                                if slate_var1 == 'User':
         | 
| 880 | 
            -
                                     | 
| 881 | 
            -
                                     | 
| 882 | 
            -
             | 
| 883 | 
            -
             | 
| 884 | 
            -
                                         | 
| 885 | 
            -
             | 
| 886 | 
            -
             | 
| 887 | 
            -
                                        OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (6 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
         | 
| 888 | 
            -
                                        OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
         | 
| 889 | 
            -
                                        OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
         | 
| 890 | 
            -
                                        OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
         | 
| 891 | 
            -
                                    if contest_var1 == 'Large':
         | 
| 892 | 
            -
                                        OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
         | 
| 893 | 
            -
                                        OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (1.5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
         | 
| 894 | 
            -
                                        OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
         | 
| 895 | 
            -
                                        OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
         | 
| 896 | 
            -
                                    Overall_Proj = OwnFrame[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
         | 
| 897 |  | 
| 898 | 
            -
                                     | 
| 899 | 
            -
                                     | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 900 |  | 
| 901 | 
             
                                elif slate_var1 != 'User':
         | 
| 902 | 
            -
                                     | 
| 903 | 
            -
                                     | 
| 904 | 
            -
                                     | 
| 905 | 
            -
                                     | 
| 906 | 
            -
             | 
| 907 | 
            -
                                         | 
| 908 | 
            -
             | 
| 909 | 
            -
             | 
| 910 | 
            -
                                    if contest_var1 == 'Medium':
         | 
| 911 | 
            -
                                        OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (6 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
         | 
| 912 | 
            -
                                        OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
         | 
| 913 | 
            -
                                        OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
         | 
| 914 | 
            -
                                        OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
         | 
| 915 | 
            -
                                    if contest_var1 == 'Large':
         | 
| 916 | 
            -
                                        OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
         | 
| 917 | 
            -
                                        OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (1.5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
         | 
| 918 | 
            -
                                        OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
         | 
| 919 | 
            -
                                        OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
         | 
| 920 | 
            -
                                    Overall_Proj = OwnFrame[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
         | 
| 921 |  | 
| 922 | 
            -
                                     | 
| 923 | 
            -
                                     | 
| 924 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 925 |  | 
| 926 | 
             
                                if insert_port == 1:
         | 
| 927 | 
             
                                    UserPortfolio = portfolio_dataframe[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']]
         | 
| @@ -945,9 +815,6 @@ with tab2: | |
| 945 | 
             
                                Teams_used['team_item'] = Teams_used['index'] + 1
         | 
| 946 | 
             
                                Teams_used = Teams_used.drop(columns=['index'])
         | 
| 947 | 
             
                                Teams_used_dictraw = Teams_used.drop(columns=['team_item'])
         | 
| 948 | 
            -
                                # Teams_used_dict = Teams_used_dictraw.to_dict()
         | 
| 949 | 
            -
                                
         | 
| 950 | 
            -
                                del Teams_used_dictraw
         | 
| 951 |  | 
| 952 | 
             
                                team_list = Teams_used['Team'].to_list()
         | 
| 953 | 
             
                                item_list = Teams_used['team_item'].to_list()
         | 
| @@ -955,8 +822,6 @@ with tab2: | |
| 955 | 
             
                                FieldStrength_raw = Strength_var + ((30 - len(Teams_used)) * .01)
         | 
| 956 | 
             
                                FieldStrength = FieldStrength_raw - (FieldStrength_raw * (20000 / Contest_Size))
         | 
| 957 |  | 
| 958 | 
            -
                                del FieldStrength_raw
         | 
| 959 | 
            -
                                
         | 
| 960 | 
             
                                if FieldStrength < 0:
         | 
| 961 | 
             
                                    FieldStrength = Strength_var
         | 
| 962 | 
             
                                field_split = Strength_var
         | 
| @@ -1000,12 +865,6 @@ with tab2: | |
| 1000 | 
             
                                pos_players = pd.concat([rbs_raw, wrs_raw, tes_raw])
         | 
| 1001 | 
             
                                pos_players.dropna(subset=['Median']).reset_index(drop=True)
         | 
| 1002 | 
             
                                pos_players = pos_players.reset_index(drop=True)
         | 
| 1003 | 
            -
                                
         | 
| 1004 | 
            -
                                del qbs_raw
         | 
| 1005 | 
            -
                                del defs_raw
         | 
| 1006 | 
            -
                                del rbs_raw
         | 
| 1007 | 
            -
                                del wrs_raw
         | 
| 1008 | 
            -
                                del tes_raw
         | 
| 1009 |  | 
| 1010 | 
             
                                if insert_port == 1:
         | 
| 1011 | 
             
                                    try:
         | 
| @@ -1025,8 +884,6 @@ with tab2: | |
| 1025 | 
             
                                        CleanPortfolio['User/Field'] = CleanPortfolio['index'] + 1
         | 
| 1026 | 
             
                                        CleanPortfolio.drop(columns=['index'], inplace=True)
         | 
| 1027 |  | 
| 1028 | 
            -
                                        del positions
         | 
| 1029 | 
            -
                                        
         | 
| 1030 | 
             
                                        CleanPortfolio.replace('', np.nan, inplace=True)
         | 
| 1031 | 
             
                                        CleanPortfolio.dropna(subset=['QB'], inplace=True)
         | 
| 1032 |  | 
| @@ -1041,7 +898,6 @@ with tab2: | |
| 1041 | 
             
                                        nerf_frame = pd.merge(cleaport_players, Overall_Proj, on='Player', how='left')
         | 
| 1042 | 
             
                                        for col in ['Median', 'Floor', 'Ceiling', 'STDev']:
         | 
| 1043 | 
             
                                            nerf_frame[col] *= 0.90
         | 
| 1044 | 
            -
                                        del Raw_Portfolio
         | 
| 1045 | 
             
                                    except:
         | 
| 1046 | 
             
                                        CleanPortfolio = UserPortfolio.reset_index()
         | 
| 1047 | 
             
                                        CleanPortfolio['User/Field'] = CleanPortfolio['index'] + 1
         | 
| @@ -1069,7 +925,7 @@ with tab2: | |
| 1069 | 
             
                                                               columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
         | 
| 1070 | 
             
                                    cleaport_players['Freq'] = cleaport_players['Freq'].astype(int)
         | 
| 1071 | 
             
                                    nerf_frame = Overall_Proj
         | 
| 1072 | 
            -
             | 
| 1073 | 
             
                                ref_dict = {
         | 
| 1074 | 
             
                                    'pos':['RB', 'WR', 'TE', 'FLEX'],
         | 
| 1075 | 
             
                                    'pos_dfs':['RB_Table', 'WR_Table', 'TE_Table', 'FLEX_Table'],
         | 
| @@ -1100,94 +956,25 @@ with tab2: | |
| 1100 | 
             
                                    'team_check_map':dict(zip(cleaport_players.Player,nerf_frame.Team))
         | 
| 1101 | 
             
                                    }
         | 
| 1102 |  | 
| 1103 | 
            -
                                 | 
| 1104 | 
            -
                                del Overall_Proj
         | 
| 1105 | 
            -
                                del nerf_frame
         | 
| 1106 |  | 
| 1107 | 
            -
                                 | 
| 1108 | 
            -
                                FinalPortfolio, maps_dict = run_seed_frame(seed_depth1, Strength_var, strength_grow, Teams_used, Total_Runs)
         | 
| 1109 |  | 
| 1110 | 
            -
                                Sim_size = linenum_var1
         | 
| 1111 | 
            -
                                SimVar = 1
         | 
| 1112 | 
            -
                                Sim_Winners = []
         | 
| 1113 | 
            -
                                fp_array = FinalPortfolio.values
         | 
| 1114 | 
            -
                                
         | 
| 1115 | 
            -
                                if insert_port == 1:
         | 
| 1116 | 
            -
                                    up_array = CleanPortfolio.values
         | 
| 1117 | 
            -
                                
         | 
| 1118 | 
            -
                                # Pre-vectorize functions
         | 
| 1119 | 
            -
                                vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
         | 
| 1120 | 
            -
                                vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
         | 
| 1121 | 
            -
                                
         | 
| 1122 | 
            -
                                if insert_port == 1:
         | 
| 1123 | 
            -
                                    vec_up_projection_map = np.vectorize(up_dict['Projection_map'].__getitem__)
         | 
| 1124 | 
            -
                                    vec_up_stdev_map = np.vectorize(up_dict['STDev_map'].__getitem__)
         | 
| 1125 | 
            -
                                
         | 
| 1126 | 
            -
                                st.write('Simulating contest on frames')
         | 
| 1127 | 
            -
                                
         | 
| 1128 | 
            -
                                while SimVar <= Sim_size:
         | 
| 1129 | 
            -
                                    if insert_port == 1:
         | 
| 1130 | 
            -
                                        fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size-len(CleanPortfolio))]
         | 
| 1131 | 
            -
                                    elif insert_port == 0:
         | 
| 1132 | 
            -
                                        fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size)]
         | 
| 1133 | 
            -
                                        
         | 
| 1134 | 
            -
                                    sample_arrays1 = np.c_[
         | 
| 1135 | 
            -
                                        fp_random, 
         | 
| 1136 | 
            -
                                        np.sum(np.random.normal(
         | 
| 1137 | 
            -
                                            loc=vec_projection_map(fp_random[:, :-5]),
         | 
| 1138 | 
            -
                                            scale=vec_stdev_map(fp_random[:, :-5])),
         | 
| 1139 | 
            -
                                        axis=1)
         | 
| 1140 | 
            -
                                    ]
         | 
| 1141 | 
            -
                            
         | 
| 1142 | 
            -
                                    if insert_port == 1:
         | 
| 1143 | 
            -
                                        sample_arrays2 = np.c_[
         | 
| 1144 | 
            -
                                            up_array, 
         | 
| 1145 | 
            -
                                            np.sum(np.random.normal(
         | 
| 1146 | 
            -
                                                loc=vec_up_projection_map(up_array[:, :-5]),
         | 
| 1147 | 
            -
                                                scale=vec_up_stdev_map(up_array[:, :-5])),
         | 
| 1148 | 
            -
                                            axis=1)
         | 
| 1149 | 
            -
                                        ]
         | 
| 1150 | 
            -
                                        sample_arrays = np.vstack((sample_arrays1, sample_arrays2))
         | 
| 1151 | 
            -
                                    else:
         | 
| 1152 | 
            -
                                        sample_arrays = sample_arrays1
         | 
| 1153 | 
            -
                            
         | 
| 1154 | 
            -
                                    final_array = sample_arrays[sample_arrays[:, 10].argsort()[::-1]]
         | 
| 1155 | 
            -
                                    best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
         | 
| 1156 | 
            -
                                    Sim_Winners.append(best_lineup)
         | 
| 1157 | 
            -
                                    SimVar += 1
         | 
| 1158 | 
            -
                                
         | 
| 1159 | 
            -
                                del SimVar
         | 
| 1160 | 
            -
                                del ref_dict, up_dict
         | 
| 1161 | 
            -
                                del linenum_var1, UserPortfolio
         | 
| 1162 | 
            -
                                try:
         | 
| 1163 | 
            -
                                    del up_array
         | 
| 1164 | 
            -
                                except:
         | 
| 1165 | 
            -
                                    pass
         | 
| 1166 | 
            -
                                del CleanPortfolio
         | 
| 1167 | 
            -
                                del vec_projection_map
         | 
| 1168 | 
            -
                                del vec_stdev_map
         | 
| 1169 | 
            -
                                del sample_arrays
         | 
| 1170 | 
            -
                                del final_array
         | 
| 1171 | 
            -
                                del fp_array
         | 
| 1172 | 
            -
                                del fp_random
         | 
| 1173 | 
            -
                                st.write('Contest simulation complete')
         | 
| 1174 | 
             
