Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,1398 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
st.set_page_config(layout="wide")
|
| 3 |
+
|
| 4 |
+
for name in dir():
|
| 5 |
+
if not name.startswith('_'):
|
| 6 |
+
del globals()[name]
|
| 7 |
+
|
| 8 |
+
import pulp
|
| 9 |
+
import numpy as np
|
| 10 |
+
import pandas as pd
|
| 11 |
+
import streamlit as st
|
| 12 |
+
import gspread
|
| 13 |
+
import time
|
| 14 |
+
import random
|
| 15 |
+
import scipy.stats
|
| 16 |
+
import os
|
| 17 |
+
|
| 18 |
+
@st.cache_resource
|
| 19 |
+
def init_conn():
|
| 20 |
+
scope = ['https://www.googleapis.com/auth/spreadsheets',
|
| 21 |
+
"https://www.googleapis.com/auth/drive"]
|
| 22 |
+
|
| 23 |
+
credentials = {
|
| 24 |
+
"type": "service_account",
|
| 25 |
+
"project_id": "sheets-api-connect-378620",
|
| 26 |
+
"private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
|
| 27 |
+
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
|
| 28 |
+
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
|
| 29 |
+
"client_id": "106625872877651920064",
|
| 30 |
+
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
|
| 31 |
+
"token_uri": "https://oauth2.googleapis.com/token",
|
| 32 |
+
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
|
| 33 |
+
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
+
gc = gspread.service_account_from_dict(credentials)
|
| 37 |
+
return gc
|
| 38 |
+
|
| 39 |
+
gc = init_conn()
|
| 40 |
+
|
| 41 |
+
game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}',
|
| 42 |
+
'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'}
|
| 43 |
+
|
| 44 |
+
player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}',
|
| 45 |
+
'4x%': '{:.2%}','GPP%': '{:.2%}'}
|
| 46 |
+
|
| 47 |
+
freq_format = {'Proj Own': '{:.2%}', 'Exposure': '{:.2%}', 'Edge': '{:.2%}'}
|
| 48 |
+
|
| 49 |
+
@st.cache_resource(ttl = 3600)
|
| 50 |
+
def set_slate_teams():
|
| 51 |
+
sh = gc.open_by_url('https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=1391856348')
|
| 52 |
+
worksheet = sh.worksheet('Site_Info')
|
| 53 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
| 54 |
+
|
| 55 |
+
return raw_display
|
| 56 |
+
|
| 57 |
+
@st.cache_resource(ttl = 600)
|
| 58 |
+
def player_stat_table():
|
| 59 |
+
sh = gc.open_by_url('https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=1391856348')
|
| 60 |
+
worksheet = sh.worksheet('Player_Projections')
|
| 61 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
| 62 |
+
|
| 63 |
+
return raw_display
|
| 64 |
+
|
| 65 |
+
@st.cache_resource(ttl = 600)
|
| 66 |
+
def load_dk_player_projections():
|
| 67 |
+
sh = gc.open_by_url('https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=1391856348')
|
| 68 |
+
worksheet = sh.worksheet('DK_ROO')
|
| 69 |
+
load_display = pd.DataFrame(worksheet.get_all_records())
|
| 70 |
+
load_display.replace('', np.nan, inplace=True)
|
| 71 |
+
raw_display = load_display.dropna(subset=['Median'])
|
| 72 |
+
del load_display
|
| 73 |
+
|
| 74 |
+
return raw_display
|
| 75 |
+
|
| 76 |
+
@st.cache_resource(ttl = 600)
|
| 77 |
+
def load_fd_player_projections():
|
| 78 |
+
sh = gc.open_by_url('https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=1391856348')
|
| 79 |
+
worksheet = sh.worksheet('FD_ROO')
|
| 80 |
+
load_display = pd.DataFrame(worksheet.get_all_records())
|
| 81 |
+
load_display.replace('', np.nan, inplace=True)
|
| 82 |
+
raw_display = load_display.dropna(subset=['Median'])
|
| 83 |
+
del load_display
|
| 84 |
+
|
| 85 |
+
return raw_display
|
| 86 |
+
|
| 87 |
+
@st.cache_resource(ttl = 3600)
|
| 88 |
+
def set_export_ids():
|
| 89 |
+
sh = gc.open_by_url('https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=1391856348')
|
| 90 |
+
worksheet = sh.worksheet('DK_ROO')
|
| 91 |
+
load_display = pd.DataFrame(worksheet.get_all_records())
|
| 92 |
+
load_display.replace('', np.nan, inplace=True)
|
| 93 |
+
raw_display = load_display.dropna(subset=['Median'])
|
| 94 |
+
dk_ids = dict(zip(raw_display['Player'], raw_display['player_id']))
|
| 95 |
+
|
| 96 |
+
worksheet = sh.worksheet('FD_ROO')
|
| 97 |
+
load_display = pd.DataFrame(worksheet.get_all_records())
|
| 98 |
+
load_display.replace('', np.nan, inplace=True)
|
| 99 |
+
raw_display = load_display.dropna(subset=['Median'])
|
| 100 |
+
fd_ids = dict(zip(raw_display['Player'], raw_display['player_id']))
|
| 101 |
+
|
| 102 |
+
del load_display
|
| 103 |
+
del raw_display
|
| 104 |
+
|
| 105 |
+
return dk_ids, fd_ids
|
| 106 |
+
|
| 107 |
+
@st.cache_data
|
| 108 |
+
def convert_df_to_csv(df):
|
| 109 |
+
return df.to_csv().encode('utf-8')
|
| 110 |
+
|
| 111 |
+
def run_seed_frame(seed_depth1, Strength_var, strength_grow, Teams_used, Total_Runs):
|
| 112 |
+
RunsVar = 1
|
| 113 |
+
seed_depth_def = seed_depth1
|
| 114 |
+
Strength_var_def = Strength_var
|
| 115 |
+
strength_grow_def = strength_grow
|
| 116 |
+
Teams_used_def = Teams_used
|
| 117 |
+
Total_Runs_def = Total_Runs
|
| 118 |
+
while RunsVar <= seed_depth_def:
|
| 119 |
+
if RunsVar <= 3:
|
| 120 |
+
FieldStrength = Strength_var_def
|
| 121 |
+
RandomPortfolio, maps_dict = get_correlated_portfolio_for_sim(Total_Runs_def * .1)
|
| 122 |
+
FinalPortfolio = RandomPortfolio
|
| 123 |
+
FinalPortfolio2, maps_dict2 = get_uncorrelated_portfolio_for_sim(Total_Runs_def * .1)
|
| 124 |
+
FinalPortfolio = pd.concat([FinalPortfolio, FinalPortfolio2], axis=0)
|
| 125 |
+
maps_dict.update(maps_dict2)
|
| 126 |
+
del FinalPortfolio2
|
| 127 |
+
del maps_dict2
|
| 128 |
+
elif RunsVar > 3 and RunsVar <= 4:
|
| 129 |
+
FieldStrength += (strength_grow_def + ((30 - len(Teams_used_def)) * .001))
|
| 130 |
+
FinalPortfolio3, maps_dict3 = get_correlated_portfolio_for_sim(Total_Runs_def * .1)
|
| 131 |
+
FinalPortfolio4, maps_dict4 = get_uncorrelated_portfolio_for_sim(Total_Runs_def * .1)
|
| 132 |
+
FinalPortfolio = pd.concat([FinalPortfolio, FinalPortfolio3], axis=0)
|
| 133 |
+
FinalPortfolio = pd.concat([FinalPortfolio, FinalPortfolio4], axis=0)
|
| 134 |
+
FinalPortfolio = FinalPortfolio.drop_duplicates(subset = ['Projection', 'Own'],keep = 'last').reset_index(drop = True)
|
| 135 |
+
maps_dict.update(maps_dict3)
|
| 136 |
+
maps_dict.update(maps_dict4)
|
| 137 |
+
del FinalPortfolio3
|
| 138 |
+
del maps_dict3
|
| 139 |
+
del FinalPortfolio4
|
| 140 |
+
del maps_dict4
|
| 141 |
+
elif RunsVar > 4:
|
| 142 |
+
FieldStrength = 1
|
| 143 |
+
FinalPortfolio3, maps_dict3 = get_correlated_portfolio_for_sim(Total_Runs_def * .1)
|
| 144 |
+
FinalPortfolio4, maps_dict4 = get_uncorrelated_portfolio_for_sim(Total_Runs_def * .1)
|
| 145 |
+
FinalPortfolio = pd.concat([FinalPortfolio, FinalPortfolio3], axis=0)
|
| 146 |
+
FinalPortfolio = pd.concat([FinalPortfolio, FinalPortfolio4], axis=0)
|
| 147 |
+
FinalPortfolio = FinalPortfolio.drop_duplicates(subset = ['Projection', 'Own'],keep = 'last').reset_index(drop = True)
|
| 148 |
+
maps_dict.update(maps_dict3)
|
| 149 |
+
maps_dict.update(maps_dict4)
|
| 150 |
+
del FinalPortfolio3
|
| 151 |
+
del maps_dict3
|
| 152 |
+
del FinalPortfolio4
|
| 153 |
+
del maps_dict4
|
| 154 |
+
RunsVar += 1
|
| 155 |
+
|
| 156 |
+
return FinalPortfolio, maps_dict
|
| 157 |
+
|
| 158 |
+
def create_stack_options(player_data, wr_var):
|
| 159 |
+
merged_frame = pd.DataFrame(columns = ['QB', 'Player'])
|
| 160 |
+
data_raw = player_data.sort_values(by='Median', ascending=False)
|
| 161 |
+
|
| 162 |
+
for team in data_raw['Team'].unique():
|
| 163 |
+
data_split = data_raw.loc[data_raw['Team'] == team]
|
| 164 |
+
qb_frame = data_split.loc[data_split['Position'] == 'QB'].reset_index()
|
| 165 |
+
wr_frame = data_split.loc[data_split['Position'] == 'WR'].iloc[wr_var-1:wr_var]
|
| 166 |
+
wr_frame['QB'] = qb_frame['Player'][0]
|
| 167 |
+
merge_slice = wr_frame[['QB', 'Player']]
|
| 168 |
+
merged_frame = pd.concat([merged_frame, merge_slice])
|
| 169 |
+
merged_frame = merged_frame.reset_index()
|
| 170 |
+
correl_dict = dict(zip(merged_frame.QB, merged_frame.Player))
|
| 171 |
+
|
| 172 |
+
del merged_frame
|
| 173 |
+
del data_raw
|
| 174 |
+
|
| 175 |
+
return correl_dict
|
| 176 |
+
|
| 177 |
+
def create_overall_dfs(pos_players, table_name, dict_name, pos):
|
| 178 |
+
if pos == "FLEX":
|
| 179 |
+
pos_players = pos_players.sort_values(by='Value', ascending=False)
|
| 180 |
+
table_name_raw = pos_players.reset_index(drop=True)
|
| 181 |
+
overall_table_name = table_name_raw.head(round(len(table_name_raw)))
|
| 182 |
+
overall_table_name = overall_table_name.assign(Var = range(0,len(overall_table_name)))
|
| 183 |
+
overall_dict_name = pd.Series(overall_table_name.Player.values, index=overall_table_name.Var).to_dict()
|
| 184 |
+
|
| 185 |
+
del pos_players
|
| 186 |
+
del table_name_raw
|
| 187 |
+
elif pos != "FLEX":
|
| 188 |
+
table_name_raw = pos_players[pos_players['Position'].str.contains(pos)].reset_index(drop=True)
|
| 189 |
+
overall_table_name = table_name_raw.head(round(len(table_name_raw)))
|
| 190 |
+
overall_table_name = overall_table_name.assign(Var = range(0,len(overall_table_name)))
|
| 191 |
+
overall_dict_name = pd.Series(overall_table_name.Player.values, index=overall_table_name.Var).to_dict()
|
| 192 |
+
|
| 193 |
+
del pos_players
|
| 194 |
+
del table_name_raw
|
| 195 |
+
|
| 196 |
+
return overall_table_name, overall_dict_name
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
def get_overall_merged_df():
|
| 200 |
+
ref_dict = {
|
| 201 |
+
'pos':['RB', 'WR', 'TE', 'FLEX'],
|
| 202 |
+
'pos_dfs':['RB_Table', 'WR_Table', 'TE_Table', 'FLEX_Table'],
|
| 203 |
+
'pos_dicts':['rb_dict', 'wr_dict', 'te_dict', 'flex_dict']
|
| 204 |
+
}
|
| 205 |
+
|
| 206 |
+
for i in range(0,4):
|
| 207 |
+
ref_dict['pos_dfs'][i], ref_dict['pos_dicts'][i] =\
|
| 208 |
+
create_overall_dfs(pos_players, ref_dict['pos_dfs'][i], ref_dict['pos_dicts'][i], ref_dict['pos'][i])
|
| 209 |
+
|
| 210 |
+
df_out = pd.concat(ref_dict['pos_dfs'], ignore_index=True)
|
| 211 |
+
|
| 212 |
+
return df_out, ref_dict
|
| 213 |
+
|
| 214 |
+
def calculate_range_var(count, min_val, FieldStrength, field_growth):
|
| 215 |
+
var = round(len(count[0]) * FieldStrength)
|
| 216 |
+
var = max(var, min_val)
|
| 217 |
+
var += round(field_growth)
|
| 218 |
+
return min(var, len(count[0]))
|
| 219 |
+
|
| 220 |
+
def create_random_portfolio(Total_Sample_Size, raw_baselines):
|
| 221 |
+
|
| 222 |
+
O_merge, full_pos_player_dict = get_overall_merged_df()
|
| 223 |
+
max_var = len(raw_baselines[raw_baselines['Position'] == 'QB'])
|
| 224 |
+
|
| 225 |
+
field_growth_rounded = round(field_growth)
|
