Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -385,16 +385,179 @@ with tab6:
|
|
| 385 |
elif game_select_var == 'Pick6':
|
| 386 |
prop_df = pick_frame[['Full_name', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
| 387 |
prop_df.rename(columns={"Full_name": "Player"}, inplace = True)
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 398 |
|
| 399 |
prop_dict = dict(zip(df.Player, df.Prop))
|
| 400 |
book_dict = dict(zip(df.Player, df.book))
|
|
@@ -404,17 +567,17 @@ with tab6:
|
|
| 404 |
total_sims = 5000
|
| 405 |
|
| 406 |
df.replace("", 0, inplace=True)
|
| 407 |
-
|
| 408 |
-
if
|
| 409 |
-
df['Median'] = df['
|
| 410 |
-
elif
|
| 411 |
-
df['Median'] = df['
|
| 412 |
-
elif
|
| 413 |
-
df['Median'] = df['
|
| 414 |
-
elif
|
| 415 |
-
df['Median'] = df['
|
| 416 |
-
elif
|
| 417 |
-
df['Median'] = df['
|
| 418 |
|
| 419 |
flex_file = df
|
| 420 |
flex_file['Floor'] = flex_file['Median'] * .25
|
|
@@ -437,7 +600,7 @@ with tab6:
|
|
| 437 |
for x in range(0,total_sims):
|
| 438 |
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
| 439 |
|
| 440 |
-
overall_file=overall_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
| 441 |
|
| 442 |
players_only = hold_file[['Player']]
|
| 443 |
|
|
@@ -454,8 +617,8 @@ with tab6:
|
|
| 454 |
players_only['Under'] = prop_check[prop_check < 0].count(axis=1)/float(total_sims)
|
| 455 |
players_only['Imp Under'] = players_only['Player'].map(under_dict)
|
| 456 |
players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
|
| 457 |
-
players_only['Prop'] = players_only['Player'].map(prop_dict)
|
| 458 |
players_only['Book'] = players_only['Player'].map(book_dict)
|
|
|
|
| 459 |
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
|
| 460 |
players_only['prop_threshold'] = .10
|
| 461 |
players_only = players_only.loc[players_only['Mean_Outcome'] > 0]
|
|
@@ -465,170 +628,14 @@ with tab6:
|
|
| 465 |
players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
|
| 466 |
players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
|
| 467 |
players_only['Edge'] = players_only['Bet_check']
|
| 468 |
-
players_only['Prop type'] = prop
|
| 469 |
|
| 470 |
players_only['Player'] = hold_file[['Player']]
|
| 471 |
players_only['Team'] = players_only['Player'].map(team_dict)
|
| 472 |
|
| 473 |
-
leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop
|
| 474 |
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
|
| 475 |
|
| 476 |
final_outcomes = sim_all_hold
|
| 477 |
-
|
| 478 |
-
elif prop_type_var != 'All Props':
|
| 479 |
-
|
| 480 |
-
if game_select_var == 'Aggregate':
|
| 481 |
-
prop_df = prop_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
| 482 |
-
elif game_select_var == 'Pick6':
|
| 483 |
-
prop_df = pick_frame[['Full_name', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
| 484 |
-
prop_df.rename(columns={"Full_name": "Player"}, inplace = True)
|
| 485 |
-
|
| 486 |
-
if prop_type_var == "pass_yards":
|
| 487 |
-
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_PASSING_YARDS']
|
| 488 |
-
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
| 489 |
-
prop_df = prop_df[prop_df['book'].isin(['FANDUEL', 'DRAFTKINGS', 'BET365', 'CONSENSUS'])]
|
| 490 |
-
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
| 491 |
-
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
| 492 |
-
st.table(prop_df)
|
| 493 |
-
prop_df['Over'] = 1 / prop_df['over_line']
|
| 494 |
-
prop_df['Under'] = 1 / prop_df['under_line']
|
| 495 |
-
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
| 496 |
-
elif prop_type_var == "rush_yards":
|
| 497 |
-
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_YARDS']
|
| 498 |
-
prop_df = prop_df[~((prop_df['over_prop'] < 10) & (prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_YARDS'))]
|
| 499 |
-
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
| 500 |
-
prop_df = prop_df[prop_df['book'].isin(['FANDUEL', 'DRAFTKINGS', 'BET365', 'CONSENSUS'])]
|
| 501 |
-
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
| 502 |
-
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
| 503 |
-
st.table(prop_df)
|
| 504 |
-
prop_df['Over'] = 1 / prop_df['over_line']
|
| 505 |
-
prop_df['Under'] = 1 / prop_df['under_line']
|
| 506 |
-
