Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -890,530 +890,531 @@ with tab2:
|
|
| 890 |
|
| 891 |
with col2:
|
| 892 |
if st.button("Simulate Contest"):
|
| 893 |
-
sim_done = 0
|
| 894 |
-
try:
|
| 895 |
-
del dst_freq
|
| 896 |
-
del flex_freq
|
| 897 |
-
del te_freq
|
| 898 |
-
del wr_freq
|
| 899 |
-
del rb_freq
|
| 900 |
-
del qb_freq
|
| 901 |
-
del player_freq
|
| 902 |
-
del Sim_Winner_Export
|
| 903 |
-
del Sim_Winner_Frame
|
| 904 |
-
except:
|
| 905 |
-
pass
|
| 906 |
with st.container():
|
| 907 |
-
|
| 908 |
-
|
| 909 |
-
|
| 910 |
-
|
| 911 |
-
|
| 912 |
-
|
| 913 |
-
|
| 914 |
-
|
| 915 |
-
|
| 916 |
-
|
| 917 |
-
|
| 918 |
-
|
| 919 |
-
|
| 920 |
-
|
| 921 |
-
|
| 922 |
-
|
| 923 |
-
|
| 924 |
-
|
| 925 |
-
|
| 926 |
-
|
| 927 |
-
|
| 928 |
-
|
| 929 |
-
|
| 930 |
-
|
| 931 |
-
|
| 932 |
-
|
| 933 |
-
|
| 934 |
-
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
| 935 |
-
OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
|
| 936 |
-
if contest_var1 == 'Medium':
|
| 937 |
-
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (6 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
| 938 |
-
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
| 939 |
-
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
| 940 |
-
OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
|
| 941 |
-
if contest_var1 == 'Large':
|
| 942 |
-
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
| 943 |
-
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (1.5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
| 944 |
-
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
| 945 |
-
OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
|
| 946 |
-
Overall_Proj = OwnFrame[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
|
| 947 |
-
|
| 948 |
-
del OwnFrame
|
| 949 |
-
|
| 950 |
-
elif slate_var1 != 'User':
|
| 951 |
-
initial_proj = raw_baselines
|
| 952 |
-
drop_frame = initial_proj.drop_duplicates(subset = 'Player',keep = 'first')
|
| 953 |
-
OwnFrame = drop_frame[['Player', 'Team', 'Position', 'Median', 'Own', 'Floor', 'Ceiling', 'Salary']]
|
| 954 |
-
if contest_var1 == 'Small':
|
| 955 |
-
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (10 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
| 956 |
-
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
| 957 |
-
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
| 958 |
-
OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
|
| 959 |
-
if contest_var1 == 'Medium':
|
| 960 |
-
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (6 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
| 961 |
-
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
| 962 |
-
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
| 963 |
-
OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
|
| 964 |
-
if contest_var1 == 'Large':
|
| 965 |
-
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
| 966 |
-
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (1.5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
| 967 |
-
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
| 968 |
-
OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
|
| 969 |
-
Overall_Proj = OwnFrame[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
|
| 970 |
-
|
| 971 |
-
del initial_proj
|
| 972 |
-
del drop_frame
|
| 973 |
-
del OwnFrame
|
| 974 |
-
|
| 975 |
-
if insert_port == 1:
|
| 976 |
-
UserPortfolio = portfolio_dataframe[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']]
|
| 977 |
-
elif insert_port == 0:
|
| 978 |
-
UserPortfolio = pd.DataFrame(columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST'])
|
| 979 |
-
|
| 980 |
-
Overall_Proj.replace('', np.nan, inplace=True)
|
| 981 |
-
Overall_Proj = Overall_Proj.dropna(subset=['Median'])
|
| 982 |
-
Overall_Proj = Overall_Proj.assign(Value=lambda x: (x.Median / (x.Salary / 1000)))
|
| 983 |
-
Overall_Proj['Sort_var'] = (Overall_Proj['Median'].rank(ascending=False) + Overall_Proj['Value'].rank(ascending=False)) / 2
|
| 984 |
-
Overall_Proj = Overall_Proj.sort_values(by='Sort_var', ascending=False)
|
| 985 |
-
Overall_Proj['Own'] = np.where((Overall_Proj['Median'] > 0) & (Overall_Proj['Own'] == 0), 1, Overall_Proj['Own'])
|
| 986 |
-
Overall_Proj = Overall_Proj.loc[Overall_Proj['Own'] > 0]
|
| 987 |
-
|
| 988 |
-
Overall_Proj['Floor'] = np.where(Overall_Proj['Position'] == 'QB', Overall_Proj['Median'] * .5, Overall_Proj['Median'] * .25)
|
| 989 |
-
Overall_Proj['Ceiling'] = np.where(Overall_Proj['Position'] == 'WR', Overall_Proj['Median'] + Overall_Proj['Median'], Overall_Proj['Median'] + Overall_Proj['Floor'])
|
| 990 |
-
Overall_Proj['STDev'] = Overall_Proj['Median'] / 4
|
| 991 |
-
|
| 992 |
-
Teams_used = Overall_Proj['Team'].drop_duplicates().reset_index(drop=True)
|
| 993 |
-
Teams_used = Teams_used.reset_index()
|
| 994 |
-
Teams_used['team_item'] = Teams_used['index'] + 1
|
| 995 |
-
Teams_used = Teams_used.drop(columns=['index'])
|
| 996 |
-
Teams_used_dictraw = Teams_used.drop(columns=['team_item'])
|
| 997 |
-
Teams_used_dict = Teams_used_dictraw.to_dict()
|
| 998 |
-
|
| 999 |
-
del Teams_used_dictraw
|
| 1000 |
-
|
| 1001 |
-
team_list = Teams_used['Team'].to_list()
|
| 1002 |
-
item_list = Teams_used['team_item'].to_list()
|
| 1003 |
-
|
| 1004 |
-
FieldStrength_raw = Strength_var + ((30 - len(Teams_used)) * .01)
|
| 1005 |
-
FieldStrength = FieldStrength_raw - (FieldStrength_raw * (20000 / Contest_Size))
|
| 1006 |
-
|
| 1007 |
-
del FieldStrength_raw
|
| 1008 |
-
|
| 1009 |
-
if FieldStrength < 0:
|
| 1010 |
-
FieldStrength = Strength_var
|
| 1011 |
-
field_split = Strength_var
|
| 1012 |
-
|
| 1013 |
-
for checkVar in range(len(team_list)):
|
| 1014 |
-
Overall_Proj['Team'] = Overall_Proj['Team'].replace(team_list, item_list)
|
| 1015 |
-
|
| 1016 |
-
qbs_raw = Overall_Proj[Overall_Proj.Position == 'QB']
|
| 1017 |
-
qbs_raw.dropna(subset=['Median']).reset_index(drop=True)
|
| 1018 |
-
qbs_raw = qbs_raw.reset_index(drop=True)
|
| 1019 |
-
qbs_raw = qbs_raw.sort_values(by=['Median'], ascending=False)
|
| 1020 |
-
|
| 1021 |
-
qbs = qbs_raw.head(round(len(qbs_raw)))
|
| 1022 |
-
qbs = qbs.assign(Var = range(0,len(qbs)))
|
| 1023 |
-
qb_dict = pd.Series(qbs.Player.values, index=qbs.Var).to_dict()
|
| 1024 |
-
|
| 1025 |