                                # Initial setup
         | 
| 1175 | 
             
                                Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=FinalPortfolio.columns.tolist() + ['Fantasy'])
         | 
| 1176 | 
             
                                Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['Projection'] + Sim_Winner_Frame['Fantasy']) / 2
         | 
| 1177 |  | 
| 1178 | 
            -
                                del FinalPortfolio
         | 
| 1179 | 
            -
                                
         | 
| 1180 | 
             
                                # Type Casting
         | 
| 1181 | 
             
                                type_cast_dict = {'Salary': int, 'Projection': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float16}
         | 
| 1182 | 
             
                                Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
         | 
| 1183 |  | 
|  | |
|  | |
| 1184 | 
             
                                # Sorting
         | 
| 1185 | 
             
                                st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by='GPP_Proj', ascending=False)
         | 
| 1186 |  | 
| 1187 | 
             
                                # Data Copying
         | 
| 1188 | 
            -
                                st.session_state.Sim_Winner_Export = Sim_Winner_Frame | 
| 1189 | 
            -
                                
         | 
| 1190 | 
            -
                                del Sim_Winner_Frame
         | 
| 1191 |  | 
| 1192 | 
             
                                # Conditional Replacement
         | 
| 1193 | 
             
                                columns_to_replace = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
         | 
| @@ -1197,124 +984,96 @@ with tab2: | |
| 1197 | 
             
                                elif site_var1 == 'Fanduel':
         | 
| 1198 | 
             
                                    replace_dict = fdid_dict
         | 
| 1199 |  | 
| 1200 | 
            -
                                del dkid_dict
         | 
| 1201 | 
            -
                                del fdid_dict
         | 
| 1202 | 
            -
                                
         | 
| 1203 | 
             
                                for col in columns_to_replace:
         | 
| 1204 | 
             
                                    st.session_state.Sim_Winner_Export[col].replace(replace_dict, inplace=True)
         | 
|  | |
|  | |
| 1205 |  | 
| 1206 | 
            -
                                player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,0:9].values, return_counts=True)),
         | 
| 1207 | 
             
                                                            columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
         | 
| 1208 | 
            -
                                player_freq['Freq'] = player_freq['Freq'].astype(int)
         | 
| 1209 | 
            -
                                player_freq['Position'] = player_freq['Player'].map(maps_dict['Pos_map'])
         | 
| 1210 | 
            -
                                player_freq['Salary'] = player_freq['Player'].map(maps_dict['Salary_map'])
         | 
| 1211 | 
            -
                                player_freq['Proj Own'] = player_freq['Player'].map(maps_dict['Own_map']) / 100
         | 
| 1212 | 
            -
                                player_freq['Exposure'] = player_freq['Freq']/( | 
| 1213 | 
            -
                                player_freq['Edge'] = player_freq['Exposure'] - player_freq['Proj Own']
         | 
| 1214 | 
            -
                                player_freq['Team'] = player_freq['Player'].map(maps_dict['Team_map'])
         | 
| 1215 | 
             
                                for checkVar in range(len(team_list)):
         | 
| 1216 | 
            -
                                                    player_freq['Team'] = player_freq['Team'].replace(item_list, team_list)
         | 
| 1217 | 
            -
                
         | 
| 1218 | 
            -
                                st.session_state.player_freq = player_freq[['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
         | 
| 1219 | 
            -
                                del player_freq
         | 
| 1220 |  | 
| 1221 | 
            -
                                qb_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,0:1].values, return_counts=True)),
         | 
| 1222 | 
             
                                                            columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
         | 
| 1223 | 
            -
                                qb_freq['Freq'] = qb_freq['Freq'].astype(int)
         | 
| 1224 | 
            -
                                qb_freq['Position'] = qb_freq['Player'].map(maps_dict['Pos_map'])
         | 
| 1225 | 
            -
                                qb_freq['Salary'] = qb_freq['Player'].map(maps_dict['Salary_map'])
         | 
| 1226 | 
            -
                                qb_freq['Proj Own'] = qb_freq['Player'].map(maps_dict['Own_map']) / 100
         | 
| 1227 | 
            -
                                qb_freq['Exposure'] = qb_freq['Freq']/( | 
| 1228 | 
            -
                                qb_freq['Edge'] = qb_freq['Exposure'] - qb_freq['Proj Own']
         | 
| 1229 | 
            -
                                qb_freq['Team'] = qb_freq['Player'].map(maps_dict['Team_map'])
         | 
| 1230 | 
             
                                for checkVar in range(len(team_list)):
         | 
| 1231 | 
            -
                                                    qb_freq['Team'] = qb_freq['Team'].replace(item_list, team_list)
         | 
| 1232 |  | 
| 1233 | 
            -
                                st.session_state. | 
| 1234 | 
            -
                                del qb_freq
         | 
| 1235 | 
            -
                
         | 
| 1236 | 
            -
                                rb_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,[1, 2]].values, return_counts=True)),
         | 
| 1237 | 
             
                                                           columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
         | 
| 1238 | 
            -
                                rb_freq['Freq'] = rb_freq['Freq'].astype(int)
         | 
| 1239 | 
            -
                                rb_freq['Position'] = rb_freq['Player'].map(maps_dict['Pos_map'])
         | 
| 1240 | 
            -
                                rb_freq['Salary'] = rb_freq['Player'].map(maps_dict['Salary_map'])
         | 
| 1241 | 
            -
                                rb_freq['Proj Own'] = rb_freq['Player'].map(maps_dict['Own_map']) / 100
         | 
| 1242 | 
            -
                                rb_freq['Exposure'] = rb_freq['Freq']/ | 
| 1243 | 
            -
                                rb_freq['Edge'] = rb_freq['Exposure'] - rb_freq['Proj Own']
         | 
| 1244 | 
            -
                                rb_freq['Team'] = rb_freq['Player'].map(maps_dict['Team_map'])
         | 
| 1245 | 
             
                                for checkVar in range(len(team_list)):
         | 
| 1246 | 
            -
                                                    rb_freq['Team'] = rb_freq['Team'].replace(item_list, team_list)
         | 
| 1247 | 
            -
                
         | 
| 1248 | 
            -
                                st.session_state.rb_freq = rb_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
         | 
| 1249 | 
            -
                                del rb_freq
         | 
| 1250 |  | 
| 1251 | 
            -
                                wr_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,[3, 4, 5]].values, return_counts=True)),
         | 
| 1252 | 
             
                                                           columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
         | 
| 1253 | 
            -
                                wr_freq['Freq'] = wr_freq['Freq'].astype(int)
         | 
| 1254 | 
            -
                                wr_freq['Position'] = wr_freq['Player'].map(maps_dict['Pos_map'])
         | 
| 1255 | 
            -
                                wr_freq['Salary'] = wr_freq['Player'].map(maps_dict['Salary_map'])
         | 
| 1256 | 
            -
                                wr_freq['Proj Own'] = wr_freq['Player'].map(maps_dict['Own_map']) / 100
         | 
| 1257 | 
            -
                                wr_freq['Exposure'] = wr_freq['Freq']/ | 
| 1258 | 
            -
                                wr_freq['Edge'] = wr_freq['Exposure'] - wr_freq['Proj Own']
         | 
| 1259 | 
            -
                                wr_freq['Team'] = wr_freq['Player'].map(maps_dict['Team_map'])
         | 
| 1260 | 
             
                                for checkVar in range(len(team_list)):
         | 
| 1261 | 
            -
                                                    wr_freq['Team'] = wr_freq['Team'].replace(item_list, team_list)
         | 
| 1262 | 
            -
                
         | 
| 1263 | 
            -
                                st.session_state.wr_freq = wr_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
         | 
| 1264 | 
            -
                                del wr_freq
         | 
| 1265 |  | 
| 1266 | 
            -
                                te_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,[6]].values, return_counts=True)),
         | 
| 1267 | 
             
                                                           columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
         | 
| 1268 | 
            -
                                te_freq['Freq'] = te_freq['Freq'].astype(int)
         | 
| 1269 | 
            -
                                te_freq['Position'] = te_freq['Player'].map(maps_dict['Pos_map'])
         | 
| 1270 | 
            -
                                te_freq['Salary'] = te_freq['Player'].map(maps_dict['Salary_map'])
         | 
| 1271 | 
            -
                                te_freq['Proj Own'] = te_freq['Player'].map(maps_dict['Own_map']) / 100
         | 
| 1272 | 
            -
                                te_freq['Exposure'] = te_freq['Freq']/ | 
| 1273 | 
            -
                                te_freq['Edge'] = te_freq['Exposure'] - te_freq['Proj Own']
         | 
| 1274 | 
            -
                                te_freq['Team'] = te_freq['Player'].map(maps_dict['Team_map'])
         | 
| 1275 | 
             