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
| 507 |
-
elif prop_type_var == "rec_yards":
|
| 508 |
-
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RECEIVING_YARDS']
|
| 509 |
-
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
| 510 |
-
prop_df = prop_df[prop_df['book'].isin(['FANDUEL', 'DRAFTKINGS', 'BET365', 'CONSENSUS'])]
|
| 511 |
-
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
| 512 |
-
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
| 513 |
-
st.table(prop_df)
|
| 514 |
-
prop_df['Over'] = 1 / prop_df['over_line']
|
| 515 |
-
prop_df['Under'] = 1 / prop_df['under_line']
|
| 516 |
-
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
| 517 |
-
elif prop_type_var == "receptions":
|
| 518 |
-
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RECEIVING_RECEPTIONS']
|
| 519 |
-
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
| 520 |
-
prop_df = prop_df[prop_df['book'].isin(['FANDUEL', 'DRAFTKINGS', 'BET365', 'CONSENSUS'])]
|
| 521 |
-
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
| 522 |
-
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
| 523 |
-
st.table(prop_df)
|
| 524 |
-
prop_df['Over'] = 1 / prop_df['over_line']
|
| 525 |
-
prop_df['Under'] = 1 / prop_df['under_line']
|
| 526 |
-
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
| 527 |
-
elif prop_type_var == "rush_attempts":
|
| 528 |
-
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_ATTEMPTS']
|
| 529 |
-
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
| 530 |
-
prop_df = prop_df[prop_df['book'].isin(['FANDUEL', 'DRAFTKINGS', 'BET365', 'CONSENSUS'])]
|
| 531 |
-
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
| 532 |
-
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
| 533 |
-
st.table(prop_df)
|
| 534 |
-
prop_df['Over'] = 1 / prop_df['over_line']
|
| 535 |
-
prop_df['Under'] = 1 / prop_df['under_line']
|
| 536 |
-
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
| 537 |
-
elif prop_type_var == "pass_attempts":
|
| 538 |
-
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_PASSING_ATTEMPTS']
|
| 539 |
-
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
| 540 |
-
prop_df = prop_df[prop_df['book'].isin(['FANDUEL', 'DRAFTKINGS', 'BET365', 'CONSENSUS'])]
|
| 541 |
-
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
| 542 |
-
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
| 543 |
-
st.table(prop_df)
|
| 544 |
-
prop_df['Over'] = 1 / prop_df['over_line']
|
| 545 |
-
prop_df['Under'] = 1 / prop_df['under_line']
|
| 546 |
-
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
| 547 |
-
elif prop_type_var == "pass_completions":
|
| 548 |
-
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_PASSING_COMPLETIONS']
|
| 549 |
-
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
| 550 |
-
prop_df = prop_df[prop_df['book'].isin(['FANDUEL', 'DRAFTKINGS', 'BET365', 'CONSENSUS'])]
|
| 551 |
-
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
| 552 |
-
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
| 553 |
-
st.table(prop_df)
|
| 554 |
-
prop_df['Over'] = 1 / prop_df['over_line']
|
| 555 |
-
prop_df['Under'] = 1 / prop_df['under_line']
|
| 556 |
-
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
| 557 |
-
|
| 558 |
-
prop_dict = dict(zip(df.Player, df.Prop))
|
| 559 |
-
book_dict = dict(zip(df.Player, df.book))
|
| 560 |
-
over_dict = dict(zip(df.Player, df.Over))
|
| 561 |
-
under_dict = dict(zip(df.Player, df.Under))
|
| 562 |
-
|
| 563 |
-
total_sims = 5000
|
| 564 |
-
|
| 565 |
-
df.replace("", 0, inplace=True)
|
| 566 |
-
|
| 567 |
-
if prop_type_var == "pass_yards":
|
| 568 |
-
df['Median'] = df['pass_yards']
|
| 569 |
-
elif prop_type_var == "rush_yards":
|
| 570 |
-
df['Median'] = df['rush_yards']
|
| 571 |
-
elif prop_type_var == "rec_yards":
|
| 572 |
-
df['Median'] = df['rec_yards']
|
| 573 |
-
elif prop_type_var == "receptions":
|
| 574 |
-
df['Median'] = df['rec']
|
| 575 |
-
elif prop_type_var == "rush_attempts":
|
| 576 |
-
df['Median'] = df['rush_att']
|
| 577 |
-
|
| 578 |
-
flex_file = df
|
| 579 |
-
flex_file['Floor'] = flex_file['Median'] * .25
|
| 580 |
-
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1.75)
|
| 581 |
-
flex_file['STD'] = flex_file['Median'] / 4
|
| 582 |
-