-
defs_raw = Overall_Proj[Overall_Proj.Position.str.contains("D")]
|
| 1026 |
-
defs_raw.dropna(subset=['Median']).reset_index(drop=True)
|
| 1027 |
-
defs_raw = defs_raw.reset_index(drop=True)
|
| 1028 |
-
defs_raw = defs_raw.sort_values(by=['Own', 'Value'], ascending=False)
|
| 1029 |
-
|
| 1030 |
-
defs = defs_raw.head(round(len(defs_raw)))
|
| 1031 |
-
defs = defs.assign(Var = range(0,len(defs)))
|
| 1032 |
-
def_dict = pd.Series(defs.Player.values, index=defs.Var).to_dict()
|
| 1033 |
-
|
| 1034 |
-
rbs_raw = Overall_Proj[Overall_Proj.Position == 'RB']
|
| 1035 |
-
rbs_raw.dropna(subset=['Median']).reset_index(drop=True)
|
| 1036 |
-
rbs_raw = rbs_raw.reset_index(drop=True)
|
| 1037 |
-
rbs_raw = rbs_raw.sort_values(by=['Own', 'Value'], ascending=False)
|
| 1038 |
-
|
| 1039 |
-
wrs_raw = Overall_Proj[Overall_Proj.Position == 'WR']
|
| 1040 |
-
wrs_raw.dropna(subset=['Median']).reset_index(drop=True)
|
| 1041 |
-
wrs_raw = wrs_raw.reset_index(drop=True)
|
| 1042 |
-
wrs_raw = wrs_raw.sort_values(by=['Own', 'Median'], ascending=False)
|
| 1043 |
-
|
| 1044 |
-
tes_raw = Overall_Proj[Overall_Proj.Position == 'TE']
|
| 1045 |
-
tes_raw.dropna(subset=['Median']).reset_index(drop=True)
|
| 1046 |
-
tes_raw = tes_raw.reset_index(drop=True)
|
| 1047 |
-
tes_raw = tes_raw.sort_values(by=['Own', 'Value'], ascending=False)
|
| 1048 |
-
|
| 1049 |
-
pos_players = pd.concat([rbs_raw, wrs_raw, tes_raw])
|
| 1050 |
-
pos_players.dropna(subset=['Median']).reset_index(drop=True)
|
| 1051 |
-
pos_players = pos_players.reset_index(drop=True)
|
| 1052 |
-
|
| 1053 |
-
del qbs_raw
|
| 1054 |
-
del defs_raw
|
| 1055 |
-
del rbs_raw
|
| 1056 |
-
del wrs_raw
|
| 1057 |
-
del tes_raw
|
| 1058 |
-
|
| 1059 |
-
if insert_port == 1:
|
| 1060 |
-
try:
|
| 1061 |
-
# Initialize an empty DataFrame for Raw Portfolio
|
| 1062 |
-
Raw_Portfolio = pd.DataFrame()
|
| 1063 |
-
|
| 1064 |
-
# Loop through each position and split the data accordingly
|
| 1065 |
-
positions = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
|
| 1066 |
-
for pos in positions:
|
| 1067 |
-
temp_df = UserPortfolio[pos].str.split("(", n=1, expand=True)
|
| 1068 |
-
temp_df.columns = [pos, 'Drop']
|
| 1069 |
-
Raw_Portfolio = pd.concat([Raw_Portfolio, temp_df], axis=1)
|
| 1070 |
-
|
| 1071 |
-
# Select only necessary columns and strip white spaces
|
| 1072 |
-
CleanPortfolio = Raw_Portfolio[positions].apply(lambda x: x.str.strip())
|
| 1073 |
-
CleanPortfolio.reset_index(inplace=True)
|
| 1074 |
-
CleanPortfolio['User/Field'] = CleanPortfolio['index'] + 1
|
| 1075 |
-
CleanPortfolio.drop(columns=['index'], inplace=True)
|
| 1076 |
-
|
| 1077 |
-
CleanPortfolio.replace('', np.nan, inplace=True)
|
| 1078 |
-
CleanPortfolio.dropna(subset=['QB'], inplace=True)
|
| 1079 |
-
|
| 1080 |
-
# Create frequency table for players
|
| 1081 |
-
cleaport_players = pd.DataFrame(
|
| 1082 |
-
np.column_stack(np.unique(CleanPortfolio.iloc[:, 0:9].values, return_counts=True)),
|
| 1083 |
-
columns=['Player', 'Freq']
|
| 1084 |
-
).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 1085 |
-
cleaport_players['Freq'] = cleaport_players['Freq'].astype(int)
|
| 1086 |
|
| 1087 |
-
|
| 1088 |
-
|
| 1089 |
-
|
| 1090 |
-
|
| 1091 |
-
|
| 1092 |
-
|
| 1093 |
-
|
| 1094 |
-
|
| 1095 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1096 |
|
| 1097 |
-
|
| 1098 |
-
CleanPortfolio.replace('', np.nan, inplace=True)
|
| 1099 |
-
CleanPortfolio.dropna(subset=['QB'], inplace=True)
|
| 1100 |
|
| 1101 |
-
|
| 1102 |
-
|
| 1103 |
-
|
| 1104 |
-
|
| 1105 |
-
|
| 1106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1107 |
|
| 1108 |
-
|
| 1109 |
-
|
| 1110 |
-
|
| 1111 |
-
nerf_frame[col] *= 0.90
|
| 1112 |
-
|
| 1113 |
-
elif insert_port == 0:
|
| 1114 |
-
CleanPortfolio = UserPortfolio
|
| 1115 |
-
cleaport_players = pd.DataFrame(np.column_stack(np.unique(CleanPortfolio.iloc[:,0:9].values, return_counts=True)),
|
| 1116 |
-
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 1117 |
-
cleaport_players['Freq'] = cleaport_players['Freq'].astype(int)
|
| 1118 |
-
nerf_frame = Overall_Proj
|
| 1119 |
|
| 1120 |
-
ref_dict = {
|
| 1121 |
-
'pos':['RB', 'WR', 'TE', 'FLEX'],
|
| 1122 |
-
'pos_dfs':['RB_Table', 'WR_Table', 'TE_Table', 'FLEX_Table'],
|
| 1123 |
-
'pos_dicts':['rb_dict', 'wr_dict', 'te_dict', 'flex_dict']
|
| 1124 |
-
}
|
| 1125 |
-
|
| 1126 |
-
maps_dict = {
|
| 1127 |
-
'Floor_map':dict(zip(Overall_Proj.Player,Overall_Proj.Floor)),
|
| 1128 |
-
'Projection_map':dict(zip(Overall_Proj.Player,Overall_Proj.Median)),
|
| 1129 |
-
'Ceiling_map':dict(zip(Overall_Proj.Player,Overall_Proj.Ceiling)),
|
| 1130 |
-
'Salary_map':dict(zip(Overall_Proj.Player,Overall_Proj.Salary)),
|
| 1131 |
-
'Pos_map':dict(zip(Overall_Proj.Player,Overall_Proj.Position)),
|
| 1132 |
-
'Own_map':dict(zip(Overall_Proj.Player,Overall_Proj.Own)),
|
| 1133 |
-
'Team_map':dict(zip(Overall_Proj.Player,Overall_Proj.Team)),
|
| 1134 |
-
'STDev_map':dict(zip(Overall_Proj.Player,Overall_Proj.STDev)),
|
| 1135 |
-
'team_check_map':dict(zip(Overall_Proj.Player,Overall_Proj.Team))
|
| 1136 |
-
}
|
| 1137 |
-
|
| 1138 |
-
up_dict = {
|
| 1139 |
-
'Floor_map':dict(zip(cleaport_players.Player,nerf_frame.Floor)),
|
| 1140 |
-
'Projection_map':dict(zip(cleaport_players.Player,nerf_frame.Median)),
|
| 1141 |
-
'Ceiling_map':dict(zip(cleaport_players.Player,nerf_frame.Ceiling)),
|
| 1142 |
-
'Salary_map':dict(zip(cleaport_players.Player,nerf_frame.Salary)),
|
| 1143 |
-
'Pos_map':dict(zip(cleaport_players.Player,nerf_frame.Position)),
|
| 1144 |
-
'Own_map':dict(zip(cleaport_players.Player,nerf_frame.Own)),
|
| 1145 |
-
'Team_map':dict(zip(cleaport_players.Player,nerf_frame.Team)),
|
| 1146 |
-
'STDev_map':dict(zip(cleaport_players.Player,nerf_frame.STDev)),
|
| 1147 |
-
'team_check_map':dict(zip(cleaport_players.Player,nerf_frame.Team))
|
| 1148 |
-
}
|
| 1149 |
-
|
| 1150 |
-
del cleaport_players
|
| 1151 |
-
del Overall_Proj
|
| 1152 |
-
del nerf_frame
|
| 1153 |
-
|
| 1154 |
-
st.write('Seed frame creation')
|
| 1155 |
-
FinalPortfolio, maps_dict = run_seed_frame(seed_depth1, Strength_var, strength_grow, Teams_used, Total_Runs)
|
| 1156 |
-
|
| 1157 |
-
Sim_size = linenum_var1
|
| 1158 |
-
SimVar = 1
|
| 1159 |
-
Sim_Winners = []
|
| 1160 |
-
fp_array = FinalPortfolio.values