                                for checkVar in range(len(team_list)):
         | 
| 1276 | 
            -
                                                    te_freq['Team'] = te_freq['Team'].replace(item_list, team_list)
         | 
| 1277 | 
            -
                
         | 
| 1278 | 
            -
                                st.session_state.te_freq = te_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
         | 
| 1279 | 
            -
                                del te_freq
         | 
| 1280 |  | 
| 1281 | 
            -
                                flex_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,[7]].values, return_counts=True)),
         | 
| 1282 | 
             
                                                           columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
         | 
| 1283 | 
            -
                                flex_freq['Freq'] = flex_freq['Freq'].astype(int)
         | 
| 1284 | 
            -
                                flex_freq['Position'] = flex_freq['Player'].map(maps_dict['Pos_map'])
         | 
| 1285 | 
            -
                                flex_freq['Salary'] = flex_freq['Player'].map(maps_dict['Salary_map'])
         | 
| 1286 | 
            -
                                flex_freq['Proj Own'] = flex_freq['Player'].map(maps_dict['Own_map']) / 100
         | 
| 1287 | 
            -
                                flex_freq['Exposure'] = flex_freq['Freq']/ | 
| 1288 | 
            -
                                flex_freq['Edge'] = flex_freq['Exposure'] - flex_freq['Proj Own']
         | 
| 1289 | 
            -
                                flex_freq['Team'] = flex_freq['Player'].map(maps_dict['Team_map'])
         | 
| 1290 | 
             
                                for checkVar in range(len(team_list)):
         | 
| 1291 | 
            -
                                                    flex_freq['Team'] = flex_freq['Team'].replace(item_list, team_list)
         | 
| 1292 | 
            -
                
         | 
| 1293 | 
            -
                                st.session_state.flex_freq = flex_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
         | 
| 1294 | 
            -
                                del flex_freq
         | 
| 1295 |  | 
| 1296 | 
            -
                                dst_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,8:9].values, return_counts=True)),
         | 
| 1297 | 
             
                                                           columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
         | 
| 1298 | 
            -
                                dst_freq['Freq'] = dst_freq['Freq'].astype(int)
         | 
| 1299 | 
            -
                                dst_freq['Position'] = dst_freq['Player'].map(maps_dict['Pos_map'])
         | 
| 1300 | 
            -
                                dst_freq['Salary'] = dst_freq['Player'].map(maps_dict['Salary_map'])
         | 
| 1301 | 
            -
                                dst_freq['Proj Own'] = dst_freq['Player'].map(maps_dict['Own_map']) / 100
         | 
| 1302 | 
            -
                                dst_freq['Exposure'] = dst_freq['Freq']/ | 
| 1303 | 
            -
                                dst_freq['Edge'] = dst_freq['Exposure'] - dst_freq['Proj Own']
         | 
| 1304 | 
            -
                                dst_freq['Team'] = dst_freq['Player'].map(maps_dict['Team_map'])
         | 
| 1305 | 
             
                                for checkVar in range(len(team_list)):
         | 
| 1306 | 
            -
                                                    dst_freq['Team'] = dst_freq['Team'].replace(item_list, team_list)
         | 
| 1307 | 
            -
                
         | 
| 1308 | 
            -
                                st.session_state.dst_freq = dst_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
         | 
| 1309 | 
            -
                                del dst_freq
         | 
| 1310 | 
            -
                                
         | 
| 1311 | 
            -
                                del Sim_size
         | 
| 1312 | 
            -
                                del maps_dict
         | 
| 1313 | 
            -
                                del team_list
         | 
| 1314 | 
            -
                                del item_list
         | 
| 1315 |  | 
| 1316 | 
             
                    with st.container():
         | 
| 1317 | 
            -
                        simulate_container = st.empty()
         | 
| 1318 | 
             
                        if 'player_freq' in st.session_state: 
         | 
| 1319 | 
             
                            player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'), key='player_split_var2')
         | 
| 1320 | 
             
                            if player_split_var2 == 'Specific Players':
         | 
| @@ -1323,7 +1082,7 @@ with tab2: | |
| 1323 | 
             
                                      find_var2 = st.session_state.player_freq.Player.values.tolist()
         | 
| 1324 |  | 
| 1325 | 
             
                            if player_split_var2 == 'Specific Players':
         | 
| 1326 | 
            -
                                      st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame[np.equal.outer(st.session_state.Sim_Winner_Frame.to_numpy( | 
| 1327 | 
             
                            if player_split_var2 == 'Full Players':
         | 
| 1328 | 
             
                                      st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame
         | 
| 1329 | 
             
                        if 'Sim_Winner_Display' in st.session_state:
         | 
| @@ -1331,20 +1090,19 @@ with tab2: | |
| 1331 | 
             
                        if 'Sim_Winner_Export' in st.session_state:
         | 
| 1332 | 
             
                            st.download_button(
         | 
| 1333 | 
             
                                label="Export Tables",
         | 
| 1334 | 
            -
                                data= | 
| 1335 | 
             
                                file_name='NFL_consim_export.csv',
         | 
| 1336 | 
             
                                mime='text/csv',
         | 
| 1337 | 
             
                            )
         | 
| 1338 |  | 
| 1339 | 
             
                    with st.container():
         | 
| 1340 | 
            -
                        freq_container = st.empty()
         | 
| 1341 | 
             
                        tab1, tab2, tab3, tab4, tab5, tab6, tab7 = st.tabs(['Overall Exposures', 'QB Exposures', 'RB Exposures', 'WR Exposures', 'TE Exposures', 'FLEX Exposures', 'DST Exposures'])
         | 
| 1342 | 
             
                        with tab1:
         | 
| 1343 | 
             
                            if 'player_freq' in st.session_state:
         | 
| 1344 | 
             
                                st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
         | 
| 1345 | 
             
                                st.download_button(
         | 
| 1346 | 
             
                                    label="Export Exposures",
         | 
| 1347 | 
            -
                                    data= | 
| 1348 | 
             
                                    file_name='player_freq_export.csv',
         | 
| 1349 | 
             
                                    mime='text/csv',
         | 
| 1350 | 
             
                                )
         | 
| @@ -1353,7 +1111,7 @@ with tab2: | |
| 1353 | 
             
                                st.dataframe(st.session_state.qb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
         | 
| 1354 | 
             
                                st.download_button(
         | 
| 1355 | 
             
                                    label="Export Exposures",
         | 
| 1356 | 
            -
                                    data= | 
| 1357 | 
             
                                    file_name='qb_freq_export.csv',
         | 
| 1358 | 
             
                                    mime='text/csv',
         | 
| 1359 | 
             
                                )
         | 
| @@ -1362,7 +1120,7 @@ with tab2: | |
| 1362 | 
             
                                st.dataframe(st.session_state.rb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
         | 
| 1363 | 
             
                                st.download_button(
         | 
| 1364 | 
             
                                    label="Export Exposures",
         | 
| 1365 | 
            -
                                    data= | 
| 1366 | 
             
                                    file_name='rb_freq_export.csv',
         | 
| 1367 | 
             
                                    mime='text/csv',
         | 
| 1368 | 
             
                                )
         | 
| @@ -1371,7 +1129,7 @@ with tab2: | |
| 1371 | 
             
                                st.dataframe(st.session_state.wr_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
         | 
| 1372 | 
             
                                st.download_button(
         | 
| 1373 | 
             
                                    label="Export Exposures",
         | 
| 1374 | 
            -
                                    data= | 
| 1375 | 
             
                                    file_name='wr_freq_export.csv',
         | 
| 1376 | 
             
                                    mime='text/csv',
         | 
| 1377 | 
             
                                )
         | 
| @@ -1380,7 +1138,7 @@ with tab2: | |
| 1380 | 
             
                                st.dataframe(st.session_state.te_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
         | 
| 1381 | 
             
                                st.download_button(
         | 
| 1382 | 
             
                                    label="Export Exposures",
         | 
| 1383 | 
            -
                                    data= | 
| 1384 | 
             
                                    file_name='te_freq_export.csv',
         | 
| 1385 | 
             
                                    mime='text/csv',
         | 
| 1386 | 
             
                                )
         | 
| @@ -1389,7 +1147,7 @@ with tab2: | |
| 1389 | 
             
                                st.dataframe(st.session_state.flex_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
         | 
| 1390 | 
             
                                st.download_button(
         | 
| 1391 | 
             
                                    label="Export Exposures",
         | 
| 1392 | 
            -
                                    data= | 
| 1393 | 
             
                                    file_name='flex_freq_export.csv',
         | 
| 1394 | 
             
                                    mime='text/csv',
         | 
| 1395 | 
             
                                )
         | 
| @@ -1398,7 +1156,16 @@ with tab2: | |
| 1398 | 
             
                                st.dataframe(st.session_state.dst_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
         | 
| 1399 | 
             
                                st.download_button(
         | 
| 1400 | 
             
                                    label="Export Exposures",
         | 
| 1401 | 
            -
                                    data= | 
| 1402 | 
             
                                    file_name='dst_freq_export.csv',
         | 
| 1403 | 
             
                                    mime='text/csv',
         | 
| 1404 | 
            -
                                )
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 29 | 
             
                        "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
         | 
| 30 | 
             
                      }
         | 
| 31 |  | 
| 32 | 
            +
                      gc_con = gspread.service_account_from_dict(credentials)
         | 
| 33 | 
            +
                      
         | 
| 34 | 
            +
                      return gc_con
         | 
| 35 |  | 
| 36 | 
            +
            gcservice_account = init_conn()
         | 
| 37 |  | 
| 38 | 
             
            freq_format = {'Proj Own': '{:.2%}', 'Exposure': '{:.2%}', 'Edge': '{:.2%}'}
         | 
| 39 |  | 
| 40 | 
             