| 226 |
+
ranges_dict = {}
|
| 227 |
+
|
| 228 |
+
# Calculate ranges
|
| 229 |
+
for df, dict_val, min_val, key in zip(ref_dict['pos_dfs'], ref_dict['pos_dicts'], [10, 20, 30, 10], ['RB', 'WR', 'TE', 'FLEX']):
|
| 230 |
+
count = create_overall_dfs(pos_players, df, dict_val, key)
|
| 231 |
+
ranges_dict[f"{key.lower()}_range"] = calculate_range_var(count, min_val, FieldStrength, field_growth_rounded)
|
| 232 |
+
|
| 233 |
+
ranges_dict['qb_range'] = round(max_var / 2)
|
| 234 |
+
ranges_dict['dst_range'] = round(max_var / 2)
|
| 235 |
+
# Generate unique ranges
|
| 236 |
+
# for key, value in ranges_dict.items():
|
| 237 |
+
# ranges_dict[f"{key}_Uniques"] = list(range(0, value, 1))
|
| 238 |
+
|
| 239 |
+
# Generate random portfolios
|
| 240 |
+
rng = np.random.default_rng()
|
| 241 |
+
total_elements = [1, 2, 3, 1, 1, 1]
|
| 242 |
+
keys = ['qb', 'rb', 'wr', 'te', 'flex', 'dst']
|
| 243 |
+
|
| 244 |
+
all_choices = [rng.choice(ranges_dict[f"{key}_range"], size=(Total_Sample_Size, elem)) for key, elem in zip(keys, total_elements)]
|
| 245 |
+
RandomPortfolio = pd.DataFrame(np.hstack(all_choices), columns=['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST'])
|
| 246 |
+
RandomPortfolio['User/Field'] = 0
|
| 247 |
+
|
| 248 |
+
del O_merge
|
| 249 |
+
|
| 250 |
+
return RandomPortfolio, maps_dict, ranges_dict, full_pos_player_dict
|
| 251 |
+
|
| 252 |
+
def get_correlated_portfolio_for_sim(Total_Sample_Size):
|
| 253 |
+
|
| 254 |
+
sizesplit = round(Total_Sample_Size * sharp_split)
|
| 255 |
+
|
| 256 |
+
RandomPortfolio, maps_dict, ranges_dict, full_pos_player_dict = create_random_portfolio(sizesplit, raw_baselines)
|
| 257 |
+
stack_num = random.randint(1, 3)
|
| 258 |
+
stacking_dict = create_stack_options(raw_baselines, stack_num)
|
| 259 |
+
|
| 260 |
+
# # Create a dictionary for mapping positions to their corresponding dictionaries
|
| 261 |
+
# dict_map = {
|
| 262 |
+
# 'QB': qb_dict,
|
| 263 |
+
# 'RB1': full_pos_player_dict['pos_dicts'][0],
|
| 264 |
+
# 'RB2': full_pos_player_dict['pos_dicts'][0],
|
| 265 |
+
# 'WR1': full_pos_player_dict['pos_dicts'][1],
|
| 266 |
+
# 'WR2': full_pos_player_dict['pos_dicts'][1],
|
| 267 |
+
# 'WR3': full_pos_player_dict['pos_dicts'][1],
|
| 268 |
+
# 'TE': full_pos_player_dict['pos_dicts'][2],
|
| 269 |
+
# 'FLEX': full_pos_player_dict['pos_dicts'][3],
|
| 270 |
+
# 'DST': def_dict
|
| 271 |
+
# }
|
| 272 |
+
|
| 273 |
+
# # Apply mapping for each position
|
| 274 |
+
# for pos, mapping in dict_map.items():
|
| 275 |
+
# RandomPortfolio[pos] = RandomPortfolio[pos].map(mapping).astype("string[pyarrow]")
|
| 276 |
+
|
| 277 |
+
# # This part appears to be for filtering. Consider if it can be optimized depending on the data characteristics
|
| 278 |
+
# RandomPortfolio['plyr_list'] = RandomPortfolio.values.tolist()
|
| 279 |
+
# RandomPortfolio['plyr_count'] = RandomPortfolio['plyr_list'].apply(lambda x: len(set(x)))
|
| 280 |
+
# RandomPortfolio = RandomPortfolio[RandomPortfolio['plyr_count'] == 10].drop(columns=['plyr_list','plyr_count']).reset_index(drop=True)
|
| 281 |
+
|
| 282 |
+
RandomPortfolio['QB'] = pd.Series(list(RandomPortfolio['QB'].map(qb_dict)), dtype="string[pyarrow]")
|
| 283 |
+
RandomPortfolio['RB1'] = pd.Series(list(RandomPortfolio['RB1'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
|
| 284 |
+
RandomPortfolio['RB2'] = pd.Series(list(RandomPortfolio['RB2'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
|
| 285 |
+
RandomPortfolio['WR1'] = pd.Series(list(RandomPortfolio['QB'].map(stacking_dict)), dtype="string[pyarrow]")
|
| 286 |
+
RandomPortfolio['WR2'] = pd.Series(list(RandomPortfolio['WR2'].map(full_pos_player_dict['pos_dicts'][1])), dtype="string[pyarrow]")
|
| 287 |
+
RandomPortfolio['WR3'] = pd.Series(list(RandomPortfolio['WR3'].map(full_pos_player_dict['pos_dicts'][1])), dtype="string[pyarrow]")
|
| 288 |
+
RandomPortfolio['TE'] = pd.Series(list(RandomPortfolio['TE'].map(full_pos_player_dict['pos_dicts'][2])), dtype="string[pyarrow]")
|
| 289 |
+
RandomPortfolio['FLEX'] = pd.Series(list(RandomPortfolio['FLEX'].map(full_pos_player_dict['pos_dicts'][3])), dtype="string[pyarrow]")
|
| 290 |
+
RandomPortfolio['DST'] = pd.Series(list(RandomPortfolio['DST'].map(def_dict)), dtype="string[pyarrow]")
|
| 291 |
+
RandomPortfolio['plyr_list'] = RandomPortfolio[RandomPortfolio.columns.values.tolist()].values.tolist()
|
| 292 |
+
RandomPortfolio['plyr_count'] = RandomPortfolio['plyr_list'].apply(lambda x: len(set(x)))
|
| 293 |
+
RandomPortfolio = RandomPortfolio[RandomPortfolio['plyr_count'] == 10].drop(columns=['plyr_list','plyr_count']).\
|
| 294 |
+
reset_index(drop=True)
|
| 295 |
+
|
| 296 |
+
del sizesplit
|
| 297 |
+
del full_pos_player_dict
|
| 298 |
+
del ranges_dict
|
| 299 |
+
del stack_num
|
| 300 |
+
del stacking_dict
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
RandomPortfolio['QBs'] = RandomPortfolio['QB'].map(maps_dict['Salary_map']).astype(np.int32)
|
| 305 |
+
RandomPortfolio['RB1s'] = RandomPortfolio['RB1'].map(maps_dict['Salary_map']).astype(np.int32)
|
| 306 |
+
RandomPortfolio['RB2s'] = RandomPortfolio['RB2'].map(maps_dict['Salary_map']).astype(np.int32)
|
| 307 |
+
RandomPortfolio['WR1s'] = RandomPortfolio['WR1'].map(maps_dict['Salary_map']).astype(np.int32)
|
| 308 |
+
RandomPortfolio['WR2s'] = RandomPortfolio['WR2'].map(maps_dict['Salary_map']).astype(np.int32)
|
| 309 |
+
RandomPortfolio['WR3s'] = RandomPortfolio['WR3'].map(maps_dict['Salary_map']).astype(np.int32)
|
| 310 |
+
RandomPortfolio['TEs'] = RandomPortfolio['TE'].map(maps_dict['Salary_map']).astype(np.int32)
|
| 311 |
+
RandomPortfolio['FLEXs'] = RandomPortfolio['FLEX'].map(maps_dict['Salary_map']).astype(np.int32)
|
| 312 |
+
RandomPortfolio['DSTs'] = RandomPortfolio['DST'].map(maps_dict['Salary_map']).astype(np.int32)
|
| 313 |
+
|
| 314 |
+
RandomPortfolio['QBp'] = RandomPortfolio['QB'].map(maps_dict['Projection_map']).astype(np.float16)
|
| 315 |
+
RandomPortfolio['RB1p'] = RandomPortfolio['RB1'].map(maps_dict['Projection_map']).astype(np.float16)
|
| 316 |
+
RandomPortfolio['RB2p'] = RandomPortfolio['RB2'].map(maps_dict['Projection_map']).astype(np.float16)
|
| 317 |
+
RandomPortfolio['WR1p'] = RandomPortfolio['WR1'].map(maps_dict['Projection_map']).astype(np.float16)
|
| 318 |
+
RandomPortfolio['WR2p'] = RandomPortfolio['WR2'].map(maps_dict['Projection_map']).astype(np.float16)
|
| 319 |
+
RandomPortfolio['WR3p'] = RandomPortfolio['WR3'].map(maps_dict['Projection_map']).astype(np.float16)
|
| 320 |
+
RandomPortfolio['TEp'] = RandomPortfolio['TE'].map(maps_dict['Projection_map']).astype(np.float16)
|
| 321 |
+
RandomPortfolio['FLEXp'] = RandomPortfolio['FLEX'].map(maps_dict['Projection_map']).astype(np.float16)
|
| 322 |
+
RandomPortfolio['DSTp'] = RandomPortfolio['DST'].map(maps_dict['Projection_map']).astype(np.float16)
|
| 323 |
+
|
| 324 |
+
RandomPortfolio['QBo'] = RandomPortfolio['QB'].map(maps_dict['Own_map']).astype(np.float16)
|
| 325 |
+
RandomPortfolio['RB1o'] = RandomPortfolio['RB1'].map(maps_dict['Own_map']).astype(np.float16)
|
| 326 |
+
RandomPortfolio['RB2o'] = RandomPortfolio['RB2'].map(maps_dict['Own_map']).astype(np.float16)
|
| 327 |
+
RandomPortfolio['WR1o'] = RandomPortfolio['WR1'].map(maps_dict['Own_map']).astype(np.float16)
|
| 328 |
+
RandomPortfolio['WR2o'] = RandomPortfolio['WR2'].map(maps_dict['Own_map']).astype(np.float16)
|
| 329 |
+
RandomPortfolio['WR3o'] = RandomPortfolio['WR3'].map(maps_dict['Own_map']).astype(np.float16)
|
| 330 |
+
RandomPortfolio['TEo'] = RandomPortfolio['TE'].map(maps_dict['Own_map']).astype(np.float16)
|
| 331 |
+
RandomPortfolio['FLEXo'] = RandomPortfolio['FLEX'].map(maps_dict['Own_map']).astype(np.float16)
|
| 332 |
+
RandomPortfolio['DSTo'] = RandomPortfolio['DST'].map(maps_dict['Own_map']).astype(np.float16)
|
| 333 |
+
|
| 334 |
+
RandomPortArray = RandomPortfolio.to_numpy()
|
| 335 |
+
del RandomPortfolio
|
| 336 |
+
|
| 337 |
+
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,10:19].astype(int))]
|
| 338 |
+
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,19:28].astype(np.double))]
|
| 339 |
+
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,28:37].astype(np.double))]
|
| 340 |
+
|
| 341 |
+
RandomPortArrayOut = np.delete(RandomPortArray, np.s_[10:37], axis=1)
|
| 342 |
+
RandomPortfolioDF = pd.DataFrame(RandomPortArrayOut, columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'User/Field', 'Salary', 'Projection', 'Own'])
|
| 343 |
+
RandomPortfolioDF = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
|
| 344 |
+
del RandomPortArray
|
| 345 |
+
del RandomPortArrayOut
|
| 346 |
+
|
| 347 |
+
if insert_port == 1:
|
| 348 |
+
CleanPortfolio['Salary'] = sum([CleanPortfolio['QB'].map(maps_dict['Salary_map']),
|
| 349 |
+
CleanPortfolio['RB1'].map(maps_dict['Salary_map']),
|
| 350 |
+
CleanPortfolio['RB2'].map(maps_dict['Salary_map']),
|
| 351 |
+
CleanPortfolio['WR1'].map(maps_dict['Salary_map']),
|
| 352 |
+
CleanPortfolio['WR2'].map(maps_dict['Salary_map']),
|
| 353 |
+
CleanPortfolio['WR3'].map(maps_dict['Salary_map']),
|
| 354 |
+
CleanPortfolio['TE'].map(maps_dict['Salary_map']),
|
| 355 |
+
CleanPortfolio['FLEX'].map(maps_dict['Salary_map']),
|
| 356 |
+
CleanPortfolio['DST'].map(maps_dict['Salary_map'])
|
| 357 |
+
]).astype(np.int16)
|
| 358 |
+
if insert_port == 1:
|
| 359 |
+
CleanPortfolio['Projection'] = sum([CleanPortfolio['QB'].map(up_dict['Projection_map']),
|
| 360 |
+
CleanPortfolio['RB1'].map(up_dict['Projection_map']),
|
| 361 |
+
CleanPortfolio['RB2'].map(up_dict['Projection_map']),
|
| 362 |
+
CleanPortfolio['WR1'].map(up_dict['Projection_map']),
|
| 363 |
+
CleanPortfolio['WR2'].map(up_dict['Projection_map']),
|
| 364 |
+
CleanPortfolio['WR3'].map(up_dict['Projection_map']),
|
| 365 |
+
CleanPortfolio['TE'].map(up_dict['Projection_map']),
|
| 366 |
+
CleanPortfolio['FLEX'].map(up_dict['Projection_map']),
|
| 367 |
+
CleanPortfolio['DST'].map(up_dict['Projection_map'])
|
| 368 |
+
]).astype(np.float16)
|
| 369 |
+
if insert_port == 1:
|
| 370 |
+
CleanPortfolio['Own'] = sum([CleanPortfolio['QB'].map(maps_dict['Own_map']),
|
| 371 |
+
CleanPortfolio['RB1'].map(maps_dict['Own_map']),
|
| 372 |
+
CleanPortfolio['RB2'].map(maps_dict['Own_map']),
|
| 373 |
+
CleanPortfolio['WR1'].map(maps_dict['Own_map']),
|
| 374 |
+
CleanPortfolio['WR2'].map(maps_dict['Own_map']),
|
| 375 |
+
CleanPortfolio['WR3'].map(maps_dict['Own_map']),
|
| 376 |
+
CleanPortfolio['TE'].map(maps_dict['Own_map']),
|
| 377 |
+
CleanPortfolio['FLEX'].map(maps_dict['Own_map']),