|
| 1161 |
-
|
| 1162 |
-
if insert_port == 1:
|
| 1163 |
-
up_array = CleanPortfolio.values
|
| 1164 |
-
|
| 1165 |
-
# Pre-vectorize functions
|
| 1166 |
-
vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
|
| 1167 |
-
vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
|
| 1168 |
-
|
| 1169 |
-
if insert_port == 1:
|
| 1170 |
-
vec_up_projection_map = np.vectorize(up_dict['Projection_map'].__getitem__)
|
| 1171 |
-
vec_up_stdev_map = np.vectorize(up_dict['STDev_map'].__getitem__)
|
| 1172 |
-
|
| 1173 |
-
st.write('Simulating contest on frames')
|
| 1174 |
-
|
| 1175 |
-
while SimVar <= Sim_size:
|
| 1176 |
if insert_port == 1:
|
| 1177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1178 |
elif insert_port == 0:
|
| 1179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1180 |
|
| 1181 |
-
|
| 1182 |
-
|
| 1183 |
-
|
| 1184 |
-
|
| 1185 |
-
|
| 1186 |
-
axis=1)
|
| 1187 |
-
]
|
| 1188 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1189 |
if insert_port == 1:
|
| 1190 |
-
|
| 1191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1192 |
np.sum(np.random.normal(
|
| 1193 |
-
loc=
|
| 1194 |
-
scale=
|
| 1195 |
axis=1)
|
| 1196 |
]
|
| 1197 |
-
sample_arrays = np.vstack((sample_arrays1, sample_arrays2))
|
| 1198 |
-
else:
|
| 1199 |
-
sample_arrays = sample_arrays1
|
| 1200 |
-
|
| 1201 |
-
final_array = sample_arrays[sample_arrays[:, 10].argsort()[::-1]]
|
| 1202 |
-
best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
|
| 1203 |
-
Sim_Winners.append(best_lineup)
|
| 1204 |
-
SimVar += 1
|
| 1205 |
-
|
| 1206 |
-
|
| 1207 |
-
# del smple_arrays
|
| 1208 |
-
# del smple_arrays1
|
| 1209 |
-
# del smple_arrays2
|
| 1210 |
-
# del final_array
|
| 1211 |
-
# del best_lineup
|
| 1212 |
-
st.write('Contest simulation complete')
|
| 1213 |
-
# Initial setup
|
| 1214 |
-
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=FinalPortfolio.columns.tolist() + ['Fantasy'])
|
| 1215 |
-
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['Projection'] + Sim_Winner_Frame['Fantasy']) / 2
|
| 1216 |
-
|
| 1217 |
-
# Type Casting
|
| 1218 |
-
type_cast_dict = {'Salary': int, 'Projection': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float16}
|
| 1219 |
-
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
|
| 1220 |
-
|
| 1221 |
-
# Sorting
|
| 1222 |
-
Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by='GPP_Proj', ascending=False)
|
| 1223 |
-
|
| 1224 |
-
# Data Copying
|
| 1225 |
-
Sim_Winner_Export = Sim_Winner_Frame.copy()
|
| 1226 |
-
|
| 1227 |
-
sim_done = 1
|
| 1228 |
-
|
| 1229 |
-
# Conditional Replacement
|
| 1230 |
-
columns_to_replace = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
|
| 1231 |
-
|
| 1232 |
-
if site_var1 == 'Draftkings':
|
| 1233 |
-
replace_dict = dkid_dict
|
| 1234 |
-
elif site_var1 == 'Fanduel':
|
| 1235 |
-
replace_dict = fdid_dict
|
| 1236 |
-
|
| 1237 |
-
for col in columns_to_replace:
|
| 1238 |
-
Sim_Winner_Export[col].replace(replace_dict, inplace=True)
|
| 1239 |
-
|
| 1240 |
-
|
| 1241 |
-
player_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,0:9].values, return_counts=True)),
|
| 1242 |
-
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 1243 |
-
player_freq['Freq'] = player_freq['Freq'].astype(int)
|
| 1244 |
-
player_freq['Position'] = player_freq['Player'].map(maps_dict['Pos_map'])
|
| 1245 |
-
player_freq['Salary'] = player_freq['Player'].map(maps_dict['Salary_map'])
|
| 1246 |
-
player_freq['Proj Own'] = player_freq['Player'].map(maps_dict['Own_map']) / 100
|
| 1247 |
-
player_freq['Exposure'] = player_freq['Freq']/(Sim_size)
|
| 1248 |
-
player_freq['Edge'] = player_freq['Exposure'] - player_freq['Proj Own']
|
| 1249 |
-
player_freq['Team'] = player_freq['Player'].map(maps_dict['Team_map'])
|
| 1250 |
-
for checkVar in range(len(team_list)):
|
| 1251 |
-
player_freq['Team'] = player_freq['Team'].replace(item_list, team_list)
|
| 1252 |
-
|
| 1253 |
-
player_freq = player_freq[['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
| 1254 |
-
|
| 1255 |
-
qb_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,0:1].values, return_counts=True)),
|
| 1256 |
-
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 1257 |
-
qb_freq['Freq'] = qb_freq['Freq'].astype(int)
|
| 1258 |
-
qb_freq['Position'] = qb_freq['Player'].map(maps_dict['Pos_map'])
|
| 1259 |
-
qb_freq['Salary'] = qb_freq['Player'].map(maps_dict['Salary_map'])
|
| 1260 |
-
qb_freq['Proj Own'] = qb_freq['Player'].map(maps_dict['Own_map']) / 100
|
| 1261 |
-
qb_freq['Exposure'] = qb_freq['Freq']/(Sim_size)
|
| 1262 |
-
qb_freq['Edge'] = qb_freq['Exposure'] - qb_freq['Proj Own']
|
| 1263 |
-
qb_freq['Team'] = qb_freq['Player'].map(maps_dict['Team_map'])
|
| 1264 |
-
for checkVar in range(len(team_list)):
|
| 1265 |
-
qb_freq['Team'] = qb_freq['Team'].replace(item_list, team_list)
|
| 1266 |
-
|
| 1267 |
-
qb_freq = qb_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
| 1268 |
-
|
| 1269 |
-
rb_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[1, 2]].values, return_counts=True)),
|
| 1270 |
-
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 1271 |
-
rb_freq['Freq'] = rb_freq['Freq'].astype(int)
|
| 1272 |
-
rb_freq['Position'] = rb_freq['Player'].map(maps_dict['Pos_map'])
|
| 1273 |
-
rb_freq['Salary'] = rb_freq['Player'].map(maps_dict['Salary_map'])
|
| 1274 |
-
rb_freq['Proj Own'] = rb_freq['Player'].map(maps_dict['Own_map']) / 100
|
| 1275 |
-
rb_freq['Exposure'] = rb_freq['Freq']/Sim_size
|
| 1276 |
-
rb_freq['Edge'] = rb_freq['Exposure'] - rb_freq['Proj Own']
|
| 1277 |
-
rb_freq['Team'] = rb_freq['Player'].map(maps_dict['Team_map'])
|
| 1278 |
-
for checkVar in range(len(team_list)):
|
| 1279 |
-
rb_freq['Team'] = rb_freq['Team'].replace(item_list, team_list)
|
| 1280 |
-
|
| 1281 |
-
rb_freq = rb_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
| 1282 |
|
| 1283 |
-
|
| 1284 |
-
|
| 1285 |
-
|
| 1286 |
-
|
| 1287 |
-
|
| 1288 |
-
|
| 1289 |
-
|
| 1290 |
-
|
| 1291 |
-
|
| 1292 |
-
|
| 1293 |
-
|
| 1294 |
-
|
| 1295 |
-
wr_freq = wr_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
| 1296 |
|
| 1297 |
-
|
| 1298 |
-
|
| 1299 |
-
|
| 1300 |
-
|
| 1301 |
-
|
| 1302 |
-
|
| 1303 |
-
|
| 1304 |
-
|
| 1305 |
-
|
| 1306 |
-
|
| 1307 |
-
|
| 1308 |
-
|