            @st.cache_resource(ttl = 300)
         | 
| 41 | 
             
            def load_dk_player_projections():
         | 
| 42 | 
            +
                sh = gcservice_account.open_by_url('https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=1391856348')
         | 
| 43 | 
             
                worksheet = sh.worksheet('DK_ROO')
         | 
| 44 | 
             
                load_display = pd.DataFrame(worksheet.get_all_records())
         | 
| 45 | 
             
                load_display.replace('', np.nan, inplace=True)
         | 
| 46 | 
             
                raw_display = load_display.dropna(subset=['Median'])
         | 
|  | |
| 47 |  | 
| 48 | 
             
                return raw_display
         | 
| 49 |  | 
| 50 | 
             
            @st.cache_resource(ttl = 300)
         | 
| 51 | 
             
            def load_fd_player_projections():
         | 
| 52 | 
            +
                sh = gcservice_account.open_by_url('https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=1391856348')
         | 
| 53 | 
             
                worksheet = sh.worksheet('FD_ROO')
         | 
| 54 | 
             
                load_display = pd.DataFrame(worksheet.get_all_records())
         | 
| 55 | 
             
                load_display.replace('', np.nan, inplace=True)
         | 
| 56 | 
             
                raw_display = load_display.dropna(subset=['Median'])
         | 
|  | |
| 57 |  | 
| 58 | 
             
                return raw_display
         | 
| 59 |  | 
| 60 | 
             
            @st.cache_resource(ttl = 300)
         | 
| 61 | 
             
            def set_export_ids():
         | 
| 62 | 
            +
                sh = gcservice_account.open_by_url('https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=1391856348')
         | 
| 63 | 
             
                worksheet = sh.worksheet('DK_ROO')
         | 
| 64 | 
             
                load_display = pd.DataFrame(worksheet.get_all_records())
         | 
| 65 | 
             
                load_display.replace('', np.nan, inplace=True)
         | 
|  | |
| 71 | 
             
                load_display.replace('', np.nan, inplace=True)
         | 
| 72 | 
             
                raw_display = load_display.dropna(subset=['Median'])
         | 
| 73 | 
             
                fd_ids = dict(zip(raw_display['Player'], raw_display['player_id']))
         | 
|  | |
|  | |
|  | |
| 74 |  | 
| 75 | 
             
                return dk_ids, fd_ids
         | 
| 76 |  | 
| 77 | 
            +
            dk_roo_raw = load_dk_player_projections()
         | 
| 78 | 
            +
            fd_roo_raw = load_fd_player_projections()
         | 
| 79 | 
            +
            t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
         | 
| 80 | 
            +
            dkid_dict, fdid_dict = set_export_ids()
         | 
| 81 |  | 
| 82 | 
            +
            static_exposure = pd.DataFrame(columns=['Player', 'count'])
         | 
| 83 | 
            +
            overall_exposure = pd.DataFrame(columns=['Player', 'count'])
         | 
| 84 | 
            +
                
         | 
| 85 | 
            +
            def sim_contest(Sim_size, FinalPortfolio, CleanPortfolio, maps_dict, up_dict, insert_port):
         | 
| 86 | 
            +
                SimVar = 1
         | 
| 87 | 
            +
                Sim_Winners = []
         | 
| 88 | 
            +
                fp_array = FinalPortfolio.values
         | 
| 89 | 
            +
                
         | 
| 90 | 
            +
                if insert_port == 1:
         | 
| 91 | 
            +
                    up_array = CleanPortfolio.values
         | 
| 92 | 
            +
                
         | 
| 93 | 
            +
                # Pre-vectorize functions
         | 
| 94 | 
            +
                vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
         | 
| 95 | 
            +
                vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
         | 
| 96 | 
            +
                
         | 
| 97 | 
            +
                if insert_port == 1:
         | 
| 98 | 
            +
                    vec_up_projection_map = np.vectorize(up_dict['Projection_map'].__getitem__)
         | 
| 99 | 
            +
                    vec_up_stdev_map = np.vectorize(up_dict['STDev_map'].__getitem__)
         | 
| 100 | 
            +
                
         | 
| 101 | 
            +
                st.write('Simulating contest on frames')
         | 
| 102 | 
            +
                
         | 
| 103 | 
            +
                while SimVar <= Sim_size:
         | 
| 104 | 
            +
                    if insert_port == 1:
         | 
| 105 | 
            +
                        fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size-len(CleanPortfolio))]
         | 
| 106 | 
            +
                    elif insert_port == 0:
         | 
| 107 | 
            +
                        fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size)]
         | 
| 108 | 
            +
                        
         | 
| 109 | 
            +
                    sample_arrays1 = np.c_[
         | 
| 110 | 
            +
                        fp_random, 
         | 
| 111 | 
            +
                        np.sum(np.random.normal(
         | 
| 112 | 
            +
                            loc=vec_projection_map(fp_random[:, :-5]),
         | 
| 113 | 
            +
                            scale=vec_stdev_map(fp_random[:, :-5])),
         | 
| 114 | 
            +
                        axis=1)
         | 
| 115 | 
            +
                    ]
         | 
| 116 | 
            +
             | 
| 117 | 
            +
                    if insert_port == 1:
         | 
| 118 | 
            +
                        sample_arrays2 = np.c_[
         | 
| 119 | 
            +
                            up_array, 
         | 
| 120 | 
            +
                            np.sum(np.random.normal(
         | 
| 121 | 
            +
                                loc=vec_up_projection_map(up_array[:, :-5]),
         | 
| 122 | 
            +
                                scale=vec_up_stdev_map(up_array[:, :-5])),
         | 
| 123 | 
            +
                            axis=1)
         | 
| 124 | 
            +
                        ]
         | 
| 125 | 
            +
                        sample_arrays = np.vstack((sample_arrays1, sample_arrays2))
         | 
| 126 | 
            +
                    else:
         | 
| 127 | 
            +
                        sample_arrays = sample_arrays1
         | 
| 128 | 
            +
             | 
| 129 | 
            +
                    final_array = sample_arrays[sample_arrays[:, 10].argsort()[::-1]]
         | 
| 130 | 
            +
                    best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
         | 
| 131 | 
            +
                    Sim_Winners.append(best_lineup)
         | 
| 132 | 
            +
                    SimVar += 1
         | 
| 133 | 
            +
                    
         | 
| 134 | 
            +
                return Sim_Winners
         | 
| 135 | 
            +
             | 
| 136 | 
            +
            def run_seed_frame(seed_depth1, Strength_var, strength_grow, Teams_used, Total_Runs, field_growth):
         | 
| 137 | 
             
                RunsVar = 1
         | 
| 138 | 
             
                seed_depth_def = seed_depth1
         | 
| 139 | 
             
                Strength_var_def = Strength_var
         | 
| 140 | 
             
                strength_grow_def = strength_grow
         | 
| 141 | 
             
                Teams_used_def = Teams_used
         | 
| 142 | 
             
                Total_Runs_def = Total_Runs
         | 
| 143 | 
            +
                
         | 
| 144 | 
             
                while RunsVar <= seed_depth_def:
         | 
| 145 | 
             
                    if RunsVar <= 3:
         | 
| 146 | 
             
                        FieldStrength = Strength_var_def
         | 
| 147 | 
            +
                        FinalPortfolio, maps_dict = get_correlated_portfolio_for_sim(Total_Runs_def * .25, sharp_split, field_growth)
         | 
| 148 | 
            +
                        FinalPortfolio2, maps_dict2 = get_uncorrelated_portfolio_for_sim(Total_Runs_def * .25, sharp_split, field_growth)
         | 
| 149 | 
            +
                        FinalPortfolio_init = pd.concat([FinalPortfolio, FinalPortfolio2], axis=0)
         | 
| 150 | 
             
                        maps_dict.update(maps_dict2)
         | 
|  | |
|  | |
| 151 | 
             
                    elif RunsVar > 3 and RunsVar <= 4:
         | 
| 152 | 
             
                        FieldStrength += (strength_grow_def + ((30 - len(Teams_used_def)) * .001))
         | 
| 153 | 
            +
                        FinalPortfolio3, maps_dict3 = get_correlated_portfolio_for_sim(Total_Runs_def * .25, sharp_split, field_growth)
         | 
| 154 | 
            +
                        FinalPortfolio4, maps_dict4 = get_uncorrelated_portfolio_for_sim(Total_Runs_def * .25, sharp_split, field_growth)
         | 
| 155 | 
            +
                        FinalPortfolio_merge_3 = pd.concat([FinalPortfolio_init, FinalPortfolio3], axis=0)
         | 
| 156 | 
            +
                        FinalPortfolio_merge_4 = pd.concat([FinalPortfolio_merge_3, FinalPortfolio4], axis=0)
         | 
| 157 | 
            +
                        FinalPortfolio_step_2 = FinalPortfolio_merge_4.drop_duplicates(subset = ['Projection', 'Own'],keep = 'last').reset_index(drop = True)
         | 
| 158 | 
             
                        maps_dict.update(maps_dict3)
         | 
| 159 | 
             
                        maps_dict.update(maps_dict4)
         | 
|  | |
|  | |
|  | |
|  | |
| 160 | 
             
                    elif RunsVar > 4:
         | 
| 161 | 
             
                        FieldStrength = 1
         | 
| 162 | 
            +
                        FinalPortfolio5, maps_dict5 = get_correlated_portfolio_for_sim(Total_Runs_def * .25, sharp_split, field_growth)
         | 
| 163 | 
            +
                        FinalPortfolio6, maps_dict6 = get_uncorrelated_portfolio_for_sim(Total_Runs_def * .25, sharp_split, field_growth)
         | 
| 164 | 
            +
                        FinalPortfolio_merge_5 = pd.concat([FinalPortfolio_step_2, FinalPortfolio5], axis=0)
         | 
| 165 | 
            +
                        FinalPortfolio_merge_6 = pd.concat([FinalPortfolio_merge_5, FinalPortfolio6], axis=0)
         | 
| 166 | 
            +
                        FinalPortfolio_export = FinalPortfolio_merge_6.drop_duplicates(subset = ['Projection', 'Own'],keep = 'last').reset_index(drop = True)
         | 
| 167 | 
            +
                        maps_dict.update(maps_dict5)
         | 
| 168 | 
            +
                        maps_dict.update(maps_dict6)
         | 
|  | |
|  | |
|  | |
|  | |
| 169 | 
             