|
| 378 |
+
CleanPortfolio['DST'].map(maps_dict['Own_map'])
|
| 379 |
+
]).astype(np.float16)
|
| 380 |
+
|
| 381 |
+
if site_var1 == 'Draftkings':
|
| 382 |
+
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] <= 50000].reset_index(drop=True)
|
| 383 |
+
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] >= 49500 - (FieldStrength * 1000)].reset_index(drop=True)
|
| 384 |
+
elif site_var1 == 'Fanduel':
|
| 385 |
+
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] <= 60000].reset_index(drop=True)
|
| 386 |
+
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] >= 59500 - (FieldStrength * 1000)].reset_index(drop=True)
|
| 387 |
+
|
| 388 |
+
RandomPortfolio = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
|
| 389 |
+
|
| 390 |
+
RandomPortfolio = RandomPortfolio[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'User/Field', 'Salary', 'Projection', 'Own']]
|
| 391 |
+
|
| 392 |
+
return RandomPortfolio, maps_dict
|
| 393 |
+
|
| 394 |
+
def get_uncorrelated_portfolio_for_sim(Total_Sample_Size):
|
| 395 |
+
|
| 396 |
+
sizesplit = round(Total_Sample_Size * (1-sharp_split))
|
| 397 |
+
|
| 398 |
+
RandomPortfolio, maps_dict, ranges_dict, full_pos_player_dict = create_random_portfolio(sizesplit, raw_baselines)
|
| 399 |
+
|
| 400 |
+
RandomPortfolio['QB'] = pd.Series(list(RandomPortfolio['QB'].map(qb_dict)), dtype="string[pyarrow]")
|
| 401 |
+
RandomPortfolio['RB1'] = pd.Series(list(RandomPortfolio['RB1'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
|
| 402 |
+
RandomPortfolio['RB2'] = pd.Series(list(RandomPortfolio['RB2'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
|
| 403 |
+
RandomPortfolio['WR1'] = pd.Series(list(RandomPortfolio['WR1'].map(full_pos_player_dict['pos_dicts'][1])), dtype="string[pyarrow]")
|
| 404 |
+
RandomPortfolio['WR2'] = pd.Series(list(RandomPortfolio['WR2'].map(full_pos_player_dict['pos_dicts'][1])), dtype="string[pyarrow]")
|
| 405 |
+
RandomPortfolio['WR3'] = pd.Series(list(RandomPortfolio['WR3'].map(full_pos_player_dict['pos_dicts'][1])), dtype="string[pyarrow]")
|
| 406 |
+
RandomPortfolio['TE'] = pd.Series(list(RandomPortfolio['TE'].map(full_pos_player_dict['pos_dicts'][2])), dtype="string[pyarrow]")
|
| 407 |
+
RandomPortfolio['FLEX'] = pd.Series(list(RandomPortfolio['FLEX'].map(full_pos_player_dict['pos_dicts'][3])), dtype="string[pyarrow]")
|
| 408 |
+
RandomPortfolio['DST'] = pd.Series(list(RandomPortfolio['DST'].map(def_dict)), dtype="string[pyarrow]")
|
| 409 |
+
RandomPortfolio['plyr_list'] = RandomPortfolio[RandomPortfolio.columns.values.tolist()].values.tolist()
|
| 410 |
+
RandomPortfolio['plyr_count'] = RandomPortfolio['plyr_list'].apply(lambda x: len(set(x)))
|
| 411 |
+
RandomPortfolio = RandomPortfolio[RandomPortfolio['plyr_count'] == 10].drop(columns=['plyr_list','plyr_count']).\
|
| 412 |
+
reset_index(drop=True)
|
| 413 |
+
|
| 414 |
+
del sizesplit
|
| 415 |
+
del full_pos_player_dict
|
| 416 |
+
del ranges_dict
|
| 417 |
+
|
| 418 |
+
RandomPortfolio['QBs'] = RandomPortfolio['QB'].map(maps_dict['Salary_map']).astype(np.int32)
|
| 419 |
+
RandomPortfolio['RB1s'] = RandomPortfolio['RB1'].map(maps_dict['Salary_map']).astype(np.int32)
|
| 420 |
+
RandomPortfolio['RB2s'] = RandomPortfolio['RB2'].map(maps_dict['Salary_map']).astype(np.int32)
|
| 421 |
+
RandomPortfolio['WR1s'] = RandomPortfolio['WR1'].map(maps_dict['Salary_map']).astype(np.int32)
|
| 422 |
+
RandomPortfolio['WR2s'] = RandomPortfolio['WR2'].map(maps_dict['Salary_map']).astype(np.int32)
|
| 423 |
+
RandomPortfolio['WR3s'] = RandomPortfolio['WR3'].map(maps_dict['Salary_map']).astype(np.int32)
|
| 424 |
+
RandomPortfolio['TEs'] = RandomPortfolio['TE'].map(maps_dict['Salary_map']).astype(np.int32)
|
| 425 |
+
RandomPortfolio['FLEXs'] = RandomPortfolio['FLEX'].map(maps_dict['Salary_map']).astype(np.int32)
|
| 426 |
+
RandomPortfolio['DSTs'] = RandomPortfolio['DST'].map(maps_dict['Salary_map']).astype(np.int32)
|
| 427 |
+
|
| 428 |
+
RandomPortfolio['QBp'] = RandomPortfolio['QB'].map(maps_dict['Projection_map']).astype(np.float16)
|
| 429 |
+
RandomPortfolio['RB1p'] = RandomPortfolio['RB1'].map(maps_dict['Projection_map']).astype(np.float16)
|
| 430 |
+
RandomPortfolio['RB2p'] = RandomPortfolio['RB2'].map(maps_dict['Projection_map']).astype(np.float16)
|
| 431 |
+
RandomPortfolio['WR1p'] = RandomPortfolio['WR1'].map(maps_dict['Projection_map']).astype(np.float16)
|
| 432 |
+
RandomPortfolio['WR2p'] = RandomPortfolio['WR2'].map(maps_dict['Projection_map']).astype(np.float16)
|
| 433 |
+
RandomPortfolio['WR3p'] = RandomPortfolio['WR3'].map(maps_dict['Projection_map']).astype(np.float16)
|
| 434 |
+
RandomPortfolio['TEp'] = RandomPortfolio['TE'].map(maps_dict['Projection_map']).astype(np.float16)
|
| 435 |
+
RandomPortfolio['FLEXp'] = RandomPortfolio['FLEX'].map(maps_dict['Projection_map']).astype(np.float16)
|
| 436 |
+
RandomPortfolio['DSTp'] = RandomPortfolio['DST'].map(maps_dict['Projection_map']).astype(np.float16)
|
| 437 |
+
|
| 438 |
+
RandomPortfolio['QBo'] = RandomPortfolio['QB'].map(maps_dict['Own_map']).astype(np.float16)
|
| 439 |
+
RandomPortfolio['RB1o'] = RandomPortfolio['RB1'].map(maps_dict['Own_map']).astype(np.float16)
|
| 440 |
+
RandomPortfolio['RB2o'] = RandomPortfolio['RB2'].map(maps_dict['Own_map']).astype(np.float16)
|
| 441 |
+
RandomPortfolio['WR1o'] = RandomPortfolio['WR1'].map(maps_dict['Own_map']).astype(np.float16)
|
| 442 |
+
RandomPortfolio['WR2o'] = RandomPortfolio['WR2'].map(maps_dict['Own_map']).astype(np.float16)
|
| 443 |
+
RandomPortfolio['WR3o'] = RandomPortfolio['WR3'].map(maps_dict['Own_map']).astype(np.float16)
|
| 444 |
+
RandomPortfolio['TEo'] = RandomPortfolio['TE'].map(maps_dict['Own_map']).astype(np.float16)
|
| 445 |
+
RandomPortfolio['FLEXo'] = RandomPortfolio['FLEX'].map(maps_dict['Own_map']).astype(np.float16)
|
| 446 |
+
RandomPortfolio['DSTo'] = RandomPortfolio['DST'].map(maps_dict['Own_map']).astype(np.float16)
|
| 447 |
+
|
| 448 |
+
RandomPortArray = RandomPortfolio.to_numpy()
|
| 449 |
+
del RandomPortfolio
|
| 450 |
+
|
| 451 |
+
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,10:19].astype(int))]
|
| 452 |
+
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,19:28].astype(np.double))]
|
| 453 |
+
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,28:37].astype(np.double))]
|
| 454 |
+
|
| 455 |
+
RandomPortArrayOut = np.delete(RandomPortArray, np.s_[10:37], axis=1)
|
| 456 |
+
RandomPortfolioDF = pd.DataFrame(RandomPortArrayOut, columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'User/Field', 'Salary', 'Projection', 'Own'])
|
| 457 |
+
RandomPortfolioDF = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
|
| 458 |
+
del RandomPortArray
|
| 459 |
+
del RandomPortArrayOut
|
| 460 |
+
# st.table(RandomPortfolioDF.head(50))
|
| 461 |
+
|
| 462 |
+
if insert_port == 1:
|
| 463 |
+
CleanPortfolio['Salary'] = sum([CleanPortfolio['QB'].map(maps_dict['Salary_map']),
|
| 464 |
+
CleanPortfolio['RB1'].map(maps_dict['Salary_map']),
|
| 465 |
+
CleanPortfolio['RB2'].map(maps_dict['Salary_map']),
|
| 466 |
+
CleanPortfolio['WR1'].map(maps_dict['Salary_map']),
|
| 467 |
+
CleanPortfolio['WR2'].map(maps_dict['Salary_map']),
|
| 468 |
+
CleanPortfolio['WR3'].map(maps_dict['Salary_map']),
|
| 469 |
+
CleanPortfolio['TE'].map(maps_dict['Salary_map']),
|
| 470 |
+
CleanPortfolio['FLEX'].map(maps_dict['Salary_map']),
|
| 471 |
+
CleanPortfolio['DST'].map(maps_dict['Salary_map'])
|
| 472 |
+
]).astype(np.int16)
|
| 473 |
+
if insert_port == 1:
|
| 474 |
+
CleanPortfolio['Projection'] = sum([CleanPortfolio['QB'].map(up_dict['Projection_map']),
|
| 475 |
+
CleanPortfolio['RB1'].map(up_dict['Projection_map']),
|
| 476 |
+
CleanPortfolio['RB2'].map(up_dict['Projection_map']),
|
| 477 |
+
CleanPortfolio['WR1'].map(up_dict['Projection_map']),
|
| 478 |
+
CleanPortfolio['WR2'].map(up_dict['Projection_map']),
|
| 479 |
+
CleanPortfolio['WR3'].map(up_dict['Projection_map']),
|
| 480 |
+
CleanPortfolio['TE'].map(up_dict['Projection_map']),
|
| 481 |
+
CleanPortfolio['FLEX'].map(up_dict['Projection_map']),
|
| 482 |
+
CleanPortfolio['DST'].map(up_dict['Projection_map'])
|
| 483 |
+
]).astype(np.float16)
|
| 484 |
+
if insert_port == 1:
|
| 485 |
+
CleanPortfolio['Own'] = sum([CleanPortfolio['QB'].map(maps_dict['Own_map']),
|
| 486 |
+
CleanPortfolio['RB1'].map(maps_dict['Own_map']),
|
| 487 |
+
CleanPortfolio['RB2'].map(maps_dict['Own_map']),
|
| 488 |
+
CleanPortfolio['WR1'].map(maps_dict['Own_map']),
|
| 489 |
+
CleanPortfolio['WR2'].map(maps_dict['Own_map']),
|
| 490 |
+
CleanPortfolio['WR3'].map(maps_dict['Own_map']),
|
| 491 |
+
CleanPortfolio['TE'].map(maps_dict['Own_map']),
|
| 492 |
+
CleanPortfolio['FLEX'].map(maps_dict['Own_map']),
|
| 493 |
+
CleanPortfolio['DST'].map(maps_dict['Own_map'])
|
| 494 |
+
]).astype(np.float16)
|
| 495 |
+
|
| 496 |
+
if site_var1 == 'Draftkings':
|
| 497 |
+
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] <= 50000].reset_index(drop=True)
|
| 498 |
+
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] >= 49500 - (FieldStrength * 1000)].reset_index(drop=True)
|
| 499 |
+
elif site_var1 == 'Fanduel':
|
| 500 |
+
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] <= 60000].reset_index(drop=True)
|
| 501 |
+
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] >= 59500 - (FieldStrength * 1000)].reset_index(drop=True)
|
| 502 |
+
|
| 503 |
+
RandomPortfolio = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
|
| 504 |
+
|
| 505 |
+
RandomPortfolio = RandomPortfolio[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'User/Field', 'Salary', 'Projection', 'Own']]
|
| 506 |
+
|
| 507 |
+
return RandomPortfolio, maps_dict
|
| 508 |
+
|
| 509 |
+
player_stats = player_stat_table()
|
| 510 |
+
dk_roo_raw = load_dk_player_projections()
|
| 511 |
+
fd_roo_raw = load_fd_player_projections()
|
| 512 |
+
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
| 513 |
+
site_slates = set_slate_teams()
|
| 514 |
+
dkid_dict, fdid_dict = set_export_ids()
|
| 515 |
+
|
| 516 |
+
static_exposure = pd.DataFrame(columns=['Player', 'count'])
|
| 517 |
+
overall_exposure = pd.DataFrame(columns=['Player', 'count'])
|
| 518 |
+
|
| 519 |
+
tab1, tab2 = st.tabs(['Uploads', 'Contest Sim'])
|
| 520 |
+
|
| 521 |
+
with tab1:
|
| 522 |
+
with st.container():
|
| 523 |
+
st.info("The Projections file can have any columns in any order, but must contain columns explicitly named: 'Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', and 'Own'. Upload your projections first to avoid an error message.")