| 1309 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1310 |
|
| 1311 |
-
|
| 1312 |
-
|
| 1313 |
-
|
| 1314 |
-
|
| 1315 |
-
|
| 1316 |
-
|
| 1317 |
-
flex_freq['Exposure'] = flex_freq['Freq']/Sim_size
|
| 1318 |
-
flex_freq['Edge'] = flex_freq['Exposure'] - flex_freq['Proj Own']
|
| 1319 |
-
flex_freq['Team'] = flex_freq['Player'].map(maps_dict['Team_map'])
|
| 1320 |
-
for checkVar in range(len(team_list)):
|
| 1321 |
-
flex_freq['Team'] = flex_freq['Team'].replace(item_list, team_list)
|
| 1322 |
-
|
| 1323 |
-
flex_freq = flex_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
| 1324 |
|
| 1325 |
-
|
| 1326 |
-
|
| 1327 |
-
|
| 1328 |
-
|
| 1329 |
-
|
| 1330 |
-
dst_freq['Proj Own'] = dst_freq['Player'].map(maps_dict['Own_map']) / 100
|
| 1331 |
-
dst_freq['Exposure'] = dst_freq['Freq']/Sim_size
|
| 1332 |
-
dst_freq['Edge'] = dst_freq['Exposure'] - dst_freq['Proj Own']
|
| 1333 |
-
dst_freq['Team'] = dst_freq['Player'].map(maps_dict['Team_map'])
|
| 1334 |
-
for checkVar in range(len(team_list)):
|
| 1335 |
-
dst_freq['Team'] = dst_freq['Team'].replace(item_list, team_list)
|
| 1336 |
-
|
| 1337 |
-
dst_freq = dst_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
| 1338 |
-
if sim_done == 1:
|
| 1339 |
-
with st.container():
|
| 1340 |
-
player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'))
|
| 1341 |
-
if player_split_var2 == 'Specific Players':
|
| 1342 |
-
find_var2 = st.multiselect('Which players must be included in the lineups?', options = player_freq['Player'].unique())
|
| 1343 |
-
elif player_split_var2 == 'Full Players':
|
| 1344 |
-
find_var2 = static_exposure.Player.values.tolist()
|
| 1345 |
-
if player_split_var2 == 'Specific Players':
|
| 1346 |
-
Sim_Winner_Frame = Sim_Winner_Frame[np.equal.outer(Sim_Winner_Frame.to_numpy(copy=False), find_var2).any(axis=1).all(axis=1)]
|
| 1347 |
-
elif player_split_var2 == 'Full Players':
|
| 1348 |
-
Sim_Winner_Frame = Sim_Winner_Frame
|
| 1349 |
-
|
| 1350 |
-
with st.container():
|
| 1351 |
-
display_winner_dataframe = Sim_Winner_Frame.copy()
|
| 1352 |
-
st.dataframe(display_winner_dataframe.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Own']).format(precision=2), use_container_width = True)
|
| 1353 |
-
|
| 1354 |
st.download_button(
|
| 1355 |
-
label="Export
|
| 1356 |
-
data=convert_df_to_csv(
|
| 1357 |
-
file_name='
|
| 1358 |
mime='text/csv',
|
| 1359 |
)
|
| 1360 |
-
|
| 1361 |
-
|
| 1362 |
-
|
| 1363 |
-
|
| 1364 |
-
|
| 1365 |
-
|
| 1366 |
-
|
| 1367 |
-
|
| 1368 |
-
|
| 1369 |
-
|
| 1370 |
-
|
| 1371 |
-
|
| 1372 |
-
|
| 1373 |
-
|
| 1374 |
-
|
| 1375 |
-
|
| 1376 |
-
|
| 1377 |
-
|
| 1378 |
-
|
| 1379 |
-
|
| 1380 |
-
|
| 1381 |
-
|
| 1382 |
-
|
| 1383 |
-
|
| 1384 |
-
|
| 1385 |
-
|
| 1386 |
-
|
| 1387 |
-
|
| 1388 |
-
|
| 1389 |
-
|
| 1390 |
-
|
| 1391 |
-
|
| 1392 |
-
|
| 1393 |
-
|
| 1394 |
-
|
| 1395 |
-
|
| 1396 |
-
|
| 1397 |
-
|
| 1398 |
-
|
| 1399 |
-
|
| 1400 |
-
|
| 1401 |
-
|
| 1402 |
-
|
| 1403 |
-
|
| 1404 |
-
|
| 1405 |
-
|
| 1406 |
-
|
| 1407 |
-
|
| 1408 |
-
data=convert_df_to_csv(flex_freq),
|
| 1409 |
-
file_name='flex_freq_export.csv',
|
| 1410 |
-
mime='text/csv',
|
| 1411 |
-
)
|
| 1412 |
-
with tab7:
|
| 1413 |
-
st.dataframe(dst_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
| 1414 |
-
st.download_button(
|
| 1415 |
-
label="Export Exposures",
|
| 1416 |
-
data=convert_df_to_csv(dst_freq),
|
| 1417 |
-
file_name='dst_freq_export.csv',
|
| 1418 |
-
mime='text/csv',
|
| 1419 |
-
)
|
|
|
|
| 890 |
|
| 891 |
with col2:
|
| 892 |
if st.button("Simulate Contest"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 893 |
with st.container():
|
| 894 |
+
sim_done = 0
|
| 895 |
+
try:
|
| 896 |
+
del dst_freq
|
| 897 |
+
del flex_freq
|
| 898 |
+
del te_freq
|
| 899 |
+
del wr_freq
|
| 900 |
+
del rb_freq
|
| 901 |
+
del qb_freq
|
| 902 |
+
del player_freq
|
| 903 |
+
del Sim_Winner_Export
|
| 904 |
+
del Sim_Winner_Frame
|
| 905 |
+
except:
|
| 906 |
+
pass
|
| 907 |
+
with st.container():
|
| 908 |
+
st.write('Contest Simulation Starting')
|
| 909 |
+
seed_depth1 = 10
|
| 910 |
+
Total_Runs = 1000000
|
| 911 |
+
if Contest_Size <= 1000:
|
| 912 |
+
strength_grow = .01
|
| 913 |
+
elif Contest_Size > 1000 and Contest_Size <= 2500:
|
| 914 |
+
strength_grow = .025
|
| 915 |
+
elif Contest_Size > 2500 and Contest_Size <= 5000:
|
| 916 |
+
strength_grow = .05
|
| 917 |
+
elif Contest_Size > 5000 and Contest_Size <= 20000:
|
| 918 |
+
strength_grow = .075
|
| 919 |
+
elif Contest_Size > 20000:
|
| 920 |
+
strength_grow = .1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 921 |
|
| 922 |
+
field_growth = 100 * strength_grow
|
| 923 |
+
|
| 924 |
+
Sort_function = 'Median'
|
| 925 |
+
if Sort_function == 'Median':
|
| 926 |
+
Sim_function = 'Projection'
|
| 927 |
+
elif Sort_function == 'Own':
|
| 928 |
+
Sim_function = 'Own'
|
| 929 |
+
|
| 930 |
+
if slate_var1 == 'User':
|
| 931 |
+
OwnFrame = proj_dataframe
|
| 932 |
+
if contest_var1 == 'Small':
|
| 933 |
+
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (10 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
| 934 |
+
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
| 935 |
+
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
| 936 |
+
OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
|
| 937 |
+
if contest_var1 == 'Medium':
|
| 938 |
+
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (6 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
| 939 |
+
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
| 940 |
+
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
| 941 |
+
OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
|
| 942 |
+
if contest_var1 == 'Large':
|
| 943 |
+
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
| 944 |
+
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (1.5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
| 945 |
+
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
| 946 |
+
OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
|
| 947 |
+
Overall_Proj = OwnFrame[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
|
| 948 |
|
| 949 |
+
del OwnFrame
|
|
|
|
|
|
|
| 950 |
|
| 951 |
+
elif slate_var1 != 'User':
|
| 952 |
+
initial_proj = raw_baselines
|
| 953 |
+
drop_frame = initial_proj.drop_duplicates(subset = 'Player',keep = 'first')