                    RunsVar += 1
         | 
| 170 | 
            +
                
         | 
| 171 | 
            +
                return FinalPortfolio_export, maps_dict
         | 
| 172 |  | 
| 173 | 
             
            def create_stack_options(player_data, wr_var):
         | 
| 174 | 
             
                    merged_frame = pd.DataFrame(columns = ['QB', 'Player'])
         | 
|  | |
| 184 | 
             
                    merged_frame = merged_frame.reset_index()
         | 
| 185 | 
             
                    correl_dict = dict(zip(merged_frame.QB, merged_frame.Player))
         | 
| 186 |  | 
|  | |
|  | |
|  | |
| 187 | 
             
                    return correl_dict
         | 
| 188 |  | 
| 189 | 
             
            def create_overall_dfs(pos_players, table_name, dict_name, pos):
         | 
|  | |
| 193 | 
             
                    overall_table_name = table_name_raw.head(round(len(table_name_raw)))
         | 
| 194 | 
             
                    overall_table_name = overall_table_name.assign(Var = range(0,len(overall_table_name)))
         | 
| 195 | 
             
                    overall_dict_name = pd.Series(overall_table_name.Player.values, index=overall_table_name.Var).to_dict()
         | 
|  | |
|  | |
|  | |
| 196 | 
             
                elif pos != "FLEX":
         | 
| 197 | 
             
                    table_name_raw = pos_players[pos_players['Position'].str.contains(pos)].reset_index(drop=True)
         | 
| 198 | 
             
                    overall_table_name = table_name_raw.head(round(len(table_name_raw)))
         | 
| 199 | 
             
                    overall_table_name = overall_table_name.assign(Var = range(0,len(overall_table_name)))
         | 
| 200 | 
             
                    overall_dict_name = pd.Series(overall_table_name.Player.values, index=overall_table_name.Var).to_dict()
         | 
|  | |
|  | |
|  | |
| 201 |  | 
| 202 | 
             
                return overall_table_name, overall_dict_name
         | 
| 203 |  | 
|  | |
| 215 |  | 
| 216 | 
             
                df_out = pd.concat(ref_dict['pos_dfs'], ignore_index=True)
         | 
| 217 |  | 
| 218 | 
            +
                return ref_dict
         | 
| 219 |  | 
| 220 | 
             
            def calculate_range_var(count, min_val, FieldStrength, field_growth):
         | 
| 221 | 
             
                var = round(len(count[0]) * FieldStrength)
         | 
| 222 | 
             
                var = max(var, min_val)
         | 
| 223 | 
             
                var += round(field_growth)
         | 
| 224 | 
            +
                
         | 
| 225 | 
             
                return min(var, len(count[0]))
         | 
| 226 |  | 
| 227 | 
            +
            def create_random_portfolio(Total_Sample_Size, raw_baselines, field_growth):
         | 
| 228 | 
            +
                        
         | 
| 229 | 
            +
                        st.write('Creating Seed Frames')
         | 
| 230 |  | 
| 231 | 
            +
                        full_pos_player_dict = get_overall_merged_df()
         | 
| 232 | 
             
                        max_var = len(raw_baselines[raw_baselines['Position'] == 'QB'])
         | 
| 233 |  | 
| 234 | 
             
                        field_growth_rounded = round(field_growth)
         | 
|  | |
| 247 | 
             
                        elif max_var > 16:
         | 
| 248 | 
             
                            ranges_dict['qb_range'] = round(max_var / 2)
         | 
| 249 | 
             
                            ranges_dict['dst_range'] = round(max_var)
         | 
|  | |
|  | |
|  | |
| 250 |  | 
| 251 | 
             
                        # Generate random portfolios
         | 
| 252 | 
             
                        rng = np.random.default_rng()
         | 
|  | |
| 256 | 
             
                        all_choices = [rng.choice(ranges_dict[f"{key}_range"], size=(Total_Sample_Size, elem)) for key, elem in zip(keys, total_elements)]
         | 
| 257 | 
             
                        RandomPortfolio = pd.DataFrame(np.hstack(all_choices), columns=['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST'])
         | 
| 258 | 
             
                        RandomPortfolio['User/Field'] = 0
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 259 |  | 
| 260 | 
             
                        return RandomPortfolio, maps_dict, ranges_dict, full_pos_player_dict
         | 
| 261 |  | 
| 262 | 
            +
            def get_correlated_portfolio_for_sim(Total_Sample_Size, sharp_split, field_growth):
         | 
| 263 |  | 
| 264 | 
             
                sizesplit = round(Total_Sample_Size * sharp_split)
         | 
| 265 |  | 
| 266 | 
            +
                RandomPortfolio, maps_dict, ranges_dict, full_pos_player_dict = create_random_portfolio(sizesplit, raw_baselines, field_growth)
         | 
| 267 | 
             
                stack_num = random.randint(1, 3)
         | 
| 268 | 
             
                stacking_dict = create_stack_options(raw_baselines, stack_num)
         | 
| 269 |  | 
|  | |
| 281 | 
             
                RandomPortfolio = RandomPortfolio[RandomPortfolio['plyr_count'] == 10].drop(columns=['plyr_list','plyr_count']).\
         | 
| 282 | 
             
                    reset_index(drop=True)
         | 
| 283 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 284 | 
             
                RandomPortfolio['QBs'] = RandomPortfolio['QB'].map(maps_dict['Salary_map']).astype(np.int32)
         | 
| 285 | 
             
                RandomPortfolio['RB1s'] = RandomPortfolio['RB1'].map(maps_dict['Salary_map']).astype(np.int32)
         | 
| 286 | 
             
                RandomPortfolio['RB2s'] = RandomPortfolio['RB2'].map(maps_dict['Salary_map']).astype(np.int32)
         | 
|  | |
| 312 | 
             
                RandomPortfolio['DSTo'] = RandomPortfolio['DST'].map(maps_dict['Own_map']).astype(np.float16)
         | 
| 313 |  | 
| 314 | 
             
                RandomPortArray = RandomPortfolio.to_numpy()
         | 
|  | |
| 315 |  | 
| 316 | 
             
                RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,10:19].astype(int))]
         | 
| 317 | 
             
                RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,19:28].astype(np.double))]
         | 
|  | |
| 320 | 
             
                RandomPortArrayOut = np.delete(RandomPortArray, np.s_[10:37], axis=1)
         | 
| 321 | 
             
                RandomPortfolioDF = pd.DataFrame(RandomPortArrayOut, columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'User/Field', 'Salary', 'Projection', 'Own'])
         | 
| 322 | 
             
                RandomPortfolioDF = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
         | 
|  | |
|  | |
| 323 |  | 
| 324 | 
             
                if insert_port == 1:
         | 
| 325 | 
             
                    CleanPortfolio['Salary'] = sum([CleanPortfolio['QB'].map(maps_dict['Salary_map']),
         | 
|  | |
| 364 |  | 
| 365 | 
             
                RandomPortfolio = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
         | 
| 366 |  | 
|  | |
|  | |
| 367 | 
             
                RandomPortfolio = RandomPortfolio[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'User/Field', 'Salary', 'Projection', 'Own']]
         | 
| 368 |  | 
| 369 | 
             
                return RandomPortfolio, maps_dict
         | 
| 370 |  | 
| 371 | 
            +
            def get_uncorrelated_portfolio_for_sim(Total_Sample_Size, sharp_split, field_growth):
         | 
| 372 |  | 
| 373 | 
             
                sizesplit = round(Total_Sample_Size * (1-sharp_split))
         | 
| 374 |  | 
| 375 | 
            +
                RandomPortfolio, maps_dict, ranges_dict, full_pos_player_dict = create_random_portfolio(sizesplit, raw_baselines, field_growth)
         | 
| 376 |  | 
| 377 | 
             
                RandomPortfolio['QB'] = pd.Series(list(RandomPortfolio['QB'].map(qb_dict)), dtype="string[pyarrow]")
         | 
| 378 | 
             
                RandomPortfolio['RB1'] = pd.Series(list(RandomPortfolio['RB1'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
         | 
|  | |
| 388 | 
             
                RandomPortfolio = RandomPortfolio[RandomPortfolio['plyr_count'] == 10].drop(columns=['plyr_list','plyr_count']).\
         | 
| 389 | 
             
                    reset_index(drop=True)
         | 
| 390 |  | 
|  | |
|  | |
|  | |
|  | |
| 391 | 
             
                RandomPortfolio['QBs'] = RandomPortfolio['QB'].map(maps_dict['Salary_map']).astype(np.int32)
         | 
| 392 | 
             
                RandomPortfolio['RB1s'] = RandomPortfolio['RB1'].map(maps_dict['Salary_map']).astype(np.int32)
         | 
| 393 | 
             
                RandomPortfolio['RB2s'] = RandomPortfolio['RB2'].map(maps_dict['Salary_map']).astype(np.int32)
         | 
|  | |
| 419 | 
             
                RandomPortfolio['DSTo'] = RandomPortfolio['DST'].map(maps_dict['Own_map']).astype(np.float16)
         | 
| 420 |  | 
| 421 | 
             
                RandomPortArray = RandomPortfolio.to_numpy()
         | 
|  | |
| 422 |  | 
| 423 | 
             
                RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,10:19].astype(int))]
         | 
| 424 | 
             
                RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,19:28].astype(np.double))]
         | 
|  | |
| 427 | 
             
                RandomPortArrayOut = np.delete(RandomPortArray, np.s_[10:37], axis=1)
         | 
| 428 | 
             
                RandomPortfolioDF = pd.DataFrame(RandomPortArrayOut, columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'User/Field', 'Salary', 'Projection', 'Own'])
         | 
| 429 | 
             
                RandomPortfolioDF = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
         | 
|  | |
|  | |
|  | |
| 430 |  | 
| 431 | 
             
                if insert_port == 1:
         | 
| 432 | 
             
                    CleanPortfolio['Salary'] = sum([CleanPortfolio['QB'].map(maps_dict['Salary_map']),
         | 
|  | |
| 473 |  | 
| 474 | 
             
                RandomPortfolio = RandomPortfolio[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'User/Field', 'Salary', 'Projection', 'Own']]
         | 
| 475 |  | 
|  | |
|  | |
| 476 | 
             
                return RandomPortfolio, maps_dict
         | 
| 477 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 478 | 
             
            tab1, tab2 = st.tabs(['Uploads', 'Contest Sim'])
         | 
| 479 |  | 
| 480 | 
             
            with tab1:
         | 
|  | |
| 507 | 
             
                                          player_salary_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Salary))
         | 
| 508 | 
             
                                          player_proj_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Median))
         | 
| 509 | 
             
                                          player_own_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Own))
         | 
|  | |
| 510 |  | 
| 511 | 
             
                      with col2:
         | 
| 512 | 
             
                                st.info("The Portfolio file must contain only columns in order and explicitly named: 'QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', and 'DST'. Upload your projections first to avoid an error message.")
         | 
|  | |
| 574 | 
             
                                                          split_portfolio['TE'].map(player_own_dict),
         | 
| 575 | 
             
                                                          split_portfolio['FLEX'].map(player_own_dict),
         | 
| 576 | 
             
                                                          split_portfolio['DST'].map(player_own_dict)])
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 577 |  | 
| 578 |  | 
| 579 | 
             