|
| 524 |
+
col1, col2 = st.columns([3, 3])
|
| 525 |
+
|
| 526 |
+
with col1:
|
| 527 |
+
proj_file = st.file_uploader("Upload Projections File", key = 'proj_uploader')
|
| 528 |
+
|
| 529 |
+
if proj_file is not None:
|
| 530 |
+
try:
|
| 531 |
+
proj_dataframe = pd.read_csv(proj_file)
|
| 532 |
+
proj_dataframe = proj_dataframe.dropna(subset='Median')
|
| 533 |
+
proj_dataframe['Player'] = proj_dataframe['Player'].str.strip()
|
| 534 |
+
try:
|
| 535 |
+
proj_dataframe['Own'] = proj_dataframe['Own'].str.strip('%').astype(float)
|
| 536 |
+
except:
|
| 537 |
+
pass
|
| 538 |
+
|
| 539 |
+
except:
|
| 540 |
+
proj_dataframe = pd.read_excel(proj_file)
|
| 541 |
+
proj_dataframe = proj_dataframe.dropna(subset='Median')
|
| 542 |
+
proj_dataframe['Player'] = proj_dataframe['Player'].str.strip()
|
| 543 |
+
try:
|
| 544 |
+
proj_dataframe['Own'] = proj_dataframe['Own'].str.strip('%').astype(float)
|
| 545 |
+
except:
|
| 546 |
+
pass
|
| 547 |
+
st.table(proj_dataframe.head(10))
|
| 548 |
+
player_salary_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Salary))
|
| 549 |
+
player_proj_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Median))
|
| 550 |
+
player_own_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Own))
|
| 551 |
+
player_team_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Team))
|
| 552 |
+
|
| 553 |
+
with col2:
|
| 554 |
+
portfolio_file = st.file_uploader("Upload Portfolio File", key = 'portfolio_uploader')
|
| 555 |
+
|
| 556 |
+
if portfolio_file is not None:
|
| 557 |
+
try:
|
| 558 |
+
portfolio_dataframe = pd.read_csv(portfolio_file)
|
| 559 |
+
|
| 560 |
+
except:
|
| 561 |
+
portfolio_dataframe = pd.read_excel(portfolio_file)
|
| 562 |
+
|
| 563 |
+
try:
|
| 564 |
+
try:
|
| 565 |
+
portfolio_dataframe.columns=["QB", "RB1", "RB2", "WR1", "WR2", "WR3", "TE", "FLEX", "DST"]
|
| 566 |
+
split_portfolio = portfolio_dataframe
|
| 567 |
+
split_portfolio[['QB', 'QB_ID']] = split_portfolio.QB.str.split("(", n=1, expand = True)
|
| 568 |
+
split_portfolio[['RB1', 'RB1_ID']] = split_portfolio.RB1.str.split("(", n=1, expand = True)
|
| 569 |
+
split_portfolio[['RB2', 'RB2_ID']] = split_portfolio.RB2.str.split("(", n=1, expand = True)
|
| 570 |
+
split_portfolio[['WR1', 'WR1_ID']] = split_portfolio.WR1.str.split("(", n=1, expand = True)
|
| 571 |
+
split_portfolio[['WR2', 'WR2_ID']] = split_portfolio.WR2.str.split("(", n=1, expand = True)
|
| 572 |
+
split_portfolio[['WR3', 'WR3_ID']] = split_portfolio.WR3.str.split("(", n=1, expand = True)
|
| 573 |
+
split_portfolio[['TE', 'TE_ID']] = split_portfolio.TE.str.split("(", n=1, expand = True)
|
| 574 |
+
split_portfolio[['FLEX', 'FLEX_ID']] = split_portfolio.FLEX.str.split("(", n=1, expand = True)
|
| 575 |
+
split_portfolio[['DST', 'DST_ID']] = split_portfolio.DST.str.split("(", n=1, expand = True)
|
| 576 |
+
|
| 577 |
+
split_portfolio['QB'] = split_portfolio['QB'].str.strip()
|
| 578 |
+
split_portfolio['RB1'] = split_portfolio['RB1'].str.strip()
|
| 579 |
+
split_portfolio['RB2'] = split_portfolio['RB2'].str.strip()
|
| 580 |
+
split_portfolio['WR1'] = split_portfolio['WR1'].str.strip()
|
| 581 |
+
split_portfolio['WR2'] = split_portfolio['WR2'].str.strip()
|
| 582 |
+
split_portfolio['WR3'] = split_portfolio['WR3'].str.strip()
|
| 583 |
+
split_portfolio['TE'] = split_portfolio['TE'].str.strip()
|
| 584 |
+
split_portfolio['FLEX'] = split_portfolio['FLEX'].str.strip()
|
| 585 |
+
split_portfolio['DST'] = split_portfolio['DST'].str.strip()
|
| 586 |
+
|
| 587 |
+
split_portfolio['Salary'] = sum([split_portfolio['QB'].map(player_salary_dict),
|
| 588 |
+
split_portfolio['RB1'].map(player_salary_dict),
|
| 589 |
+
split_portfolio['RB2'].map(player_salary_dict),
|
| 590 |
+
split_portfolio['WR1'].map(player_salary_dict),
|
| 591 |
+
split_portfolio['WR2'].map(player_salary_dict),
|
| 592 |
+
split_portfolio['WR3'].map(player_salary_dict),
|
| 593 |
+
split_portfolio['TE'].map(player_salary_dict),
|
| 594 |
+
split_portfolio['FLEX'].map(player_salary_dict),
|
| 595 |
+
split_portfolio['DST'].map(player_salary_dict)])
|
| 596 |
+
|
| 597 |
+
split_portfolio['Projection'] = sum([split_portfolio['QB'].map(player_proj_dict),
|
| 598 |
+
split_portfolio['RB1'].map(player_proj_dict),
|
| 599 |
+
split_portfolio['RB2'].map(player_proj_dict),
|
| 600 |
+
split_portfolio['WR1'].map(player_proj_dict),
|
| 601 |
+
split_portfolio['WR2'].map(player_proj_dict),
|
| 602 |
+
split_portfolio['WR3'].map(player_proj_dict),
|
| 603 |
+
split_portfolio['TE'].map(player_proj_dict),
|
| 604 |
+
split_portfolio['FLEX'].map(player_proj_dict),
|
| 605 |
+
split_portfolio['DST'].map(player_proj_dict)])
|
| 606 |
+
|
| 607 |
+
split_portfolio['Ownership'] = sum([split_portfolio['QB'].map(player_own_dict),
|
| 608 |
+
split_portfolio['RB1'].map(player_own_dict),
|
| 609 |
+
split_portfolio['RB2'].map(player_own_dict),
|
| 610 |
+
split_portfolio['WR1'].map(player_own_dict),
|
| 611 |
+
split_portfolio['WR2'].map(player_own_dict),
|
| 612 |
+
split_portfolio['WR3'].map(player_own_dict),
|
| 613 |
+
split_portfolio['TE'].map(player_own_dict),
|
| 614 |
+
split_portfolio['FLEX'].map(player_own_dict),
|
| 615 |
+
split_portfolio['DST'].map(player_own_dict)])
|
| 616 |
+
|
| 617 |
+
split_portfolio['QB_team'] = split_portfolio['QB'].map(player_team_dict)
|
| 618 |
+
split_portfolio['RB1_team'] = split_portfolio['RB1'].map(player_team_dict)
|
| 619 |
+
split_portfolio['RB2_team'] = split_portfolio['RB2'].map(player_team_dict)
|
| 620 |
+
split_portfolio['WR1_team'] = split_portfolio['WR1'].map(player_team_dict)
|
| 621 |
+
split_portfolio['WR2_team'] = split_portfolio['WR2'].map(player_team_dict)
|
| 622 |
+
split_portfolio['WR3_team'] = split_portfolio['WR3'].map(player_team_dict)
|
| 623 |
+
split_portfolio['TE_team'] = split_portfolio['TE'].map(player_team_dict)
|
| 624 |
+
split_portfolio['FLEX_team'] = split_portfolio['FLEX'].map(player_team_dict)
|
| 625 |
+
split_portfolio['DST_team'] = split_portfolio['DST'].map(player_team_dict)
|
| 626 |
+
|
| 627 |
+
split_portfolio = split_portfolio[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'Salary', 'Projection', 'Ownership', 'QB_team',
|
| 628 |
+
'RB1_team', 'RB2_team', 'WR1_team', 'WR2_team', 'WR3_team', 'TE_team', 'FLEX_team', 'DST_team']]
|
| 629 |
+
|
| 630 |
+
split_portfolio['Main_Stack'] = split_portfolio.iloc[:, 15:19].apply(lambda row: row.value_counts().nlargest(2).index[0],axis=1)
|
| 631 |
+
split_portfolio['Main_Stack_Size'] = split_portfolio.iloc[:, 15:19].apply(lambda row: row.value_counts().nlargest(2).values[0],axis=1)
|
| 632 |
+
split_portfolio['Main_Stack_Size'] = split_portfolio['Main_Stack_Size'] - 1
|
| 633 |
+
|
| 634 |
+
|
| 635 |
+
except:
|
| 636 |
+
portfolio_dataframe.columns=["QB", "RB1", "RB2", "WR1", "WR2", "WR3", "TE", "FLEX", "DST"]
|
| 637 |
+
|
| 638 |
+
split_portfolio = portfolio_dataframe
|
| 639 |
+
split_portfolio[['QB_ID', 'QB']] = split_portfolio.QB.str.split(":", n=1, expand = True)
|
| 640 |
+
split_portfolio[['RB1_ID', 'RB1']] = split_portfolio.RB1.str.split(":", n=1, expand = True)
|
| 641 |
+
split_portfolio[['RB2_ID', 'RB2']] = split_portfolio.RB2.str.split(":", n=1, expand = True)
|
| 642 |
+
split_portfolio[['WR1_ID', 'WR1']] = split_portfolio.WR1.str.split(":", n=1, expand = True)
|
| 643 |
+
split_portfolio[['WR2_ID', 'WR2']] = split_portfolio.WR2.str.split(":", n=1, expand = True)
|
| 644 |
+
split_portfolio[['WR3_ID', 'WR3']] = split_portfolio.WR3.str.split(":", n=1, expand = True)
|
| 645 |
+
split_portfolio[['TE_ID', 'TE']] = split_portfolio.TE.str.split(":", n=1, expand = True)
|
| 646 |
+
split_portfolio[['FLEX_ID', 'FLEX']] = split_portfolio.FLEX.str.split(":", n=1, expand = True)
|
| 647 |
+
split_portfolio[['DST_ID', 'DST']] = split_portfolio.DST.str.split(":", n=1, expand = True)
|
| 648 |
+
|
| 649 |
+
split_portfolio['QB'] = split_portfolio['QB'].str.strip()
|
| 650 |
+
split_portfolio['RB1'] = split_portfolio['RB1'].str.strip()
|
| 651 |
+
split_portfolio['RB2'] = split_portfolio['RB2'].str.strip()
|
| 652 |
+
split_portfolio['WR1'] = split_portfolio['WR1'].str.strip()
|
| 653 |
+
split_portfolio['WR2'] = split_portfolio['WR2'].str.strip()
|
| 654 |
+
split_portfolio['WR3'] = split_portfolio['WR3'].str.strip()
|
| 655 |
+
split_portfolio['TE'] = split_portfolio['TE'].str.strip()
|
| 656 |
+
split_portfolio['FLEX'] = split_portfolio['FLEX'].str.strip()
|
| 657 |
+
split_portfolio['DST'] = split_portfolio['DST'].str.strip()
|
| 658 |
+
|
| 659 |
+
split_portfolio['Salary'] = sum([split_portfolio['QB'].map(player_salary_dict),
|
| 660 |
+
split_portfolio['RB1'].map(player_salary_dict),
|
| 661 |
+
split_portfolio['RB2'].map(player_salary_dict),
|
| 662 |
+
split_portfolio['WR1'].map(player_salary_dict),
|
| 663 |
+
split_portfolio['WR2'].map(player_salary_dict),
|
| 664 |
+
split_portfolio['WR3'].map(player_salary_dict),
|
| 665 |
+
split_portfolio['TE'].map(player_salary_dict),
|
| 666 |
+
split_portfolio['FLEX'].map(player_salary_dict),
|
| 667 |
+
split_portfolio['DST'].map(player_salary_dict)])
|
| 668 |
+
|
| 669 |
+
split_portfolio['Projection'] = sum([split_portfolio['QB'].map(player_proj_dict),
|
| 670 |
+
split_portfolio['RB1'].map(player_proj_dict),
|
| 671 |
+
split_portfolio['RB2'].map(player_proj_dict),
|
| 672 |
+
split_portfolio['WR1'].map(player_proj_dict),
|
| 673 |
+
split_portfolio['WR2'].map(player_proj_dict),
|
| 674 |
+
split_portfolio['WR3'].map(player_proj_dict),
|
| 675 |
+
split_portfolio['TE'].map(player_proj_dict),
|
| 676 |
+
split_portfolio['FLEX'].map(player_proj_dict),
|
| 677 |
+
split_portfolio['DST'].map(player_proj_dict)])
|
| 678 |
+
|
| 679 |
+
st.table(split_portfolio.head(10))
|
| 680 |
+