|
| 954 |
+
OwnFrame = drop_frame[['Player', 'Team', 'Position', 'Median', 'Own', 'Floor', 'Ceiling', 'Salary']]
|
| 955 |
+
if contest_var1 == 'Small':
|
| 956 |
+
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (10 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
| 957 |
+
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
| 958 |
+
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
| 959 |
+
OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
|
| 960 |
+
if contest_var1 == 'Medium':
|
| 961 |
+
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (6 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
| 962 |
+
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
| 963 |
+
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
| 964 |
+
OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
|
| 965 |
+
if contest_var1 == 'Large':
|
| 966 |
+
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
| 967 |
+
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (1.5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
| 968 |
+
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
| 969 |
+
OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
|
| 970 |
+
Overall_Proj = OwnFrame[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
|
| 971 |
|
| 972 |
+
del initial_proj
|
| 973 |
+
del drop_frame
|
| 974 |
+
del OwnFrame
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 975 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 976 |
if insert_port == 1:
|
| 977 |
+
UserPortfolio = portfolio_dataframe[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']]
|
| 978 |
+
elif insert_port == 0:
|
| 979 |
+
UserPortfolio = pd.DataFrame(columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST'])
|
| 980 |
+
|
| 981 |
+
Overall_Proj.replace('', np.nan, inplace=True)
|
| 982 |
+
Overall_Proj = Overall_Proj.dropna(subset=['Median'])
|
| 983 |
+
Overall_Proj = Overall_Proj.assign(Value=lambda x: (x.Median / (x.Salary / 1000)))
|
| 984 |
+
Overall_Proj['Sort_var'] = (Overall_Proj['Median'].rank(ascending=False) + Overall_Proj['Value'].rank(ascending=False)) / 2
|
| 985 |
+
Overall_Proj = Overall_Proj.sort_values(by='Sort_var', ascending=False)
|
| 986 |
+
Overall_Proj['Own'] = np.where((Overall_Proj['Median'] > 0) & (Overall_Proj['Own'] == 0), 1, Overall_Proj['Own'])
|
| 987 |
+
Overall_Proj = Overall_Proj.loc[Overall_Proj['Own'] > 0]
|
| 988 |
+
|
| 989 |
+
Overall_Proj['Floor'] = np.where(Overall_Proj['Position'] == 'QB', Overall_Proj['Median'] * .5, Overall_Proj['Median'] * .25)
|
| 990 |
+
Overall_Proj['Ceiling'] = np.where(Overall_Proj['Position'] == 'WR', Overall_Proj['Median'] + Overall_Proj['Median'], Overall_Proj['Median'] + Overall_Proj['Floor'])
|
| 991 |
+
Overall_Proj['STDev'] = Overall_Proj['Median'] / 4
|
| 992 |
+
|
| 993 |
+
Teams_used = Overall_Proj['Team'].drop_duplicates().reset_index(drop=True)
|
| 994 |
+
Teams_used = Teams_used.reset_index()
|
| 995 |
+
Teams_used['team_item'] = Teams_used['index'] + 1
|
| 996 |
+
Teams_used = Teams_used.drop(columns=['index'])
|
| 997 |
+
Teams_used_dictraw = Teams_used.drop(columns=['team_item'])
|
| 998 |
+
Teams_used_dict = Teams_used_dictraw.to_dict()
|
| 999 |
+
|
| 1000 |
+
del Teams_used_dictraw
|
| 1001 |
+
|
| 1002 |
+
team_list = Teams_used['Team'].to_list()
|
| 1003 |
+
item_list = Teams_used['team_item'].to_list()
|
| 1004 |
+
|
| 1005 |
+
FieldStrength_raw = Strength_var + ((30 - len(Teams_used)) * .01)
|
| 1006 |
+
FieldStrength = FieldStrength_raw - (FieldStrength_raw * (20000 / Contest_Size))
|
| 1007 |
+
|
| 1008 |
+
del FieldStrength_raw
|
| 1009 |
+
|
| 1010 |
+
if FieldStrength < 0:
|
| 1011 |
+
FieldStrength = Strength_var
|
| 1012 |
+
field_split = Strength_var
|
| 1013 |
+
|
| 1014 |
+
for checkVar in range(len(team_list)):
|
| 1015 |
+
Overall_Proj['Team'] = Overall_Proj['Team'].replace(team_list, item_list)
|
| 1016 |
+
|
| 1017 |
+
qbs_raw = Overall_Proj[Overall_Proj.Position == 'QB']
|
| 1018 |
+
qbs_raw.dropna(subset=['Median']).reset_index(drop=True)
|
| 1019 |
+
qbs_raw = qbs_raw.reset_index(drop=True)
|
| 1020 |
+
qbs_raw = qbs_raw.sort_values(by=['Median'], ascending=False)
|
| 1021 |
+
|
| 1022 |
+
qbs = qbs_raw.head(round(len(qbs_raw)))
|
| 1023 |
+
qbs = qbs.assign(Var = range(0,len(qbs)))
|
| 1024 |
+
qb_dict = pd.Series(qbs.Player.values, index=qbs.Var).to_dict()
|
| 1025 |
+
|
| 1026 |
+
defs_raw = Overall_Proj[Overall_Proj.Position.str.contains("D")]
|
| 1027 |
+
defs_raw.dropna(subset=['Median']).reset_index(drop=True)
|
| 1028 |
+
defs_raw = defs_raw.reset_index(drop=True)
|
| 1029 |
+
defs_raw = defs_raw.sort_values(by=['Own', 'Value'], ascending=False)
|
| 1030 |
+
|
| 1031 |
+
defs = defs_raw.head(round(len(defs_raw)))
|
| 1032 |
+
defs = defs.assign(Var = range(0,len(defs)))
|
| 1033 |
+
def_dict = pd.Series(defs.Player.values, index=defs.Var).to_dict()
|
| 1034 |
+
|
| 1035 |
+
rbs_raw = Overall_Proj[Overall_Proj.Position == 'RB']
|
| 1036 |
+
rbs_raw.dropna(subset=['Median']).reset_index(drop=True)
|
| 1037 |
+
rbs_raw = rbs_raw.reset_index(drop=True)
|
| 1038 |
+
rbs_raw = rbs_raw.sort_values(by=['Own', 'Value'], ascending=False)
|
| 1039 |
+
|
| 1040 |
+
wrs_raw = Overall_Proj[Overall_Proj.Position == 'WR']
|
| 1041 |
+
wrs_raw.dropna(subset=['Median']).reset_index(drop=True)
|
| 1042 |
+
wrs_raw = wrs_raw.reset_index(drop=True)
|
| 1043 |
+
wrs_raw = wrs_raw.sort_values(by=['Own', 'Median'], ascending=False)
|
| 1044 |
+
|
| 1045 |
+
tes_raw = Overall_Proj[Overall_Proj.Position == 'TE']
|
| 1046 |
+
tes_raw.dropna(subset=['Median']).reset_index(drop=True)
|
| 1047 |
+
tes_raw = tes_raw.reset_index(drop=True)
|
| 1048 |
+
tes_raw = tes_raw.sort_values(by=['Own', 'Value'], ascending=False)
|
| 1049 |
+
|
| 1050 |
+
pos_players = pd.concat([rbs_raw, wrs_raw, tes_raw])
|
| 1051 |
+
pos_players.dropna(subset=['Median']).reset_index(drop=True)
|
| 1052 |
+
pos_players = pos_players.reset_index(drop=True)
|
| 1053 |
+
|
| 1054 |
+
del qbs_raw
|
| 1055 |
+
del defs_raw
|
| 1056 |
+
del rbs_raw
|
| 1057 |
+
del wrs_raw
|
| 1058 |
+
del tes_raw
|
| 1059 |
+
|
| 1060 |
+
if insert_port == 1:
|
| 1061 |
+
try:
|
| 1062 |
+
# Initialize an empty DataFrame for Raw Portfolio
|
| 1063 |
+
Raw_Portfolio = pd.DataFrame()
|
| 1064 |
+
|