                                            except:
         | 
|  | |
| 630 | 
             
                                                          split_portfolio['TE'].map(player_own_dict),
         | 
| 631 | 
             
                                                          split_portfolio['FLEX'].map(player_own_dict),
         | 
| 632 | 
             
                                                          split_portfolio['DST'].map(player_own_dict)])
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 633 |  | 
| 634 | 
             
                                        except:
         | 
| 635 | 
             
                                             split_portfolio = portfolio_dataframe
         | 
|  | |
| 663 | 
             
                                                       split_portfolio['TE'].map(player_own_dict),
         | 
| 664 | 
             
                                                       split_portfolio['FLEX'].map(player_own_dict),
         | 
| 665 | 
             
                                                       split_portfolio['DST'].map(player_own_dict)])
         | 
| 666 | 
            +
                                             
         | 
| 667 | 
            +
                                        gc.collect() 
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 668 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 669 | 
             
            with tab2:
         | 
| 670 | 
             
                col1, col2 = st.columns([1, 7])
         | 
| 671 | 
             
                with col1:
         | 
|  | |
| 693 | 
             
                          elif slate_var1 != 'User':
         | 
| 694 | 
             
                              raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var1)]
         | 
| 695 | 
             
                              raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
         | 
| 696 | 
            +
             | 
|  | |
| 697 | 
             
                    st.info("If you are uploading a portfolio, note that there is an adjustments to projections and deviation mapping to prevent 'Projection Bias' and create a fair simulation")
         | 
| 698 | 
             
                    insert_port1 = st.selectbox("Are you uploading a portfolio?", ('No', 'Yes'), key='insert_port1')
         | 
| 699 | 
             
                    if insert_port1 == 'Yes':
         | 
|  | |
| 707 | 
             
                        Contest_Size = 5000
         | 
| 708 | 
             
                    elif contest_var1 == 'Large':
         | 
| 709 | 
             
                        Contest_Size = 10000
         | 
|  | |
| 710 | 
             
                    strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Not Very', 'Average', 'Very'))
         | 
| 711 | 
             
                    if strength_var1 == 'Not Very':
         | 
| 712 | 
             
                        sharp_split = .33
         | 
|  | |
| 720 | 
             
                        sharp_split = .75
         | 
| 721 | 
             
                        Strength_var = .01
         | 
| 722 | 
             
                        scaling_var = 15
         | 
| 723 | 
            +
                    
         | 
| 724 | 
            +
                    Sort_function = 'Median'
         | 
| 725 | 
            +
                    Sim_function = 'Projection'
         | 
| 726 | 
            +
                    
         | 
| 727 | 
            +
                    if Contest_Size <= 1000:
         | 
| 728 | 
            +
                        strength_grow = .01
         | 
| 729 | 
            +
                    elif Contest_Size > 1000 and Contest_Size <= 2500:
         | 
| 730 | 
            +
                        strength_grow = .025
         | 
| 731 | 
            +
                    elif Contest_Size > 2500 and Contest_Size <= 5000:
         | 
| 732 | 
            +
                        strength_grow = .05
         | 
| 733 | 
            +
                    elif Contest_Size > 5000 and Contest_Size <= 20000:
         | 
| 734 | 
            +
                        strength_grow = .075
         | 
| 735 | 
            +
                    elif Contest_Size > 20000:
         | 
| 736 | 
            +
                        strength_grow = .1
         | 
| 737 | 
            +
                        
         | 
| 738 | 
            +
                    field_growth = 100 * strength_grow
         | 
| 739 |  | 
| 740 | 
             
                with col2:
         | 
| 741 | 
             
                    with st.container():
         | 
| 742 | 
             
                        if st.button("Simulate Contest"):
         | 
| 743 | 
             
                            with st.container():
         | 
|  | |
| 744 | 
             
                                for key in st.session_state.keys():
         | 
| 745 | 
             
                                    del st.session_state[key]
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 746 |  | 
| 747 | 
             
                                if slate_var1 == 'User':
         | 
| 748 | 
            +
                                    initial_proj = proj_dataframe[['Player', 'Team', 'Position', 'Median', 'Own', 'Floor', 'Ceiling', 'Salary']]
         | 
| 749 | 
            +
                                    
         | 
| 750 | 
            +
                                    # Define the calculation to be applied
         | 
| 751 | 
            +
                                    def calculate_own(position, own, mean_own, factor, max_own=75):
         | 
| 752 | 
            +
                                        return np.where((position == 'QB') & (own - mean_own >= 0),
         | 
| 753 | 
            +
                                                        own * (factor * (own - mean_own) / 100) + mean_own,
         | 
| 754 | 
            +
                                                        own)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 755 |  | 
| 756 | 
            +
                                    # Set the factors based on the contest_var1
         | 
| 757 | 
            +
                                    factor_qb, factor_other = {
         | 
| 758 | 
            +
                                        'Small': (10, 5),
         | 
| 759 | 
            +
                                        'Medium': (6, 3),
         | 
| 760 | 
            +
                                        'Large': (3, 1.5),
         | 
| 761 | 
            +
                                    }[contest_var1]
         | 
| 762 | 
            +
                                    
         | 
| 763 | 
            +
                                    # Apply the calculation to the DataFrame
         | 
| 764 | 
            +
                                    initial_proj['Own%'] = initial_proj.apply(lambda row: calculate_own(row['Position'], row['Own'], initial_proj.loc[initial_proj['Position'] == row['Position'], 'Own'].mean(), factor_qb if row['Position'] == 'QB' else factor_other), axis=1)
         | 
| 765 | 
            +
                                    initial_proj['Own%'] = initial_proj['Own%'].clip(upper=75)
         | 
| 766 | 
            +
                                    initial_proj['Own'] = initial_proj['Own%'] * (900 / initial_proj['Own%'].sum())
         | 
| 767 | 
            +
                                    
         | 
| 768 | 
            +
                                    # Drop unnecessary columns and create the final DataFrame
         | 
| 769 | 
            +
                                    Overall_Proj = initial_proj[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
         | 
| 770 |  | 
| 771 | 
             
                                elif slate_var1 != 'User':
         | 
| 772 | 
            +
                                    # Copy only the necessary columns
         | 
| 773 | 
            +
                                    initial_proj = raw_baselines[['Player', 'Team', 'Position', 'Median', 'Own', 'Floor', 'Ceiling', 'Salary']]
         | 
| 774 | 
            +
                                    
         | 
| 775 | 
            +
                                    # Define the calculation to be applied
         | 
| 776 | 
            +
                                    def calculate_own(position, own, mean_own, factor, max_own=75):
         | 
| 777 | 
            +
                                        return np.where((position == 'QB') & (own - mean_own >= 0),
         | 
| 778 | 
            +
                                                        own * (factor * (own - mean_own) / 100) + mean_own,
         | 
| 779 | 
            +
                                                        own)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 780 |  | 
| 781 | 
            +
                                    # Set the factors based on the contest_var1
         | 
| 782 | 
            +
                                    factor_qb, factor_other = {
         | 
| 783 | 
            +
                                        'Small': (10, 5),
         | 
| 784 | 
            +
                                        'Medium': (6, 3),
         | 
| 785 | 
            +
                                        'Large': (3, 1.5),
         | 
| 786 | 
            +
                                    }[contest_var1]
         | 
| 787 | 
            +
                                    
         | 
| 788 | 
            +
                                    # Apply the calculation to the DataFrame
         | 
| 789 | 
            +
                                    initial_proj['Own%'] = initial_proj.apply(lambda row: calculate_own(row['Position'], row['Own'], initial_proj.loc[initial_proj['Position'] == row['Position'], 'Own'].mean(), factor_qb if row['Position'] == 'QB' else factor_other), axis=1)
         | 
| 790 | 
            +
                                    initial_proj['Own%'] = initial_proj['Own%'].clip(upper=75)
         | 
| 791 | 
            +
                                    initial_proj['Own'] = initial_proj['Own%'] * (900 / initial_proj['Own%'].sum())
         | 
| 792 | 
            +
                                    
         | 
| 793 | 
            +
                                    # Drop unnecessary columns and create the final DataFrame
         | 
| 794 | 
            +
                                    Overall_Proj = initial_proj[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
         | 
| 795 |  | 
| 796 | 
             
                                if insert_port == 1:
         | 
| 797 | 
             
                                    UserPortfolio = portfolio_dataframe[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']]
         | 
|  | |
| 815 | 
             
                                Teams_used['team_item'] = Teams_used['index'] + 1
         | 
| 816 | 
             
                                Teams_used = Teams_used.drop(columns=['index'])
         | 
| 817 | 
             
                                Teams_used_dictraw = Teams_used.drop(columns=['team_item'])
         | 
|  | |
|  | |
|  | |
| 818 |  | 
| 819 | 
             
                                team_list = Teams_used['Team'].to_list()
         | 
| 820 | 
             
                                item_list = Teams_used['team_item'].to_list()
         | 
|  | |
| 822 | 
             
                                FieldStrength_raw = Strength_var + ((30 - len(Teams_used)) * .01)
         | 
| 823 | 
             
                                FieldStrength = FieldStrength_raw - (FieldStrength_raw * (20000 / Contest_Size))
         | 
| 824 |  | 
|  | |
|  | |
| 825 | 
             
                                if FieldStrength < 0:
         | 
| 826 | 
             
                                    FieldStrength = Strength_var
         | 
| 827 | 
             
                                field_split = Strength_var
         | 
|  | |
| 865 | 
             
                                pos_players = pd.concat([rbs_raw, wrs_raw, tes_raw])
         | 
| 866 | 
             
                                pos_players.dropna(subset=['Median']).reset_index(drop=True)
         | 
| 867 | 
             
                                pos_players = pos_players.reset_index(drop=True)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 868 |  | 
| 869 | 
             
                                if insert_port == 1:
         | 
| 870 | 
             
                                    try:
         | 
|  | |
| 884 | 
             
                                        CleanPortfolio['User/Field'] = CleanPortfolio['index'] + 1
         | 
| 885 | 
             
                                        CleanPortfolio.drop(columns=['index'], inplace=True)
         | 
| 886 |  | 
|  | |
|  | |
| 887 | 
             
                                        CleanPortfolio.replace('', np.nan, inplace=True)
         | 
| 888 | 
             
                                        CleanPortfolio.dropna(subset=['QB'], inplace=True)
         | 
| 889 |  | 
|  | |
| 898 | 
             