split_portfolio['Ownership'] = sum([split_portfolio['QB'].map(player_own_dict),
|
| 681 |
+
split_portfolio['RB1'].map(player_own_dict),
|
| 682 |
+
split_portfolio['RB2'].map(player_own_dict),
|
| 683 |
+
split_portfolio['WR1'].map(player_own_dict),
|
| 684 |
+
split_portfolio['WR2'].map(player_own_dict),
|
| 685 |
+
split_portfolio['WR3'].map(player_own_dict),
|
| 686 |
+
split_portfolio['TE'].map(player_own_dict),
|
| 687 |
+
split_portfolio['FLEX'].map(player_own_dict),
|
| 688 |
+
split_portfolio['DST'].map(player_own_dict)])
|
| 689 |
+
|
| 690 |
+
split_portfolio['QB_team'] = split_portfolio['QB'].map(player_team_dict)
|
| 691 |
+
split_portfolio['RB1_team'] = split_portfolio['RB1'].map(player_team_dict)
|
| 692 |
+
split_portfolio['RB2_team'] = split_portfolio['RB2'].map(player_team_dict)
|
| 693 |
+
split_portfolio['WR1_team'] = split_portfolio['WR1'].map(player_team_dict)
|
| 694 |
+
split_portfolio['WR2_team'] = split_portfolio['WR2'].map(player_team_dict)
|
| 695 |
+
split_portfolio['WR3_team'] = split_portfolio['WR3'].map(player_team_dict)
|
| 696 |
+
split_portfolio['TE_team'] = split_portfolio['TE'].map(player_team_dict)
|
| 697 |
+
split_portfolio['FLEX_team'] = split_portfolio['FLEX'].map(player_team_dict)
|
| 698 |
+
split_portfolio['DST_team'] = split_portfolio['DST'].map(player_team_dict)
|
| 699 |
+
|
| 700 |
+
split_portfolio = split_portfolio[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'Salary', 'Projection', 'Ownership', 'QB_team',
|
| 701 |
+
'RB1_team', 'RB2_team', 'WR1_team', 'WR2_team', 'WR3_team', 'TE_team', 'FLEX_team', 'DST_team']]
|
| 702 |
+
|
| 703 |
+
split_portfolio['Main_Stack'] = split_portfolio.iloc[:, 15:19].apply(lambda row: row.value_counts().nlargest(2).index[0],axis=1)
|
| 704 |
+
split_portfolio['Main_Stack_Size'] = split_portfolio.iloc[:, 15:19].apply(lambda row: row.value_counts().nlargest(2).values[0],axis=1)
|
| 705 |
+
split_portfolio['Main_Stack_Size'] = split_portfolio['Main_Stack_Size'] - 1
|
| 706 |
+
|
| 707 |
+
except:
|
| 708 |
+
split_portfolio = portfolio_dataframe
|
| 709 |
+
|
| 710 |
+
split_portfolio['Salary'] = sum([split_portfolio['QB'].map(player_salary_dict),
|
| 711 |
+
split_portfolio['RB1'].map(player_salary_dict),
|
| 712 |
+
split_portfolio['RB2'].map(player_salary_dict),
|
| 713 |
+
split_portfolio['WR1'].map(player_salary_dict),
|
| 714 |
+
split_portfolio['WR2'].map(player_salary_dict),
|
| 715 |
+
split_portfolio['WR3'].map(player_salary_dict),
|
| 716 |
+
split_portfolio['TE'].map(player_salary_dict),
|
| 717 |
+
split_portfolio['FLEX'].map(player_salary_dict),
|
| 718 |
+
split_portfolio['DST'].map(player_salary_dict)])
|
| 719 |
+
|
| 720 |
+
split_portfolio['Projection'] = sum([split_portfolio['QB'].map(player_proj_dict),
|
| 721 |
+
split_portfolio['RB1'].map(player_proj_dict),
|
| 722 |
+
split_portfolio['RB2'].map(player_proj_dict),
|
| 723 |
+
split_portfolio['WR1'].map(player_proj_dict),
|
| 724 |
+
split_portfolio['WR2'].map(player_proj_dict),
|
| 725 |
+
split_portfolio['WR3'].map(player_proj_dict),
|
| 726 |
+
split_portfolio['TE'].map(player_proj_dict),
|
| 727 |
+
split_portfolio['FLEX'].map(player_proj_dict),
|
| 728 |
+
split_portfolio['DST'].map(player_proj_dict)])
|
| 729 |
+
|
| 730 |
+
split_portfolio['Ownership'] = sum([split_portfolio['QB'].map(player_own_dict),
|
| 731 |
+
split_portfolio['RB1'].map(player_own_dict),
|
| 732 |
+
split_portfolio['RB2'].map(player_own_dict),
|
| 733 |
+
split_portfolio['WR1'].map(player_own_dict),
|
| 734 |
+
split_portfolio['WR2'].map(player_own_dict),
|
| 735 |
+
split_portfolio['WR3'].map(player_own_dict),
|
| 736 |
+
split_portfolio['TE'].map(player_own_dict),
|
| 737 |
+
split_portfolio['FLEX'].map(player_own_dict),
|
| 738 |
+
split_portfolio['DST'].map(player_own_dict)])
|
| 739 |
+
|
| 740 |
+
split_portfolio['QB_team'] = split_portfolio['QB'].map(player_team_dict)
|
| 741 |
+
split_portfolio['RB1_team'] = split_portfolio['RB1'].map(player_team_dict)
|
| 742 |
+
split_portfolio['RB2_team'] = split_portfolio['RB2'].map(player_team_dict)
|
| 743 |
+
split_portfolio['WR1_team'] = split_portfolio['WR1'].map(player_team_dict)
|
| 744 |
+
split_portfolio['WR2_team'] = split_portfolio['WR2'].map(player_team_dict)
|
| 745 |
+
split_portfolio['WR3_team'] = split_portfolio['WR3'].map(player_team_dict)
|
| 746 |
+
split_portfolio['TE_team'] = split_portfolio['TE'].map(player_team_dict)
|
| 747 |
+
split_portfolio['FLEX_team'] = split_portfolio['FLEX'].map(player_team_dict)
|
| 748 |
+
split_portfolio['DST_team'] = split_portfolio['DST'].map(player_team_dict)
|
| 749 |
+
|
| 750 |
+
split_portfolio = split_portfolio[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'Salary', 'Projection', 'Ownership', 'QB_team',
|
| 751 |
+
'RB1_team', 'RB2_team', 'WR1_team', 'WR2_team', 'WR3_team', 'TE_team', 'FLEX_team', 'DST_team']]
|
| 752 |
+
|
| 753 |
+
split_portfolio['Main_Stack'] = split_portfolio.iloc[:, 15:19].apply(lambda row: row.value_counts().nlargest(2).index[0],axis=1)
|
| 754 |
+
split_portfolio['Main_Stack_Size'] = split_portfolio.iloc[:, 15:19].apply(lambda row: row.value_counts().nlargest(2).values[0],axis=1)
|
| 755 |
+
split_portfolio['Main_Stack_Size'] = split_portfolio['Main_Stack_Size'] - 1
|
| 756 |
+
|
| 757 |
+
for player_cols in split_portfolio.iloc[:, :9]:
|
| 758 |
+
static_col_raw = split_portfolio[player_cols].value_counts()
|
| 759 |
+
static_col = static_col_raw.to_frame()
|
| 760 |
+
static_col.reset_index(inplace=True)
|
| 761 |
+
static_col.columns = ['Player', 'count']
|
| 762 |
+
static_exposure = pd.concat([static_exposure, static_col], ignore_index=True)
|
| 763 |
+
static_exposure['Exposure'] = static_exposure['count'] / len(split_portfolio)
|
| 764 |
+
static_exposure = static_exposure[['Player', 'Exposure']]
|
| 765 |
+
|
| 766 |
+
del player_salary_dict
|
| 767 |
+
del player_proj_dict
|
| 768 |
+
del player_own_dict
|
| 769 |
+
del player_team_dict
|
| 770 |
+
del static_col_raw
|
| 771 |
+
del static_col
|
| 772 |
+
with st.container():
|
| 773 |
+
col1, col2 = st.columns([3, 3])
|
| 774 |
+
|
| 775 |
+
if portfolio_file is not None:
|
| 776 |
+
with col1:
|
| 777 |
+
team_split_var1 = st.radio("Are you wanting to isolate any lineups with specific main stacks?", ('Full Portfolio', 'Specific Stacks'))
|
| 778 |
+
if team_split_var1 == 'Specific Stacks':
|
| 779 |
+
team_var1 = st.multiselect('Which main stacks would you like to include in the Portfolio?', options = split_portfolio['Main_Stack'].unique())
|
| 780 |
+
elif team_split_var1 == 'Full Portfolio':
|
| 781 |
+
team_var1 = split_portfolio.Main_Stack.values.tolist()
|
| 782 |
+
with col2:
|
| 783 |
+
player_split_var1 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'))
|
| 784 |
+
if player_split_var1 == 'Specific Players':
|
| 785 |
+
find_var1 = st.multiselect('Which players must be included in the lineups?', options = static_exposure['Player'].unique())
|
| 786 |
+
elif player_split_var1 == 'Full Players':
|
| 787 |
+
find_var1 = static_exposure.Player.values.tolist()
|
| 788 |
+
|
| 789 |
+
split_portfolio = split_portfolio[split_portfolio['Main_Stack'].isin(team_var1)]
|
| 790 |
+
if player_split_var1 == 'Specific Players':
|
| 791 |
+
split_portfolio = split_portfolio[np.equal.outer(split_portfolio.to_numpy(copy=False), find_var1).any(axis=1).all(axis=1)]
|
| 792 |
+
elif player_split_var1 == 'Full Players':
|
| 793 |
+
split_portfolio = split_portfolio
|
| 794 |
+
|
| 795 |
+
for player_cols in split_portfolio.iloc[:, :9]:
|
| 796 |
+
exposure_col_raw = split_portfolio[player_cols].value_counts()
|
| 797 |
+
exposure_col = exposure_col_raw.to_frame()
|
| 798 |
+
exposure_col.reset_index(inplace=True)
|
| 799 |
+
exposure_col.columns = ['Player', 'count']
|
| 800 |
+
overall_exposure = pd.concat([overall_exposure, exposure_col], ignore_index=True)
|
| 801 |
+
overall_exposure['Exposure'] = overall_exposure['count'] / len(split_portfolio)
|
| 802 |
+
overall_exposure = overall_exposure.groupby('Player').sum()
|
| 803 |
+
overall_exposure.reset_index(inplace=True)
|
| 804 |
+
overall_exposure = overall_exposure[['Player', 'Exposure']]
|
| 805 |
+
overall_exposure = overall_exposure.set_index('Player')
|
| 806 |
+
overall_exposure = overall_exposure.sort_values(by='Exposure', ascending=False)
|
| 807 |
+
overall_exposure['Exposure'] = overall_exposure['Exposure'].astype(float).map(lambda n: '{:.2%}'.format(n))
|
| 808 |
+
|
| 809 |
+
with st.container():
|
| 810 |
+
col1, col2 = st.columns([1, 6])
|
| 811 |
+
|
| 812 |
+
with col1:
|
| 813 |
+
if portfolio_file is not None:
|
| 814 |
+
st.header('Exposure View')
|
| 815 |
+
st.dataframe(overall_exposure)
|
| 816 |
+
|
| 817 |
+
with col2:
|
| 818 |
+
if portfolio_file is not None:
|
| 819 |
+
st.header('Portfolio View')
|
| 820 |
+
split_portfolio = split_portfolio.reset_index()
|
| 821 |
+
split_portfolio['Lineup'] = split_portfolio['index'] + 1
|
| 822 |
+
display_portfolio = split_portfolio[['Lineup', 'QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'Salary', 'Main_Stack', 'Main_Stack_Size', 'Projection', 'Ownership']]
|
| 823 |
+
display_portfolio = display_portfolio.set_index('Lineup')
|
| 824 |
+
st.dataframe(display_portfolio.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Ownership']).format(precision=2))
|
| 825 |
+
del split_portfolio
|
| 826 |
+
del exposure_col_raw
|
| 827 |
+
del exposure_col
|
| 828 |
+
with tab2:
|
| 829 |
+
col1, col2 = st.columns([1, 7])
|
| 830 |
+
with col1:
|
| 831 |
+
st.info(t_stamp)
|
| 832 |
+
if st.button("Load/Reset Data", key='reset1'):
|
| 833 |
+
st.cache_data.clear()
|
| 834 |
+
dk_roo_raw = load_dk_player_projections()
|
| 835 |
+
fd_roo_raw = load_fd_player_projections()