| 1065 |
+
# Loop through each position and split the data accordingly
|
| 1066 |
+
positions = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
|
| 1067 |
+
for pos in positions:
|
| 1068 |
+
temp_df = UserPortfolio[pos].str.split("(", n=1, expand=True)
|
| 1069 |
+
temp_df.columns = [pos, 'Drop']
|
| 1070 |
+
Raw_Portfolio = pd.concat([Raw_Portfolio, temp_df], axis=1)
|
| 1071 |
+
|
| 1072 |
+
# Select only necessary columns and strip white spaces
|
| 1073 |
+
CleanPortfolio = Raw_Portfolio[positions].apply(lambda x: x.str.strip())
|
| 1074 |
+
CleanPortfolio.reset_index(inplace=True)
|
| 1075 |
+
CleanPortfolio['User/Field'] = CleanPortfolio['index'] + 1
|
| 1076 |
+
CleanPortfolio.drop(columns=['index'], inplace=True)
|
| 1077 |
+
|
| 1078 |
+
CleanPortfolio.replace('', np.nan, inplace=True)
|
| 1079 |
+
CleanPortfolio.dropna(subset=['QB'], inplace=True)
|
| 1080 |
+
|
| 1081 |
+
# Create frequency table for players
|
| 1082 |
+
cleaport_players = pd.DataFrame(
|
| 1083 |
+
np.column_stack(np.unique(CleanPortfolio.iloc[:, 0:9].values, return_counts=True)),
|
| 1084 |
+
columns=['Player', 'Freq']
|
| 1085 |
+
).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 1086 |
+
cleaport_players['Freq'] = cleaport_players['Freq'].astype(int)
|
| 1087 |
+
|
| 1088 |
+
# Merge and update nerf_frame
|
| 1089 |
+
nerf_frame = pd.merge(cleaport_players, Overall_Proj, on='Player', how='left')
|
| 1090 |
+
for col in ['Median', 'Floor', 'Ceiling', 'STDev']:
|
| 1091 |
+
nerf_frame[col] *= 0.90
|
| 1092 |
+
del Raw_Portfolio
|
| 1093 |
+
except:
|
| 1094 |
+
CleanPortfolio = UserPortfolio.reset_index()
|
| 1095 |
+
CleanPortfolio['User/Field'] = CleanPortfolio['index'] + 1
|
| 1096 |
+
CleanPortfolio.drop(columns=['index'], inplace=True)
|
| 1097 |
+
|
| 1098 |
+
# Replace empty strings and drop rows with NaN in 'QB' column
|
| 1099 |
+
CleanPortfolio.replace('', np.nan, inplace=True)
|
| 1100 |
+
CleanPortfolio.dropna(subset=['QB'], inplace=True)
|
| 1101 |
+
|
| 1102 |
+
# Create frequency table for players
|
| 1103 |
+
cleaport_players = pd.DataFrame(
|
| 1104 |
+
np.column_stack(np.unique(CleanPortfolio.iloc[:, 0:9].values, return_counts=True)),
|
| 1105 |
+
columns=['Player', 'Freq']
|
| 1106 |
+
).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 1107 |
+
cleaport_players['Freq'] = cleaport_players['Freq'].astype(int)
|
| 1108 |
+
|
| 1109 |
+
# Merge and update nerf_frame
|
| 1110 |
+
nerf_frame = pd.merge(cleaport_players, Overall_Proj, on='Player', how='left')
|
| 1111 |
+
for col in ['Median', 'Floor', 'Ceiling', 'STDev']:
|
| 1112 |
+
nerf_frame[col] *= 0.90
|
| 1113 |
+
|
| 1114 |
elif insert_port == 0:
|
| 1115 |
+
CleanPortfolio = UserPortfolio
|
| 1116 |
+
cleaport_players = pd.DataFrame(np.column_stack(np.unique(CleanPortfolio.iloc[:,0:9].values, return_counts=True)),
|
| 1117 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 1118 |
+
cleaport_players['Freq'] = cleaport_players['Freq'].astype(int)
|
| 1119 |
+
nerf_frame = Overall_Proj
|
| 1120 |
|
| 1121 |
+
ref_dict = {
|
| 1122 |
+
'pos':['RB', 'WR', 'TE', 'FLEX'],
|
| 1123 |
+
'pos_dfs':['RB_Table', 'WR_Table', 'TE_Table', 'FLEX_Table'],
|
| 1124 |
+
'pos_dicts':['rb_dict', 'wr_dict', 'te_dict', 'flex_dict']
|
| 1125 |
+
}
|
|
|
|
|
|
|
| 1126 |
|
| 1127 |
+
maps_dict = {
|
| 1128 |
+
'Floor_map':dict(zip(Overall_Proj.Player,Overall_Proj.Floor)),
|
| 1129 |
+
'Projection_map':dict(zip(Overall_Proj.Player,Overall_Proj.Median)),
|
| 1130 |
+
'Ceiling_map':dict(zip(Overall_Proj.Player,Overall_Proj.Ceiling)),
|
| 1131 |
+
'Salary_map':dict(zip(Overall_Proj.Player,Overall_Proj.Salary)),
|
| 1132 |
+
'Pos_map':dict(zip(Overall_Proj.Player,Overall_Proj.Position)),
|
| 1133 |
+
'Own_map':dict(zip(Overall_Proj.Player,Overall_Proj.Own)),
|
| 1134 |
+
'Team_map':dict(zip(Overall_Proj.Player,Overall_Proj.Team)),
|
| 1135 |
+
'STDev_map':dict(zip(Overall_Proj.Player,Overall_Proj.STDev)),
|
| 1136 |
+
'team_check_map':dict(zip(Overall_Proj.Player,Overall_Proj.Team))
|
| 1137 |
+
}
|
| 1138 |
+
|
| 1139 |
+
up_dict = {
|
| 1140 |
+
'Floor_map':dict(zip(cleaport_players.Player,nerf_frame.Floor)),
|
| 1141 |
+
'Projection_map':dict(zip(cleaport_players.Player,nerf_frame.Median)),
|
| 1142 |
+
'Ceiling_map':dict(zip(cleaport_players.Player,nerf_frame.Ceiling)),
|
| 1143 |
+
'Salary_map':dict(zip(cleaport_players.Player,nerf_frame.Salary)),
|
| 1144 |
+
'Pos_map':dict(zip(cleaport_players.Player,nerf_frame.Position)),
|
| 1145 |
+
'Own_map':dict(zip(cleaport_players.Player,nerf_frame.Own)),
|
| 1146 |
+
'Team_map':dict(zip(cleaport_players.Player,nerf_frame.Team)),
|
| 1147 |
+
'STDev_map':dict(zip(cleaport_players.Player,nerf_frame.STDev)),
|
| 1148 |
+
'team_check_map':dict(zip(cleaport_players.Player,nerf_frame.Team))
|
| 1149 |
+
}
|
| 1150 |
+
|
| 1151 |
+
del cleaport_players
|
| 1152 |
+
del Overall_Proj
|
| 1153 |
+
del nerf_frame
|
| 1154 |
+
|
| 1155 |
+
st.write('Seed frame creation')
|
| 1156 |
+
FinalPortfolio, maps_dict = run_seed_frame(seed_depth1, Strength_var, strength_grow, Teams_used, Total_Runs)
|
| 1157 |
+
|
| 1158 |
+
Sim_size = linenum_var1
|
| 1159 |
+
SimVar = 1
|
| 1160 |
+
Sim_Winners = []
|
| 1161 |
+
fp_array = FinalPortfolio.values
|
| 1162 |
+
|
| 1163 |
+
if insert_port == 1:
|
| 1164 |
+
up_array = CleanPortfolio.values
|
| 1165 |
+
|
| 1166 |
+
# Pre-vectorize functions
|
| 1167 |
+
vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
|
| 1168 |
+
vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
|
| 1169 |
+
|
| 1170 |
if insert_port == 1:
|
| 1171 |
+
vec_up_projection_map = np.vectorize(up_dict['Projection_map'].__getitem__)
|
| 1172 |
+
vec_up_stdev_map = np.vectorize(up_dict['STDev_map'].__getitem__)
|
| 1173 |
+
|
| 1174 |
+
st.write('Simulating contest on frames')
|
| 1175 |
+
|
| 1176 |
+
while SimVar <= Sim_size:
|
| 1177 |
+
if insert_port == 1:
|
| 1178 |
+
fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size-len(CleanPortfolio))]
|
| 1179 |
+
elif insert_port == 0:
|
| 1180 |
+
fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size)]
|
| 1181 |
+
|
| 1182 |
+
sample_arrays1 = np.c_[
|
| 1183 |
+
fp_random,
|
| 1184 |
np.sum(np.random.normal(
|
| 1185 |
+
loc=vec_projection_map(fp_random[:, :-5]),
|
| 1186 |
+
scale=vec_stdev_map(fp_random[:, :-5])),