                                        nerf_frame = pd.merge(cleaport_players, Overall_Proj, on='Player', how='left')
         | 
| 899 | 
             
                                        for col in ['Median', 'Floor', 'Ceiling', 'STDev']:
         | 
| 900 | 
             
                                            nerf_frame[col] *= 0.90
         | 
|  | |
| 901 | 
             
                                    except:
         | 
| 902 | 
             
                                        CleanPortfolio = UserPortfolio.reset_index()
         | 
| 903 | 
             
                                        CleanPortfolio['User/Field'] = CleanPortfolio['index'] + 1
         | 
|  | |
| 925 | 
             
                                                               columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
         | 
| 926 | 
             
                                    cleaport_players['Freq'] = cleaport_players['Freq'].astype(int)
         | 
| 927 | 
             
                                    nerf_frame = Overall_Proj
         | 
| 928 | 
            +
                                
         | 
| 929 | 
             
                                ref_dict = {
         | 
| 930 | 
             
                                    'pos':['RB', 'WR', 'TE', 'FLEX'],
         | 
| 931 | 
             
                                    'pos_dfs':['RB_Table', 'WR_Table', 'TE_Table', 'FLEX_Table'],
         | 
|  | |
| 956 | 
             
                                    'team_check_map':dict(zip(cleaport_players.Player,nerf_frame.Team))
         | 
| 957 | 
             
                                    }
         | 
| 958 |  | 
| 959 | 
            +
                                FinalPortfolio, maps_dict = run_seed_frame(10, Strength_var, strength_grow, Teams_used, 1000000, field_growth)
         | 
|  | |
|  | |
| 960 |  | 
| 961 | 
            +
                                Sim_Winners = sim_contest(2500, FinalPortfolio, CleanPortfolio, maps_dict, up_dict, insert_port)
         | 
|  | |
| 962 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 963 | 
             
                                # Initial setup
         | 
| 964 | 
             
                                Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=FinalPortfolio.columns.tolist() + ['Fantasy'])
         | 
| 965 | 
             
                                Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['Projection'] + Sim_Winner_Frame['Fantasy']) / 2
         | 
| 966 |  | 
|  | |
|  | |
| 967 | 
             
                                # Type Casting
         | 
| 968 | 
             
                                type_cast_dict = {'Salary': int, 'Projection': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float16}
         | 
| 969 | 
             
                                Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
         | 
| 970 |  | 
| 971 | 
            +
                                del FinalPortfolio, insert_port, type_cast_dict
         | 
| 972 | 
            +
                                
         | 
| 973 | 
             
                                # Sorting
         | 
| 974 | 
             
                                st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by='GPP_Proj', ascending=False)
         | 
| 975 |  | 
| 976 | 
             
                                # Data Copying
         | 
| 977 | 
            +
                                st.session_state.Sim_Winner_Export = Sim_Winner_Frame
         | 
|  | |
|  | |
| 978 |  | 
| 979 | 
             
                                # Conditional Replacement
         | 
| 980 | 
             
                                columns_to_replace = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
         | 
|  | |
| 984 | 
             
                                elif site_var1 == 'Fanduel':
         | 
| 985 | 
             
                                    replace_dict = fdid_dict
         | 
| 986 |  | 
|  | |
|  | |
|  | |
| 987 | 
             
                                for col in columns_to_replace:
         | 
| 988 | 
             
                                    st.session_state.Sim_Winner_Export[col].replace(replace_dict, inplace=True)
         | 
| 989 | 
            +
                                
         | 
| 990 | 
            +
                                del replace_dict, Sim_Winner_Frame, Sim_Winners
         | 
| 991 |  | 
| 992 | 
            +
                                st.session_state.player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,0:9].values, return_counts=True)),
         | 
| 993 | 
             
                                                            columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
         | 
| 994 | 
            +
                                st.session_state.player_freq['Freq'] = st.session_state.player_freq['Freq'].astype(int)
         | 
| 995 | 
            +
                                st.session_state.player_freq['Position'] = st.session_state.player_freq['Player'].map(maps_dict['Pos_map'])
         | 
| 996 | 
            +
                                st.session_state.player_freq['Salary'] = st.session_state.player_freq['Player'].map(maps_dict['Salary_map'])
         | 
| 997 | 
            +
                                st.session_state.player_freq['Proj Own'] = st.session_state.player_freq['Player'].map(maps_dict['Own_map']) / 100
         | 
| 998 | 
            +
                                st.session_state.player_freq['Exposure'] = st.session_state.player_freq['Freq']/(2500)
         | 
| 999 | 
            +
                                st.session_state.player_freq['Edge'] = st.session_state.player_freq['Exposure'] - st.session_state.player_freq['Proj Own']
         | 
| 1000 | 
            +
                                st.session_state.player_freq['Team'] = st.session_state.player_freq['Player'].map(maps_dict['Team_map'])
         | 
| 1001 | 
             
                                for checkVar in range(len(team_list)):
         | 
| 1002 | 
            +
                                                    st.session_state.player_freq['Team'] = st.session_state.player_freq['Team'].replace(item_list, team_list)
         | 
|  | |
|  | |
|  | |
| 1003 |  | 
| 1004 | 
            +
                                st.session_state.qb_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,0:1].values, return_counts=True)),
         | 
| 1005 | 
             
                                                            columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
         | 
| 1006 | 
            +
                                st.session_state.qb_freq['Freq'] = st.session_state.qb_freq['Freq'].astype(int)
         | 
| 1007 | 
            +
                                st.session_state.qb_freq['Position'] = st.session_state.qb_freq['Player'].map(maps_dict['Pos_map'])
         | 
| 1008 | 
            +
                                st.session_state.qb_freq['Salary'] = st.session_state.qb_freq['Player'].map(maps_dict['Salary_map'])
         | 
| 1009 | 
            +
                                st.session_state.qb_freq['Proj Own'] = st.session_state.qb_freq['Player'].map(maps_dict['Own_map']) / 100
         | 
| 1010 | 
            +
                                st.session_state.qb_freq['Exposure'] = st.session_state.qb_freq['Freq']/(2500)
         | 
| 1011 | 
            +
                                st.session_state.qb_freq['Edge'] = st.session_state.qb_freq['Exposure'] - st.session_state.qb_freq['Proj Own']
         | 
| 1012 | 
            +
                                st.session_state.qb_freq['Team'] = st.session_state.qb_freq['Player'].map(maps_dict['Team_map'])
         | 
| 1013 | 
             
                                for checkVar in range(len(team_list)):
         | 
| 1014 | 
            +
                                                    st.session_state.qb_freq['Team'] = st.session_state.qb_freq['Team'].replace(item_list, team_list)
         | 
| 1015 |  | 
| 1016 | 
            +
                                st.session_state.rb_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,[1, 2]].values, return_counts=True)),
         | 
|  | |
|  | |
|  | |
| 1017 | 
             
                                                           columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
         | 
| 1018 | 
            +
                                st.session_state.rb_freq['Freq'] = st.session_state.rb_freq['Freq'].astype(int)
         | 
| 1019 | 
            +
                                st.session_state.rb_freq['Position'] = st.session_state.rb_freq['Player'].map(maps_dict['Pos_map'])
         | 
| 1020 | 
            +
                                st.session_state.rb_freq['Salary'] = st.session_state.rb_freq['Player'].map(maps_dict['Salary_map'])
         | 
| 1021 | 
            +
                                st.session_state.rb_freq['Proj Own'] = st.session_state.rb_freq['Player'].map(maps_dict['Own_map']) / 100
         | 
| 1022 | 
            +
                                st.session_state.rb_freq['Exposure'] = st.session_state.rb_freq['Freq']/2500
         | 
| 1023 | 
            +
                                st.session_state.rb_freq['Edge'] = st.session_state.rb_freq['Exposure'] - st.session_state.rb_freq['Proj Own']
         | 
| 1024 | 
            +
                                st.session_state.rb_freq['Team'] = st.session_state.rb_freq['Player'].map(maps_dict['Team_map'])
         | 
| 1025 | 
             
                                for checkVar in range(len(team_list)):
         | 
| 1026 | 
            +
                                                    st.session_state.rb_freq['Team'] = st.session_state.rb_freq['Team'].replace(item_list, team_list)
         | 
|  | |
|  | |
|  | |
| 1027 |  | 
| 1028 | 
            +
                                st.session_state.wr_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,[3, 4, 5]].values, return_counts=True)),
         | 
| 1029 | 
             
                                                           columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
         | 
| 1030 | 
            +
                                st.session_state.wr_freq['Freq'] = st.session_state.wr_freq['Freq'].astype(int)
         | 
| 1031 | 
            +
                                st.session_state.wr_freq['Position'] = st.session_state.wr_freq['Player'].map(maps_dict['Pos_map'])
         | 
| 1032 | 
            +
                                st.session_state.wr_freq['Salary'] = st.session_state.wr_freq['Player'].map(maps_dict['Salary_map'])
         | 
| 1033 | 
            +
                                st.session_state.wr_freq['Proj Own'] = st.session_state.wr_freq['Player'].map(maps_dict['Own_map']) / 100
         | 
| 1034 | 
            +
                                st.session_state.wr_freq['Exposure'] = st.session_state.wr_freq['Freq']/2500
         | 
| 1035 | 
            +
                                st.session_state.wr_freq['Edge'] = st.session_state.wr_freq['Exposure'] - st.session_state.wr_freq['Proj Own']
         | 
| 1036 | 
            +
                                st.session_state.wr_freq['Team'] = st.session_state.wr_freq['Player'].map(maps_dict['Team_map'])
         | 
| 1037 | 
             
                                for checkVar in range(len(team_list)):
         | 
| 1038 | 
            +
                                                    st.session_state.wr_freq['Team'] = st.session_state.wr_freq['Team'].replace(item_list, team_list)
         | 
|  | |
|  | |
|  | |
| 1039 |  | 
| 1040 | 
            +
                                st.session_state.te_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,[6]].values, return_counts=True)),
         | 
| 1041 | 
             