|
| 836 |
+
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
| 837 |
+
site_slates = set_slate_teams()
|
| 838 |
+
dkid_dict, fdid_dict = set_export_ids()
|
| 839 |
+
|
| 840 |
+
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Thurs-Mon Slate', 'User'))
|
| 841 |
+
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
|
| 842 |
+
if site_var1 == 'Draftkings':
|
| 843 |
+
if slate_var1 == 'User':
|
| 844 |
+
raw_baselines = proj_dataframe[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own']]
|
| 845 |
+
elif slate_var1 != 'User':
|
| 846 |
+
raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var1)]
|
| 847 |
+
raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
|
| 848 |
+
elif site_var1 == 'Fanduel':
|
| 849 |
+
if slate_var1 == 'User':
|
| 850 |
+
raw_baselines = proj_dataframe
|
| 851 |
+
elif slate_var1 != 'User':
|
| 852 |
+
raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var1)]
|
| 853 |
+
raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
|
| 854 |
+
st.info("If you are uploading a portfolio, note that there is an adjustments to projections and deviation mapping to prevent 'Projection Bias' and create a fair simulation")
|
| 855 |
+
insert_port1 = st.selectbox("Are you uploading a portfolio?", ('No', 'Yes'), key='insert_port1')
|
| 856 |
+
if insert_port1 == 'Yes':
|
| 857 |
+
insert_port = 1
|
| 858 |
+
elif insert_port1 == 'No':
|
| 859 |
+
insert_port = 0
|
| 860 |
+
contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large'))
|
| 861 |
+
if contest_var1 == 'Small':
|
| 862 |
+
Contest_Size = 1000
|
| 863 |
+
elif contest_var1 == 'Medium':
|
| 864 |
+
Contest_Size = 5000
|
| 865 |
+
elif contest_var1 == 'Large':
|
| 866 |
+
Contest_Size = 10000
|
| 867 |
+
linenum_var1 = 1000
|
| 868 |
+
strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Not Very', 'Average', 'Very'))
|
| 869 |
+
if strength_var1 == 'Not Very':
|
| 870 |
+
sharp_split = .33
|
| 871 |
+
Strength_var = .50
|
| 872 |
+
scaling_var = 5
|
| 873 |
+
elif strength_var1 == 'Average':
|
| 874 |
+
sharp_split = .50
|
| 875 |
+
Strength_var = .25
|
| 876 |
+
scaling_var = 10
|
| 877 |
+
elif strength_var1 == 'Very':
|
| 878 |
+
sharp_split = .75
|
| 879 |
+
Strength_var = .01
|
| 880 |
+
scaling_var = 15
|
| 881 |
+
|
| 882 |
+
with col2:
|
| 883 |
+
if st.button("Simulate Contest"):
|
| 884 |
+
try:
|
| 885 |
+
del dst_freq
|
| 886 |
+
del flex_freq
|
| 887 |
+
del te_freq
|
| 888 |
+
del wr_freq
|
| 889 |
+
del rb_freq
|
| 890 |
+
del qb_freq
|
| 891 |
+
del player_freq
|
| 892 |
+
del Sim_Winner_Export
|
| 893 |
+
del Sim_Winner_Frame
|
| 894 |
+
except:
|
| 895 |
+
pass
|
| 896 |
+
with st.container():
|
| 897 |
+
st.write('Contest Simulation Starting')
|
| 898 |
+
seed_depth1 = 5
|
| 899 |
+
Total_Runs = 1000000
|
| 900 |
+
if Contest_Size <= 1000:
|
| 901 |
+
strength_grow = .01
|
| 902 |
+
elif Contest_Size > 1000 and Contest_Size <= 2500:
|
| 903 |
+
strength_grow = .025
|
| 904 |
+
elif Contest_Size > 2500 and Contest_Size <= 5000:
|
| 905 |
+
strength_grow = .05
|
| 906 |
+
elif Contest_Size > 5000 and Contest_Size <= 20000:
|
| 907 |
+
strength_grow = .075
|
| 908 |
+
elif Contest_Size > 20000:
|
| 909 |
+
strength_grow = .1
|
| 910 |
+
|
| 911 |
+
field_growth = 100 * strength_grow
|
| 912 |
+
|
| 913 |
+
Sort_function = 'Median'
|
| 914 |
+
if Sort_function == 'Median':
|
| 915 |
+
Sim_function = 'Projection'
|
| 916 |
+
elif Sort_function == 'Own':
|
| 917 |
+
Sim_function = 'Own'
|
| 918 |
+
|
| 919 |
+
if slate_var1 == 'User':
|
| 920 |
+
OwnFrame = proj_dataframe
|
| 921 |
+
if contest_var1 == 'Small':
|
| 922 |
+
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (10 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
| 923 |
+
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
| 924 |
+
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
| 925 |
+
OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
|
| 926 |
+
if contest_var1 == 'Medium':
|
| 927 |
+
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (6 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
| 928 |
+
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
| 929 |
+
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
| 930 |
+
OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
|
| 931 |
+
if contest_var1 == 'Large':
|
| 932 |
+
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
| 933 |
+
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (1.5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
| 934 |
+
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
| 935 |
+
OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
|
| 936 |
+
Overall_Proj = OwnFrame[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
|
| 937 |
+
|
| 938 |
+
del OwnFrame
|
| 939 |
+
|
| 940 |
+
elif slate_var1 != 'User':
|
| 941 |
+
initial_proj = raw_baselines
|
| 942 |
+
drop_frame = initial_proj.drop_duplicates(subset = 'Player',keep = 'first')
|
| 943 |
+
OwnFrame = drop_frame[['Player', 'Team', 'Position', 'Median', 'Own', 'Floor', 'Ceiling', 'Salary']]
|
| 944 |
+
if contest_var1 == 'Small':
|
| 945 |
+
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (10 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
| 946 |
+
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
| 947 |
+
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
| 948 |
+
OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
|
| 949 |
+
if contest_var1 == 'Medium':
|
| 950 |
+
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (6 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
| 951 |
+
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
| 952 |
+
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
| 953 |
+
OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
|
| 954 |
+
if contest_var1 == 'Large':
|
| 955 |
+
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
| 956 |
+
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (1.5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
| 957 |
+
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
| 958 |
+
OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
|
| 959 |
+
Overall_Proj = OwnFrame[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
|
| 960 |
+
|
| 961 |
+
del initial_proj
|
| 962 |
+
del drop_frame
|
| 963 |
+
del OwnFrame
|
| 964 |
+
|
| 965 |
+
if insert_port == 1:
|
| 966 |
+
UserPortfolio = portfolio_dataframe[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']]
|
| 967 |
+
elif insert_port == 0:
|
| 968 |
+
UserPortfolio = pd.DataFrame(columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST'])
|
| 969 |
+
|
| 970 |
+
Overall_Proj.replace('', np.nan, inplace=True)
|
| 971 |
+
Overall_Proj = Overall_Proj.dropna(subset=['Median'])
|
| 972 |
+
Overall_Proj = Overall_Proj.assign(Value=lambda x: (x.Median / (x.Salary / 1000)))
|
| 973 |
+
Overall_Proj['Sort_var'] = (Overall_Proj['Median'].rank(ascending=False) + Overall_Proj['Value'].rank(ascending=False)) / 2
|
| 974 |
+
Overall_Proj = Overall_Proj.sort_values(by='Sort_var', ascending=False)
|
| 975 |
+
Overall_Proj['Own'] = np.where((Overall_Proj['Median'] > 0) & (Overall_Proj['Own'] == 0), 1, Overall_Proj['Own'])
|
| 976 |
+
Overall_Proj = Overall_Proj.loc[Overall_Proj['Own'] > 0]
|
| 977 |
+
|
| 978 |
+
Overall_Proj['Floor'] = np.where(Overall_Proj['Position'] == 'QB', Overall_Proj['Median'] * .5, Overall_Proj['Median'] * .25)
|
| 979 |
+
Overall_Proj['Ceiling'] = np.where(Overall_Proj['Position'] == 'WR', Overall_Proj['Median'] + Overall_Proj['Median'], Overall_Proj['Median'] + Overall_Proj['Floor'])
|
| 980 |
+
Overall_Proj['STDev'] = Overall_Proj['Median'] / 4
|
| 981 |
+
|
| 982 |
+
Teams_used = Overall_Proj['Team'].drop_duplicates().reset_index(drop=True)
|
| 983 |
+
Teams_used = Teams_used.reset_index()
|
| 984 |
+
Teams_used['team_item'] = Teams_used['index'] + 1
|
| 985 |
+
Teams_used = Teams_used.drop(columns=['index'])
|
| 986 |
+
Teams_used_dictraw = Teams_used.drop(columns=['team_item'])
|
| 987 |
+
Teams_used_dict = Teams_used_dictraw.to_dict()
|
| 988 |
+
|
| 989 |
+
del Teams_used_dictraw
|
| 990 |
+
|
| 991 |
+
team_list = Teams_used['Team'].to_list()
|
| 992 |
+
item_list = Teams_used['team_item'].to_list()
|
| 993 |
+
|
| 994 |
+
FieldStrength_raw = Strength_var + ((30 - len(Teams_used)) * .01)
|
| 995 |
+
FieldStrength = FieldStrength_raw - (FieldStrength_raw * (20000 / Contest_Size))
|
| 996 |
+
|
| 997 |
+
del FieldStrength_raw
|
| 998 |
+
|
| 999 |
+
if FieldStrength < 0:
|
| 1000 |
+
FieldStrength = Strength_var
|
| 1001 |
+
field_split = Strength_var
|
| 1002 |
+
|
| 1003 |
+
for checkVar in range(len(team_list)):
|
| 1004 |
+
Overall_Proj['Team'] = Overall_Proj['Team'].replace(team_list, item_list)
|
| 1005 |
+
|
| 1006 |
+
qbs_raw = Overall_Proj[Overall_Proj.Position == 'QB']
|
| 1007 |
+
qbs_raw.dropna(subset=['Median']).reset_index(drop=True)
|
| 1008 |
+
qbs_raw = qbs_raw.reset_index(drop=True)
|
| 1009 |
+
qbs_raw = qbs_raw.sort_values(by=['Median'], ascending=False)
|
| 1010 |
+
|
| 1011 |
+
qbs = qbs_raw.head(round(len(qbs_raw)))
|
| 1012 |
+
qbs = qbs.assign(Var = range(0,len(qbs)))
|
| 1013 |
+
qb_dict = pd.Series(qbs.Player.values, index=qbs.Var).to_dict()
|
| 1014 |
+
|
| 1015 |
+
defs_raw = Overall_Proj[Overall_Proj.Position.str.contains("D")]
|
| 1016 |
+
defs_raw.dropna(subset=['Median']).reset_index(drop=True)
|
| 1017 |
+
defs_raw = defs_raw.reset_index(drop=True)
|
| 1018 |
+
defs_raw = defs_raw.sort_values(by=['Own', 'Value'], ascending=False)
|
| 1019 |
+
|
| 1020 |
+
defs = defs_raw.head(round(len(defs_raw)))
|
| 1021 |
+
defs = defs.assign(Var = range(0,len(defs)))
|
| 1022 |
+
def_dict = pd.Series(defs.Player.values, index=defs.Var).to_dict()