|
| 1187 |
axis=1)
|
| 1188 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1189 |
|
| 1190 |
+
if insert_port == 1:
|
| 1191 |
+
sample_arrays2 = np.c_[
|
| 1192 |
+
up_array,
|
| 1193 |
+
np.sum(np.random.normal(
|
| 1194 |
+
loc=vec_up_projection_map(up_array[:, :-5]),
|
| 1195 |
+
scale=vec_up_stdev_map(up_array[:, :-5])),
|
| 1196 |
+
axis=1)
|
| 1197 |
+
]
|
| 1198 |
+
sample_arrays = np.vstack((sample_arrays1, sample_arrays2))
|
| 1199 |
+
else:
|
| 1200 |
+
sample_arrays = sample_arrays1
|
|
|
|
|
|
|
| 1201 |
|
| 1202 |
+
final_array = sample_arrays[sample_arrays[:, 10].argsort()[::-1]]
|
| 1203 |
+
best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
|
| 1204 |
+
Sim_Winners.append(best_lineup)
|
| 1205 |
+
SimVar += 1
|
| 1206 |
+
|
| 1207 |
+
|
| 1208 |
+
# del smple_arrays
|
| 1209 |
+
# del smple_arrays1
|
| 1210 |
+
# del smple_arrays2
|
| 1211 |
+
# del final_array
|
| 1212 |
+
# del best_lineup
|
| 1213 |
+
st.write('Contest simulation complete')
|
| 1214 |
+
# Initial setup
|
| 1215 |
+
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=FinalPortfolio.columns.tolist() + ['Fantasy'])
|
| 1216 |
+
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['Projection'] + Sim_Winner_Frame['Fantasy']) / 2
|
| 1217 |
+
|
| 1218 |
+
# Type Casting
|
| 1219 |
+
type_cast_dict = {'Salary': int, 'Projection': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float16}
|
| 1220 |
+
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
|
| 1221 |
+
|
| 1222 |
+
# Sorting
|
| 1223 |
+
Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by='GPP_Proj', ascending=False)
|
| 1224 |
+
|
| 1225 |
+
# Data Copying
|
| 1226 |
+
Sim_Winner_Export = Sim_Winner_Frame.copy()
|
| 1227 |
+
|
| 1228 |
+
sim_done = 1
|
| 1229 |
+
|
| 1230 |
+
# Conditional Replacement
|
| 1231 |
+
columns_to_replace = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
|
| 1232 |
+
|
| 1233 |
+
if site_var1 == 'Draftkings':
|
| 1234 |
+
replace_dict = dkid_dict
|
| 1235 |
+
elif site_var1 == 'Fanduel':
|
| 1236 |
+
replace_dict = fdid_dict
|
| 1237 |
+
|
| 1238 |
+
for col in columns_to_replace:
|
| 1239 |
+
Sim_Winner_Export[col].replace(replace_dict, inplace=True)
|
| 1240 |
+
|
| 1241 |
+
|
| 1242 |
+
player_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,0:9].values, return_counts=True)),
|
| 1243 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 1244 |
+
player_freq['Freq'] = player_freq['Freq'].astype(int)
|
| 1245 |
+
player_freq['Position'] = player_freq['Player'].map(maps_dict['Pos_map'])
|
| 1246 |
+
player_freq['Salary'] = player_freq['Player'].map(maps_dict['Salary_map'])
|
| 1247 |
+
player_freq['Proj Own'] = player_freq['Player'].map(maps_dict['Own_map']) / 100
|
| 1248 |
+
player_freq['Exposure'] = player_freq['Freq']/(Sim_size)
|
| 1249 |
+
player_freq['Edge'] = player_freq['Exposure'] - player_freq['Proj Own']
|
| 1250 |
+
player_freq['Team'] = player_freq['Player'].map(maps_dict['Team_map'])
|
| 1251 |
+
for checkVar in range(len(team_list)):
|
| 1252 |
+
player_freq['Team'] = player_freq['Team'].replace(item_list, team_list)
|
| 1253 |
+
|
| 1254 |
+
player_freq = player_freq[['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
| 1255 |
+
|
| 1256 |
+
qb_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,0:1].values, return_counts=True)),
|
| 1257 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 1258 |
+
qb_freq['Freq'] = qb_freq['Freq'].astype(int)
|
| 1259 |
+
qb_freq['Position'] = qb_freq['Player'].map(maps_dict['Pos_map'])
|
| 1260 |
+
qb_freq['Salary'] = qb_freq['Player'].map(maps_dict['Salary_map'])
|
| 1261 |
+
qb_freq['Proj Own'] = qb_freq['Player'].map(maps_dict['Own_map']) / 100
|
| 1262 |
+
qb_freq['Exposure'] = qb_freq['Freq']/(Sim_size)
|
| 1263 |
+
qb_freq['Edge'] = qb_freq['Exposure'] - qb_freq['Proj Own']
|
| 1264 |
+
qb_freq['Team'] = qb_freq['Player'].map(maps_dict['Team_map'])
|
| 1265 |
+
for checkVar in range(len(team_list)):
|
| 1266 |
+
qb_freq['Team'] = qb_freq['Team'].replace(item_list, team_list)
|
| 1267 |
+
|
| 1268 |
+
qb_freq = qb_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
| 1269 |
+
|
| 1270 |
+
rb_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[1, 2]].values, return_counts=True)),
|
| 1271 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 1272 |
+
rb_freq['Freq'] = rb_freq['Freq'].astype(int)
|
| 1273 |
+
rb_freq['Position'] = rb_freq['Player'].map(maps_dict['Pos_map'])
|
| 1274 |
+
rb_freq['Salary'] = rb_freq['Player'].map(maps_dict['Salary_map'])
|
| 1275 |
+
rb_freq['Proj Own'] = rb_freq['Player'].map(maps_dict['Own_map']) / 100
|
| 1276 |
+
rb_freq['Exposure'] = rb_freq['Freq']/Sim_size
|
| 1277 |
+
rb_freq['Edge'] = rb_freq['Exposure'] - rb_freq['Proj Own']
|
| 1278 |
+
rb_freq['Team'] = rb_freq['Player'].map(maps_dict['Team_map'])
|
| 1279 |
+
for checkVar in range(len(team_list)):
|
| 1280 |
+
rb_freq['Team'] = rb_freq['Team'].replace(item_list, team_list)
|
| 1281 |
+
|
| 1282 |
+
rb_freq = rb_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
| 1283 |
+
|
| 1284 |
+
wr_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[3, 4, 5]].values, return_counts=True)),
|
| 1285 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 1286 |
+
wr_freq['Freq'] = wr_freq['Freq'].astype(int)
|
| 1287 |
+
wr_freq['Position'] = wr_freq['Player'].map(maps_dict['Pos_map'])
|
| 1288 |
+
wr_freq['Salary'] = wr_freq['Player'].map(maps_dict['Salary_map'])
|
| 1289 |
+
wr_freq['Proj Own'] = wr_freq['Player'].map(maps_dict['Own_map']) / 100
|
| 1290 |
+
wr_freq['Exposure'] = wr_freq['Freq']/Sim_size
|
| 1291 |
+
wr_freq['Edge'] = wr_freq['Exposure'] - wr_freq['Proj Own']
|
| 1292 |
+
wr_freq['Team'] = wr_freq['Player'].map(maps_dict['Team_map'])
|
| 1293 |
+
for checkVar in range(len(team_list)):
|
| 1294 |
+
wr_freq['Team'] = wr_freq['Team'].replace(item_list, team_list)
|
| 1295 |
+
|
| 1296 |
+
wr_freq = wr_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
| 1297 |
+
|
| 1298 |
+
te_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[6]].values, return_counts=True)),
|
| 1299 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 1300 |
+
te_freq['Freq'] = te_freq['Freq'].astype(int)
|
| 1301 |
+
te_freq['Position'] = te_freq['Player'].map(maps_dict['Pos_map'])
|
| 1302 |