                                                           columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
         | 
| 1042 | 
            +
                                st.session_state.te_freq['Freq'] = st.session_state.te_freq['Freq'].astype(int)
         | 
| 1043 | 
            +
                                st.session_state.te_freq['Position'] = st.session_state.te_freq['Player'].map(maps_dict['Pos_map'])
         | 
| 1044 | 
            +
                                st.session_state.te_freq['Salary'] = st.session_state.te_freq['Player'].map(maps_dict['Salary_map'])
         | 
| 1045 | 
            +
                                st.session_state.te_freq['Proj Own'] = st.session_state.te_freq['Player'].map(maps_dict['Own_map']) / 100
         | 
| 1046 | 
            +
                                st.session_state.te_freq['Exposure'] = st.session_state.te_freq['Freq']/2500
         | 
| 1047 | 
            +
                                st.session_state.te_freq['Edge'] = st.session_state.te_freq['Exposure'] - st.session_state.te_freq['Proj Own']
         | 
| 1048 | 
            +
                                st.session_state.te_freq['Team'] = st.session_state.te_freq['Player'].map(maps_dict['Team_map'])
         | 
| 1049 | 
             
                                for checkVar in range(len(team_list)):
         | 
| 1050 | 
            +
                                                    st.session_state.te_freq['Team'] = st.session_state.te_freq['Team'].replace(item_list, team_list)
         | 
|  | |
|  | |
|  | |
| 1051 |  | 
| 1052 | 
            +
                                st.session_state.flex_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,[7]].values, return_counts=True)),
         | 
| 1053 | 
             
                                                           columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
         | 
| 1054 | 
            +
                                st.session_state.flex_freq['Freq'] = st.session_state.flex_freq['Freq'].astype(int)
         | 
| 1055 | 
            +
                                st.session_state.flex_freq['Position'] = st.session_state.flex_freq['Player'].map(maps_dict['Pos_map'])
         | 
| 1056 | 
            +
                                st.session_state.flex_freq['Salary'] = st.session_state.flex_freq['Player'].map(maps_dict['Salary_map'])
         | 
| 1057 | 
            +
                                st.session_state.flex_freq['Proj Own'] = st.session_state.flex_freq['Player'].map(maps_dict['Own_map']) / 100
         | 
| 1058 | 
            +
                                st.session_state.flex_freq['Exposure'] = st.session_state.flex_freq['Freq']/2500
         | 
| 1059 | 
            +
                                st.session_state.flex_freq['Edge'] = st.session_state.flex_freq['Exposure'] - st.session_state.flex_freq['Proj Own']
         | 
| 1060 | 
            +
                                st.session_state.flex_freq['Team'] = st.session_state.flex_freq['Player'].map(maps_dict['Team_map'])
         | 
| 1061 | 
             
                                for checkVar in range(len(team_list)):
         | 
| 1062 | 
            +
                                                    st.session_state.flex_freq['Team'] = st.session_state.flex_freq['Team'].replace(item_list, team_list)
         | 
|  | |
|  | |
|  | |
| 1063 |  | 
| 1064 | 
            +
                                st.session_state.dst_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,8:9].values, return_counts=True)),
         | 
| 1065 | 
             
                                                           columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
         | 
| 1066 | 
            +
                                st.session_state.dst_freq['Freq'] = st.session_state.dst_freq['Freq'].astype(int)
         | 
| 1067 | 
            +
                                st.session_state.dst_freq['Position'] = st.session_state.dst_freq['Player'].map(maps_dict['Pos_map'])
         | 
| 1068 | 
            +
                                st.session_state.dst_freq['Salary'] = st.session_state.dst_freq['Player'].map(maps_dict['Salary_map'])
         | 
| 1069 | 
            +
                                st.session_state.dst_freq['Proj Own'] = st.session_state.dst_freq['Player'].map(maps_dict['Own_map']) / 100
         | 
| 1070 | 
            +
                                st.session_state.dst_freq['Exposure'] = st.session_state.dst_freq['Freq']/2500
         | 
| 1071 | 
            +
                                st.session_state.dst_freq['Edge'] = st.session_state.dst_freq['Exposure'] - st.session_state.dst_freq['Proj Own']
         | 
| 1072 | 
            +
                                st.session_state.dst_freq['Team'] = st.session_state.dst_freq['Player'].map(maps_dict['Team_map'])
         | 
| 1073 | 
             
                                for checkVar in range(len(team_list)):
         | 
| 1074 | 
            +
                                                    st.session_state.dst_freq['Team'] = st.session_state.dst_freq['Team'].replace(item_list, team_list)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 1075 |  | 
| 1076 | 
             
                    with st.container():
         | 
|  | |
| 1077 | 
             
                        if 'player_freq' in st.session_state: 
         | 
| 1078 | 
             
                            player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'), key='player_split_var2')
         | 
| 1079 | 
             
                            if player_split_var2 == 'Specific Players':
         | 
|  | |
| 1082 | 
             
                                      find_var2 = st.session_state.player_freq.Player.values.tolist()
         | 
| 1083 |  | 
| 1084 | 
             
                            if player_split_var2 == 'Specific Players':
         | 
| 1085 | 
            +
                                      st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame[np.equal.outer(st.session_state.Sim_Winner_Frame.to_numpy(), find_var2).any(axis=1).all(axis=1)]
         | 
| 1086 | 
             
                            if player_split_var2 == 'Full Players':
         | 
| 1087 | 
             
                                      st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame
         | 
| 1088 | 
             
                        if 'Sim_Winner_Display' in st.session_state:
         | 
|  | |
| 1090 | 
             
                        if 'Sim_Winner_Export' in st.session_state:
         | 
| 1091 | 
             
                            st.download_button(
         | 
| 1092 | 
             
                                label="Export Tables",
         | 
| 1093 | 
            +
                                data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'),
         | 
| 1094 | 
             
                                file_name='NFL_consim_export.csv',
         | 
| 1095 | 
             
                                mime='text/csv',
         | 
| 1096 | 
             
                            )
         | 
| 1097 |  | 
| 1098 | 
             
                    with st.container():
         | 
|  | |
| 1099 | 
             
                        tab1, tab2, tab3, tab4, tab5, tab6, tab7 = st.tabs(['Overall Exposures', 'QB Exposures', 'RB Exposures', 'WR Exposures', 'TE Exposures', 'FLEX Exposures', 'DST Exposures'])
         | 
| 1100 | 
             
                        with tab1:
         | 
| 1101 | 
             
                            if 'player_freq' in st.session_state:
         | 
| 1102 | 
             
                                st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
         | 
| 1103 | 
             
                                st.download_button(
         | 
| 1104 | 
             
                                    label="Export Exposures",
         | 
| 1105 | 
            +
                                    data=st.session_state.player_freq.to_csv().encode('utf-8'),
         | 
| 1106 | 
             
                                    file_name='player_freq_export.csv',
         | 
| 1107 | 
             
                                    mime='text/csv',
         | 
| 1108 | 
             
                                )
         | 
|  | |
| 1111 | 
             
                                st.dataframe(st.session_state.qb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
         | 
| 1112 | 
             
                                st.download_button(
         | 
| 1113 | 
             
                                    label="Export Exposures",
         | 
| 1114 | 
            +
                                    data=st.session_state.qb_freq.to_csv().encode('utf-8'),
         | 
| 1115 | 
             
                                    file_name='qb_freq_export.csv',
         | 
| 1116 | 
             
                                    mime='text/csv',
         | 
| 1117 | 
             
                                )
         | 
|  | |
| 1120 | 
             
                                st.dataframe(st.session_state.rb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
         | 
| 1121 | 
             
                                st.download_button(
         | 
| 1122 | 
             
                                    label="Export Exposures",
         | 
| 1123 | 
            +
                                    data=st.session_state.rb_freq.to_csv().encode('utf-8'),
         | 
| 1124 | 
             
                                    file_name='rb_freq_export.csv',
         | 
| 1125 | 
             
                                    mime='text/csv',
         | 
| 1126 | 
             
                                )
         | 
|  | |
| 1129 | 
             
                                st.dataframe(st.session_state.wr_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
         | 
| 1130 | 
             
                                st.download_button(
         | 
| 1131 | 
             
                                    label="Export Exposures",
         | 
| 1132 | 
            +
                                    data=st.session_state.wr_freq.to_csv().encode('utf-8'),
         | 
| 1133 | 
             
                                    file_name='wr_freq_export.csv',
         | 
| 1134 | 
             
                                    mime='text/csv',
         | 
| 1135 | 
             
                                )
         | 
|  | |
| 1138 | 
             
                                st.dataframe(st.session_state.te_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
         | 
| 1139 | 
             
                                st.download_button(
         | 
| 1140 | 
             
                                    label="Export Exposures",
         | 
| 1141 | 
            +
                                    data=st.session_state.te_freq.to_csv().encode('utf-8'),
         | 
| 1142 | 
             
                                    file_name='te_freq_export.csv',
         | 
| 1143 | 
             
                                    mime='text/csv',
         | 
| 1144 | 
             
                                )
         | 
|  | |
| 1147 | 
             
                                st.dataframe(st.session_state.flex_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
         | 
| 1148 | 
             
                                st.download_button(
         | 
| 1149 | 
             
                                    label="Export Exposures",
         | 
| 1150 | 
            +
                                    data=st.session_state.flex_freq.to_csv().encode('utf-8'),
         | 
| 1151 | 
             
                                    file_name='flex_freq_export.csv',
         | 
| 1152 | 
             
                                    mime='text/csv',
         | 
| 1153 | 
             
                                )
         | 
|  | |
| 1156 | 
             
                                st.dataframe(st.session_state.dst_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
         | 
| 1157 | 
             
                                st.download_button(
         | 
| 1158 | 
             
                                    label="Export Exposures",
         | 
| 1159 | 
            +
                                    data=st.session_state.dst_freq.to_csv().encode('utf-8'),
         | 
| 1160 | 
             
                                    file_name='dst_freq_export.csv',
         | 
| 1161 | 
             
                                    mime='text/csv',
         | 
| 1162 | 
            +
                                )
         | 
| 1163 | 
            +
             | 
| 1164 | 
            +
            del gcservice_account
         | 
| 1165 | 
            +
            del dk_roo_raw, fd_roo_raw
         | 
| 1166 | 
            +
            del t_stamp
         | 
| 1167 | 
            +
            del dkid_dict, fdid_dict
         | 
| 1168 | 
            +
            del static_exposure, overall_exposure
         | 
| 1169 | 
            +
            del insert_port1, Contest_Size, sharp_split, Strength_var, scaling_var, Sort_function, Sim_function, strength_grow, field_growth
         | 
| 1170 | 
            +
            del raw_baselines
         | 
| 1171 | 
            +
            del freq_format
         |