|
| 1023 |
+
|
| 1024 |
+
rbs_raw = Overall_Proj[Overall_Proj.Position == 'RB']
|
| 1025 |
+
rbs_raw.dropna(subset=['Median']).reset_index(drop=True)
|
| 1026 |
+
rbs_raw = rbs_raw.reset_index(drop=True)
|
| 1027 |
+
rbs_raw = rbs_raw.sort_values(by=['Own', 'Value'], ascending=False)
|
| 1028 |
+
|
| 1029 |
+
wrs_raw = Overall_Proj[Overall_Proj.Position == 'WR']
|
| 1030 |
+
wrs_raw.dropna(subset=['Median']).reset_index(drop=True)
|
| 1031 |
+
wrs_raw = wrs_raw.reset_index(drop=True)
|
| 1032 |
+
wrs_raw = wrs_raw.sort_values(by=['Own', 'Median'], ascending=False)
|
| 1033 |
+
|
| 1034 |
+
tes_raw = Overall_Proj[Overall_Proj.Position == 'TE']
|
| 1035 |
+
tes_raw.dropna(subset=['Median']).reset_index(drop=True)
|
| 1036 |
+
tes_raw = tes_raw.reset_index(drop=True)
|
| 1037 |
+
tes_raw = tes_raw.sort_values(by=['Own', 'Value'], ascending=False)
|
| 1038 |
+
|
| 1039 |
+
pos_players = pd.concat([rbs_raw, wrs_raw, tes_raw])
|
| 1040 |
+
pos_players.dropna(subset=['Median']).reset_index(drop=True)
|
| 1041 |
+
pos_players = pos_players.reset_index(drop=True)
|
| 1042 |
+
|
| 1043 |
+
del qbs_raw
|
| 1044 |
+
del defs_raw
|
| 1045 |
+
del rbs_raw
|
| 1046 |
+
del wrs_raw
|
| 1047 |
+
del tes_raw
|
| 1048 |
+
|
| 1049 |
+
if insert_port == 1:
|
| 1050 |
+
try:
|
| 1051 |
+
# Initialize an empty DataFrame for Raw Portfolio
|
| 1052 |
+
Raw_Portfolio = pd.DataFrame()
|
| 1053 |
+
|
| 1054 |
+
# Loop through each position and split the data accordingly
|
| 1055 |
+
positions = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
|
| 1056 |
+
for pos in positions:
|
| 1057 |
+
temp_df = UserPortfolio[pos].str.split("(", n=1, expand=True)
|
| 1058 |
+
temp_df.columns = [pos, 'Drop']
|
| 1059 |
+
Raw_Portfolio = pd.concat([Raw_Portfolio, temp_df], axis=1)
|
| 1060 |
+
|
| 1061 |
+
# Select only necessary columns and strip white spaces
|
| 1062 |
+
CleanPortfolio = Raw_Portfolio[positions].apply(lambda x: x.str.strip())
|
| 1063 |
+
CleanPortfolio.reset_index(inplace=True)
|
| 1064 |
+
CleanPortfolio['User/Field'] = CleanPortfolio['index'] + 1
|
| 1065 |
+
CleanPortfolio.drop(columns=['index'], inplace=True)
|
| 1066 |
+
|
| 1067 |
+
CleanPortfolio.replace('', np.nan, inplace=True)
|
| 1068 |
+
CleanPortfolio.dropna(subset=['QB'], inplace=True)
|
| 1069 |
+
|
| 1070 |
+
# Create frequency table for players
|
| 1071 |
+
cleaport_players = pd.DataFrame(
|
| 1072 |
+
np.column_stack(np.unique(CleanPortfolio.iloc[:, 0:9].values, return_counts=True)),
|
| 1073 |
+
columns=['Player', 'Freq']
|
| 1074 |
+
).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 1075 |
+
cleaport_players['Freq'] = cleaport_players['Freq'].astype(int)
|
| 1076 |
+
|
| 1077 |
+
# Merge and update nerf_frame
|
| 1078 |
+
nerf_frame = pd.merge(cleaport_players, Overall_Proj, on='Player', how='left')
|
| 1079 |
+
for col in ['Median', 'Floor', 'Ceiling', 'STDev']:
|
| 1080 |
+
nerf_frame[col] *= 0.90
|
| 1081 |
+
del Raw_Portfolio
|
| 1082 |
+
except:
|
| 1083 |
+
CleanPortfolio = UserPortfolio.reset_index()
|
| 1084 |
+
CleanPortfolio['User/Field'] = CleanPortfolio['index'] + 1
|
| 1085 |
+
CleanPortfolio.drop(columns=['index'], inplace=True)
|
| 1086 |
+
|
| 1087 |
+
# Replace empty strings and drop rows with NaN in 'QB' column
|
| 1088 |
+
CleanPortfolio.replace('', np.nan, inplace=True)
|
| 1089 |
+
CleanPortfolio.dropna(subset=['QB'], inplace=True)
|
| 1090 |
+
|
| 1091 |
+
# Create frequency table for players
|
| 1092 |
+
cleaport_players = pd.DataFrame(
|
| 1093 |
+
np.column_stack(np.unique(CleanPortfolio.iloc[:, 0:9].values, return_counts=True)),
|
| 1094 |
+
columns=['Player', 'Freq']
|
| 1095 |
+
).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 1096 |
+
cleaport_players['Freq'] = cleaport_players['Freq'].astype(int)
|
| 1097 |
+
|
| 1098 |
+
# Merge and update nerf_frame
|
| 1099 |
+
nerf_frame = pd.merge(cleaport_players, Overall_Proj, on='Player', how='left')
|
| 1100 |
+
for col in ['Median', 'Floor', 'Ceiling', 'STDev']:
|
| 1101 |
+
nerf_frame[col] *= 0.90
|
| 1102 |
+
|
| 1103 |
+
elif insert_port == 0:
|
| 1104 |
+
CleanPortfolio = UserPortfolio
|
| 1105 |
+
cleaport_players = pd.DataFrame(np.column_stack(np.unique(CleanPortfolio.iloc[:,0:9].values, return_counts=True)),
|
| 1106 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 1107 |
+
cleaport_players['Freq'] = cleaport_players['Freq'].astype(int)
|
| 1108 |
+
nerf_frame = Overall_Proj
|
| 1109 |
+
|
| 1110 |
+
ref_dict = {
|
| 1111 |
+
'pos':['RB', 'WR', 'TE', 'FLEX'],
|
| 1112 |
+
'pos_dfs':['RB_Table', 'WR_Table', 'TE_Table', 'FLEX_Table'],
|
| 1113 |
+
'pos_dicts':['rb_dict', 'wr_dict', 'te_dict', 'flex_dict']
|
| 1114 |
+
}
|
| 1115 |
+
|
| 1116 |
+
maps_dict = {
|
| 1117 |
+
'Floor_map':dict(zip(Overall_Proj.Player,Overall_Proj.Floor)),
|
| 1118 |
+
'Projection_map':dict(zip(Overall_Proj.Player,Overall_Proj.Median)),
|
| 1119 |
+
'Ceiling_map':dict(zip(Overall_Proj.Player,Overall_Proj.Ceiling)),
|
| 1120 |
+
'Salary_map':dict(zip(Overall_Proj.Player,Overall_Proj.Salary)),
|
| 1121 |
+
'Pos_map':dict(zip(Overall_Proj.Player,Overall_Proj.Position)),
|
| 1122 |
+
'Own_map':dict(zip(Overall_Proj.Player,Overall_Proj.Own)),
|
| 1123 |
+
'Team_map':dict(zip(Overall_Proj.Player,Overall_Proj.Team)),
|
| 1124 |
+
'STDev_map':dict(zip(Overall_Proj.Player,Overall_Proj.STDev)),
|
| 1125 |
+
'team_check_map':dict(zip(Overall_Proj.Player,Overall_Proj.Team))
|
| 1126 |
+
}
|
| 1127 |
+
|
| 1128 |
+
up_dict = {
|
| 1129 |
+
'Floor_map':dict(zip(cleaport_players.Player,nerf_frame.Floor)),
|
| 1130 |
+
'Projection_map':dict(zip(cleaport_players.Player,nerf_frame.Median)),
|
| 1131 |
+
'Ceiling_map':dict(zip(cleaport_players.Player,nerf_frame.Ceiling)),
|
| 1132 |
+
'Salary_map':dict(zip(cleaport_players.Player,nerf_frame.Salary)),
|
| 1133 |
+
'Pos_map':dict(zip(cleaport_players.Player,nerf_frame.Position)),
|
| 1134 |
+
'Own_map':dict(zip(cleaport_players.Player,nerf_frame.Own)),
|
| 1135 |
+
'Team_map':dict(zip(cleaport_players.Player,nerf_frame.Team)),
|
| 1136 |
+
'STDev_map':dict(zip(cleaport_players.Player,nerf_frame.STDev)),
|
| 1137 |
+
'team_check_map':dict(zip(cleaport_players.Player,nerf_frame.Team))
|
| 1138 |
+
}
|
| 1139 |
+
|
| 1140 |
+
del cleaport_players
|
| 1141 |
+
del Overall_Proj
|
| 1142 |
+
del nerf_frame
|
| 1143 |
+
|
| 1144 |
+
st.write('Seed frame creation')
|
| 1145 |
+
FinalPortfolio, maps_dict = run_seed_frame(seed_depth1, Strength_var, strength_grow, Teams_used, Total_Runs)
|
| 1146 |
+
|
| 1147 |
+
Sim_size = linenum_var1
|
| 1148 |
+
SimVar = 1
|
| 1149 |
+
Sim_Winners = []
|
| 1150 |
+
fp_array = FinalPortfolio.values
|
| 1151 |
+
|
| 1152 |
+
if insert_port == 1:
|
| 1153 |
+
up_array = CleanPortfolio.values
|
| 1154 |
+
|
| 1155 |
+
# Pre-vectorize functions
|
| 1156 |
+
vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
|
| 1157 |
+
vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
|
| 1158 |
+
|
| 1159 |
+
if insert_port == 1:
|
| 1160 |
+
vec_up_projection_map = np.vectorize(up_dict['Projection_map'].__getitem__)
|
| 1161 |
+
vec_up_stdev_map = np.vectorize(up_dict['STDev_map'].__getitem__)
|
| 1162 |
+
|
| 1163 |
+
st.write('Simulating contest on frames')
|
| 1164 |
+
|
| 1165 |
+
while SimVar <= Sim_size:
|
| 1166 |
+
try:
|
| 1167 |
+
fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size-len(CleanPortfolio), replace=False)]
|
| 1168 |
+
|
| 1169 |
+
sample_arrays1 = np.c_[
|
| 1170 |
+
fp_random,
|
| 1171 |
+
np.sum(np.random.normal(
|
| 1172 |
+
loc=vec_projection_map(fp_random[:, :-5]),
|
| 1173 |
+
scale=vec_stdev_map(fp_random[:, :-5])),
|
| 1174 |
+
axis=1)
|
| 1175 |
+
]
|
| 1176 |
+
|
| 1177 |
+
if insert_port == 1:
|
| 1178 |
+
sample_arrays2 = np.c_[
|
| 1179 |
+
up_array,
|
| 1180 |
+
np.sum(np.random.normal(
|
| 1181 |
+
loc=vec_up_projection_map(up_array[:, :-5]),
|
| 1182 |
+
scale=vec_up_stdev_map(up_array[:, :-5])),
|
| 1183 |
+
axis=1)
|
| 1184 |
+
]
|
| 1185 |
+
sample_arrays = np.vstack((sample_arrays1, sample_arrays2))
|
| 1186 |
+
else:
|
| 1187 |
+
sample_arrays = sample_arrays1
|
| 1188 |
+
|
| 1189 |
+
final_array = sample_arrays[sample_arrays[:, 10].argsort()[::-1]]
|
| 1190 |
+
best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
|
| 1191 |
+
Sim_Winners.append(best_lineup)
|
| 1192 |
+
SimVar += 1
|
| 1193 |
+
|
| 1194 |
+
except Exception as e:
|
| 1195 |
+
# Handle exceptions here but avoid using try-except for control flow
|
| 1196 |
+
print("Exception: ", e)
|
| 1197 |
+
|
| 1198 |
+
|
| 1199 |
+
# del smple_arrays
|
| 1200 |
+
# del smple_arrays1
|
| 1201 |
+
# del smple_arrays2
|
| 1202 |
+
# del final_array
|
| 1203 |
+
# del best_lineup
|
| 1204 |
+
st.write('Contest simulation complete')
|
| 1205 |
+
# Initial setup
|
| 1206 |
+
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=FinalPortfolio.columns.tolist() + ['Fantasy'])
|
| 1207 |
+
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['Projection'] + Sim_Winner_Frame['Fantasy']) / 2
|
| 1208 |
+
|
| 1209 |
+
# Type Casting
|
| 1210 |
+
type_cast_dict = {'Salary': int, 'Projection': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float16}
|
| 1211 |
+
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
|
| 1212 |
+
|
| 1213 |
+
# Sorting
|
| 1214 |
+
Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by='GPP_Proj', ascending=False)
|
| 1215 |
+
|
| 1216 |
+
# Data Copying
|
| 1217 |
+
Sim_Winner_Export = Sim_Winner_Frame.copy()
|
| 1218 |
+
|
| 1219 |
+
# Conditional Replacement
|
| 1220 |
+
columns_to_replace = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
|
| 1221 |
+
|
| 1222 |
+
if site_var1 == 'Draftkings':
|
| 1223 |
+
replace_dict = dkid_dict
|
| 1224 |
+