+
te_freq['Salary'] = te_freq['Player'].map(maps_dict['Salary_map'])
|
| 1303 |
+
te_freq['Proj Own'] = te_freq['Player'].map(maps_dict['Own_map']) / 100
|
| 1304 |
+
te_freq['Exposure'] = te_freq['Freq']/Sim_size
|
| 1305 |
+
te_freq['Edge'] = te_freq['Exposure'] - te_freq['Proj Own']
|
| 1306 |
+
te_freq['Team'] = te_freq['Player'].map(maps_dict['Team_map'])
|
| 1307 |
+
for checkVar in range(len(team_list)):
|
| 1308 |
+
te_freq['Team'] = te_freq['Team'].replace(item_list, team_list)
|
| 1309 |
+
|
| 1310 |
+
te_freq = te_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
| 1311 |
+
|
| 1312 |
+
flex_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[7]].values, return_counts=True)),
|
| 1313 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 1314 |
+
flex_freq['Freq'] = flex_freq['Freq'].astype(int)
|
| 1315 |
+
flex_freq['Position'] = flex_freq['Player'].map(maps_dict['Pos_map'])
|
| 1316 |
+
flex_freq['Salary'] = flex_freq['Player'].map(maps_dict['Salary_map'])
|
| 1317 |
+
flex_freq['Proj Own'] = flex_freq['Player'].map(maps_dict['Own_map']) / 100
|
| 1318 |
+
flex_freq['Exposure'] = flex_freq['Freq']/Sim_size
|
| 1319 |
+
flex_freq['Edge'] = flex_freq['Exposure'] - flex_freq['Proj Own']
|
| 1320 |
+
flex_freq['Team'] = flex_freq['Player'].map(maps_dict['Team_map'])
|
| 1321 |
+
for checkVar in range(len(team_list)):
|
| 1322 |
+
flex_freq['Team'] = flex_freq['Team'].replace(item_list, team_list)
|
| 1323 |
+
|
| 1324 |
+
flex_freq = flex_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
| 1325 |
+
|
| 1326 |
+
dst_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,8:9].values, return_counts=True)),
|
| 1327 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 1328 |
+
dst_freq['Freq'] = dst_freq['Freq'].astype(int)
|
| 1329 |
+
dst_freq['Position'] = dst_freq['Player'].map(maps_dict['Pos_map'])
|
| 1330 |
+
dst_freq['Salary'] = dst_freq['Player'].map(maps_dict['Salary_map'])
|
| 1331 |
+
dst_freq['Proj Own'] = dst_freq['Player'].map(maps_dict['Own_map']) / 100
|
| 1332 |
+
dst_freq['Exposure'] = dst_freq['Freq']/Sim_size
|
| 1333 |
+
dst_freq['Edge'] = dst_freq['Exposure'] - dst_freq['Proj Own']
|
| 1334 |
+
dst_freq['Team'] = dst_freq['Player'].map(maps_dict['Team_map'])
|
| 1335 |
+
for checkVar in range(len(team_list)):
|
| 1336 |
+
dst_freq['Team'] = dst_freq['Team'].replace(item_list, team_list)
|
| 1337 |
+
|
| 1338 |
+
dst_freq = dst_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
| 1339 |
+
if sim_done == 1:
|
| 1340 |
+
with st.container():
|
| 1341 |
+
player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'))
|
| 1342 |
+
if player_split_var2 == 'Specific Players':
|
| 1343 |
+
find_var2 = st.multiselect('Which players must be included in the lineups?', options = player_freq['Player'].unique())
|
| 1344 |
+
elif player_split_var2 == 'Full Players':
|
| 1345 |
+
find_var2 = static_exposure.Player.values.tolist()
|
| 1346 |
+
if player_split_var2 == 'Specific Players':
|
| 1347 |
+
Sim_Winner_Frame = Sim_Winner_Frame[np.equal.outer(Sim_Winner_Frame.to_numpy(copy=False), find_var2).any(axis=1).all(axis=1)]
|
| 1348 |
+
elif player_split_var2 == 'Full Players':
|
| 1349 |
+
Sim_Winner_Frame = Sim_Winner_Frame
|
| 1350 |
+
|
| 1351 |
+
with st.container():
|
| 1352 |
+
display_winner_dataframe = Sim_Winner_Frame.copy()
|
| 1353 |
+
st.dataframe(display_winner_dataframe.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Own']).format(precision=2), use_container_width = True)
|
| 1354 |
|
| 1355 |
+
st.download_button(
|
| 1356 |
+
label="Export Tables",
|
| 1357 |
+
data=convert_df_to_csv(Sim_Winner_Export),
|
| 1358 |
+
file_name='NFL_consim_export.csv',
|
| 1359 |
+
mime='text/csv',
|
| 1360 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1361 |
|
| 1362 |
+
with st.container():
|
| 1363 |
+
freq_container = st.empty()
|
| 1364 |
+
tab1, tab2, tab3, tab4, tab5, tab6, tab7 = st.tabs(['Overall Exposures', 'QB Exposures', 'RB Exposures', 'WR Exposures', 'TE Exposures', 'FLEX Exposures', 'DST Exposures'])
|
| 1365 |
+
with tab1:
|
| 1366 |
+
st.dataframe(player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1367 |
st.download_button(
|
| 1368 |
+
label="Export Exposures",
|
| 1369 |
+
data=convert_df_to_csv(player_freq),
|
| 1370 |
+
file_name='player_freq_export.csv',
|
| 1371 |
mime='text/csv',
|
| 1372 |
)
|
| 1373 |
+
with tab2:
|
| 1374 |
+
st.dataframe(qb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
| 1375 |
+
st.download_button(
|
| 1376 |
+
label="Export Exposures",
|
| 1377 |
+
data=convert_df_to_csv(qb_freq),
|
| 1378 |
+
file_name='qb_freq_export.csv',
|
| 1379 |
+
mime='text/csv',
|
| 1380 |
+
)
|
| 1381 |
+
with tab3:
|
| 1382 |
+
st.dataframe(rb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
| 1383 |
+
st.download_button(
|
| 1384 |
+
label="Export Exposures",
|
| 1385 |
+
data=convert_df_to_csv(rb_freq),
|
| 1386 |
+
file_name='rb_freq_export.csv',
|
| 1387 |
+
mime='text/csv',
|
| 1388 |
+
)
|
| 1389 |
+
with tab4:
|
| 1390 |
+
st.dataframe(wr_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
| 1391 |
+
st.download_button(
|
| 1392 |
+
label="Export Exposures",
|
| 1393 |
+
data=convert_df_to_csv(wr_freq),
|
| 1394 |
+
file_name='wr_freq_export.csv',
|
| 1395 |
+
mime='text/csv',
|
| 1396 |
+
)
|
| 1397 |
+
with tab5:
|
| 1398 |
+
st.dataframe(te_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
| 1399 |
+
st.download_button(
|
| 1400 |
+
label="Export Exposures",
|
| 1401 |
+
data=convert_df_to_csv(te_freq),
|
| 1402 |
+
file_name='te_freq_export.csv',
|
| 1403 |
+
mime='text/csv',
|
| 1404 |
+
)
|
| 1405 |
+
with tab6:
|
| 1406 |
+
st.dataframe(flex_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
| 1407 |
+
st.download_button(
|
| 1408 |
+
label="Export Exposures",
|
| 1409 |
+
data=convert_df_to_csv(flex_freq),
|
| 1410 |
+
file_name='flex_freq_export.csv',
|
| 1411 |
+
mime='text/csv',
|
| 1412 |
+
)
|
| 1413 |
+
with tab7:
|
| 1414 |
+
st.dataframe(dst_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
| 1415 |
+
st.download_button(
|
| 1416 |
+
label="Export Exposures",
|
| 1417 |
+
data=convert_df_to_csv(dst_freq),
|
| 1418 |
+
file_name='dst_freq_export.csv',
|
| 1419 |
+
mime='text/csv',
|
| 1420 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|