elif site_var1 == 'Fanduel':
|
| 1225 |
+
replace_dict = fdid_dict
|
| 1226 |
+
|
| 1227 |
+
for col in columns_to_replace:
|
| 1228 |
+
Sim_Winner_Export[col].replace(replace_dict, inplace=True)
|
| 1229 |
+
|
| 1230 |
+
|
| 1231 |
+
player_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,0:9].values, return_counts=True)),
|
| 1232 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 1233 |
+
player_freq['Freq'] = player_freq['Freq'].astype(int)
|
| 1234 |
+
player_freq['Position'] = player_freq['Player'].map(maps_dict['Pos_map'])
|
| 1235 |
+
player_freq['Salary'] = player_freq['Player'].map(maps_dict['Salary_map'])
|
| 1236 |
+
player_freq['Proj Own'] = player_freq['Player'].map(maps_dict['Own_map']) / 100
|
| 1237 |
+
player_freq['Exposure'] = player_freq['Freq']/(Sim_size)
|
| 1238 |
+
player_freq['Edge'] = player_freq['Exposure'] - player_freq['Proj Own']
|
| 1239 |
+
player_freq['Team'] = player_freq['Player'].map(maps_dict['Team_map'])
|
| 1240 |
+
for checkVar in range(len(team_list)):
|
| 1241 |
+
player_freq['Team'] = player_freq['Team'].replace(item_list, team_list)
|
| 1242 |
+
|
| 1243 |
+
player_freq = player_freq[['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
| 1244 |
+
|
| 1245 |
+
qb_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,0:1].values, return_counts=True)),
|
| 1246 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 1247 |
+
qb_freq['Freq'] = qb_freq['Freq'].astype(int)
|
| 1248 |
+
qb_freq['Position'] = qb_freq['Player'].map(maps_dict['Pos_map'])
|
| 1249 |
+
qb_freq['Salary'] = qb_freq['Player'].map(maps_dict['Salary_map'])
|
| 1250 |
+
qb_freq['Proj Own'] = qb_freq['Player'].map(maps_dict['Own_map']) / 100
|
| 1251 |
+
qb_freq['Exposure'] = qb_freq['Freq']/(Sim_size)
|
| 1252 |
+
qb_freq['Edge'] = qb_freq['Exposure'] - qb_freq['Proj Own']
|
| 1253 |
+
qb_freq['Team'] = qb_freq['Player'].map(maps_dict['Team_map'])
|
| 1254 |
+
for checkVar in range(len(team_list)):
|
| 1255 |
+
qb_freq['Team'] = qb_freq['Team'].replace(item_list, team_list)
|
| 1256 |
+
|
| 1257 |
+
qb_freq = qb_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
| 1258 |
+
|
| 1259 |
+
rb_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[1, 2]].values, return_counts=True)),
|
| 1260 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 1261 |
+
rb_freq['Freq'] = rb_freq['Freq'].astype(int)
|
| 1262 |
+
rb_freq['Position'] = rb_freq['Player'].map(maps_dict['Pos_map'])
|
| 1263 |
+
rb_freq['Salary'] = rb_freq['Player'].map(maps_dict['Salary_map'])
|
| 1264 |
+
rb_freq['Proj Own'] = rb_freq['Player'].map(maps_dict['Own_map']) / 100
|
| 1265 |
+
rb_freq['Exposure'] = rb_freq['Freq']/Sim_size
|
| 1266 |
+
rb_freq['Edge'] = rb_freq['Exposure'] - rb_freq['Proj Own']
|
| 1267 |
+
rb_freq['Team'] = rb_freq['Player'].map(maps_dict['Team_map'])
|
| 1268 |
+
for checkVar in range(len(team_list)):
|
| 1269 |
+
rb_freq['Team'] = rb_freq['Team'].replace(item_list, team_list)
|
| 1270 |
+
|
| 1271 |
+
rb_freq = rb_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
| 1272 |
+
|
| 1273 |
+
wr_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[3, 4, 5]].values, return_counts=True)),
|
| 1274 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 1275 |
+
wr_freq['Freq'] = wr_freq['Freq'].astype(int)
|
| 1276 |
+
wr_freq['Position'] = wr_freq['Player'].map(maps_dict['Pos_map'])
|
| 1277 |
+
wr_freq['Salary'] = wr_freq['Player'].map(maps_dict['Salary_map'])
|
| 1278 |
+
wr_freq['Proj Own'] = wr_freq['Player'].map(maps_dict['Own_map']) / 100
|
| 1279 |
+
wr_freq['Exposure'] = wr_freq['Freq']/Sim_size
|
| 1280 |
+
wr_freq['Edge'] = wr_freq['Exposure'] - wr_freq['Proj Own']
|
| 1281 |
+
wr_freq['Team'] = wr_freq['Player'].map(maps_dict['Team_map'])
|
| 1282 |
+
for checkVar in range(len(team_list)):
|
| 1283 |
+
wr_freq['Team'] = wr_freq['Team'].replace(item_list, team_list)
|
| 1284 |
+
|
| 1285 |
+
wr_freq = wr_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
| 1286 |
+
|
| 1287 |
+
te_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[6]].values, return_counts=True)),
|
| 1288 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 1289 |
+
te_freq['Freq'] = te_freq['Freq'].astype(int)
|
| 1290 |
+
te_freq['Position'] = te_freq['Player'].map(maps_dict['Pos_map'])
|
| 1291 |
+
te_freq['Salary'] = te_freq['Player'].map(maps_dict['Salary_map'])
|
| 1292 |
+
te_freq['Proj Own'] = te_freq['Player'].map(maps_dict['Own_map']) / 100
|
| 1293 |
+
te_freq['Exposure'] = te_freq['Freq']/Sim_size
|
| 1294 |
+
te_freq['Edge'] = te_freq['Exposure'] - te_freq['Proj Own']
|
| 1295 |
+
te_freq['Team'] = te_freq['Player'].map(maps_dict['Team_map'])
|
| 1296 |
+
for checkVar in range(len(team_list)):
|
| 1297 |
+
te_freq['Team'] = te_freq['Team'].replace(item_list, team_list)
|
| 1298 |
+
|
| 1299 |
+
te_freq = te_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
| 1300 |
+
|
| 1301 |
+
flex_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[7]].values, return_counts=True)),
|
| 1302 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 1303 |
+
flex_freq['Freq'] = flex_freq['Freq'].astype(int)
|
| 1304 |
+
flex_freq['Position'] = flex_freq['Player'].map(maps_dict['Pos_map'])
|
| 1305 |
+
flex_freq['Salary'] = flex_freq['Player'].map(maps_dict['Salary_map'])
|
| 1306 |
+
flex_freq['Proj Own'] = flex_freq['Player'].map(maps_dict['Own_map']) / 100
|
| 1307 |
+
flex_freq['Exposure'] = flex_freq['Freq']/Sim_size
|
| 1308 |
+
flex_freq['Edge'] = flex_freq['Exposure'] - flex_freq['Proj Own']
|
| 1309 |
+
flex_freq['Team'] = flex_freq['Player'].map(maps_dict['Team_map'])
|
| 1310 |
+
for checkVar in range(len(team_list)):
|
| 1311 |
+
flex_freq['Team'] = flex_freq['Team'].replace(item_list, team_list)
|
| 1312 |
+
|
| 1313 |
+
flex_freq = flex_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
| 1314 |
+
|
| 1315 |
+
dst_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,8:9].values, return_counts=True)),
|
| 1316 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 1317 |
+
dst_freq['Freq'] = dst_freq['Freq'].astype(int)
|
| 1318 |
+
dst_freq['Position'] = dst_freq['Player'].map(maps_dict['Pos_map'])
|
| 1319 |
+
dst_freq['Salary'] = dst_freq['Player'].map(maps_dict['Salary_map'])
|
| 1320 |
+
dst_freq['Proj Own'] = dst_freq['Player'].map(maps_dict['Own_map']) / 100
|
| 1321 |
+
dst_freq['Exposure'] = dst_freq['Freq']/Sim_size
|
| 1322 |
+
dst_freq['Edge'] = dst_freq['Exposure'] - dst_freq['Proj Own']
|
| 1323 |
+
dst_freq['Team'] = dst_freq['Player'].map(maps_dict['Team_map'])
|
| 1324 |
+
for checkVar in range(len(team_list)):
|
| 1325 |
+
dst_freq['Team'] = dst_freq['Team'].replace(item_list, team_list)
|
| 1326 |
+
|
| 1327 |
+
dst_freq = dst_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
| 1328 |
+
|
| 1329 |
+
with st.container():
|
| 1330 |
+
simulate_container = st.empty()
|
| 1331 |
+
st.dataframe(Sim_Winner_Frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Own']).format(precision=2), use_container_width = True)
|
| 1332 |
+
|
| 1333 |
+
st.download_button(
|
| 1334 |
+
label="Export Tables",
|
| 1335 |
+
data=convert_df_to_csv(Sim_Winner_Export),
|
| 1336 |
+
file_name='NFL_consim_export.csv',
|
| 1337 |
+
mime='text/csv',
|
| 1338 |
+
)
|
| 1339 |
+
|
| 1340 |
+
with st.container():
|
| 1341 |
+
freq_container = st.empty()
|
| 1342 |
+
tab1, tab2, tab3, tab4, tab5, tab6, tab7 = st.tabs(['Overall Exposures', 'QB Exposures', 'RB Exposures', 'WR Exposures', 'TE Exposures', 'FLEX Exposures', 'DST Exposures'])
|
| 1343 |
+
with tab1:
|
| 1344 |
+
st.dataframe(player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
| 1345 |
+
st.download_button(
|
| 1346 |
+
label="Export Exposures",
|
| 1347 |
+
data=convert_df_to_csv(player_freq),
|
| 1348 |
+
file_name='player_freq_export.csv',
|
| 1349 |
+
mime='text/csv',
|
| 1350 |
+
)
|
| 1351 |
+
with tab2:
|
| 1352 |
+
st.dataframe(qb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
| 1353 |
+
st.download_button(
|
| 1354 |
+
label="Export Exposures",
|
| 1355 |
+
data=convert_df_to_csv(qb_freq),
|
| 1356 |
+
file_name='qb_freq_export.csv',
|
| 1357 |
+
mime='text/csv',
|
| 1358 |
+
)
|
| 1359 |
+
with tab3:
|
| 1360 |
+
st.dataframe(rb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
| 1361 |
+
st.download_button(
|
| 1362 |
+
label="Export Exposures",
|
| 1363 |
+
data=convert_df_to_csv(rb_freq),
|
| 1364 |
+
file_name='rb_freq_export.csv',
|
| 1365 |
+
mime='text/csv',
|
| 1366 |
+
)
|
| 1367 |
+
with tab4:
|
| 1368 |
+
st.dataframe(wr_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
| 1369 |
+
st.download_button(
|
| 1370 |
+
label="Export Exposures",
|
| 1371 |
+
data=convert_df_to_csv(wr_freq),
|
| 1372 |
+
file_name='wr_freq_export.csv',
|
| 1373 |
+
mime='text/csv',
|
| 1374 |
+
)
|
| 1375 |
+
with tab5:
|
| 1376 |
+
st.dataframe(te_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
| 1377 |
+
st.download_button(
|
| 1378 |
+
label="Export Exposures",
|
| 1379 |
+
data=convert_df_to_csv(te_freq),
|
| 1380 |
+
file_name='te_freq_export.csv',
|
| 1381 |
+
mime='text/csv',
|
| 1382 |
+
)
|
| 1383 |
+
with tab6:
|
| 1384 |
+
st.dataframe(flex_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
| 1385 |
+
st.download_button(
|
| 1386 |
+
label="Export Exposures",
|
| 1387 |
+
data=convert_df_to_csv(flex_freq),
|
| 1388 |
+
file_name='flex_freq_export.csv',
|
| 1389 |
+
mime='text/csv',
|
| 1390 |
+
)
|
| 1391 |
+
with tab7:
|
| 1392 |
+
st.dataframe(dst_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
| 1393 |
+
st.download_button(
|
| 1394 |
+
label="Export Exposures",
|
| 1395 |
+
data=convert_df_to_csv(dst_freq),
|
| 1396 |
+
file_name='dst_freq_export.csv',
|
| 1397 |
+
mime='text/csv',
|
| 1398 |
+
)
|