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
|
| 583 |
-
flex_file = flex_file[['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
|
| 584 |
-
|
| 585 |
-
hold_file = flex_file
|
| 586 |
-
overall_file = flex_file
|
| 587 |
-
prop_file = flex_file
|
| 588 |
-
|
| 589 |
-
overall_players = overall_file[['Player']]
|
| 590 |
-
|
| 591 |
-
for x in range(0,total_sims):
|
| 592 |
-
prop_file[x] = prop_file['Prop']
|
| 593 |
-
|
| 594 |
-
prop_file = prop_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
| 595 |
-
|
| 596 |
-
for x in range(0,total_sims):
|
| 597 |
-
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
| 598 |
-
|
| 599 |
-
overall_file=overall_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
| 600 |
-
|
| 601 |
-
players_only = hold_file[['Player']]
|
| 602 |
-
|
| 603 |
-
player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
|
| 604 |
-
|
| 605 |
-
prop_check = (overall_file - prop_file)
|
| 606 |
-
|
| 607 |
-
players_only['Mean_Outcome'] = overall_file.mean(axis=1)
|
| 608 |
-
players_only['10%'] = overall_file.quantile(0.1, axis=1)
|
| 609 |
-
players_only['90%'] = overall_file.quantile(0.9, axis=1)
|
| 610 |
-
players_only['Over'] = prop_check[prop_check > 0].count(axis=1)/float(total_sims)
|
| 611 |
-
players_only['Imp Over'] = players_only['Player'].map(over_dict)
|
| 612 |
-
players_only['Over%'] = players_only[["Over", "Imp Over"]].mean(axis=1)
|
| 613 |
-
players_only['Under'] = prop_check[prop_check < 0].count(axis=1)/float(total_sims)
|
| 614 |
-
players_only['Imp Under'] = players_only['Player'].map(under_dict)
|
| 615 |
-
players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
|
| 616 |
-
players_only['Book'] = players_only['Player'].map(book_dict)
|
| 617 |
-
players_only['Prop'] = players_only['Player'].map(prop_dict)
|
| 618 |
-
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
|
| 619 |
-
players_only['prop_threshold'] = .10
|
| 620 |
-
players_only = players_only.loc[players_only['Mean_Outcome'] > 0]
|
| 621 |
-
players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
|
| 622 |
-
players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
|
| 623 |
-
players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff'])
|
| 624 |
-
players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
|
| 625 |
-
players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
|
| 626 |
-
players_only['Edge'] = players_only['Bet_check']
|
| 627 |
-
|
| 628 |
-
players_only['Player'] = hold_file[['Player']]
|
| 629 |
-
players_only['Team'] = players_only['Player'].map(team_dict)
|
| 630 |
-
|
| 631 |
-
final_outcomes = players_only[['Player', 'Team', 'Book', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
|
| 632 |
|
| 633 |
final_outcomes = final_outcomes.dropna()
|
| 634 |
final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False)
|
|
|
|
| 385 |
elif game_select_var == 'Pick6':
|
| 386 |
prop_df = pick_frame[['Full_name', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
| 387 |
prop_df.rename(columns={"Full_name": "Player"}, inplace = True)
|
| 388 |
+
|
| 389 |
+
for books in ['FANDUEL', 'DRAFTKINGS', 'BET365', 'CONSENSUS']:
|
| 390 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == prop]
|
| 391 |
+
prop_df = prop_df[~((prop_df['over_prop'] < 10) & (prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_YARDS'))]
|
| 392 |
+
prop_df = prop_df[prop_df['book'].isin(['FANDUEL', 'DRAFTKINGS', 'BET365', 'CONSENSUS'])]
|
| 393 |
+
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
| 394 |
+
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
| 395 |
+
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
| 396 |
+
st.table(prop_df)
|
| 397 |
+
prop_df['Over'] = 1 / prop_df['over_line']
|
| 398 |
+
prop_df['Under'] = 1 / prop_df['under_line']
|
| 399 |
+
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
| 400 |
+
|
| 401 |
+
prop_dict = dict(zip(df.Player, df.Prop))
|
| 402 |
+
book_dict = dict(zip(df.Player, df.book))
|
| 403 |
+
over_dict = dict(zip(df.Player, df.Over))
|
| 404 |
+
under_dict = dict(zip(df.Player, df.Under))
|
| 405 |
+
|
| 406 |
+
total_sims = 5000
|
| 407 |
+
|
| 408 |
+
df.replace("", 0, inplace=True)
|
| 409 |
+
|
| 410 |
+
if prop == "pass_yards":
|
| 411 |
+
df['Median'] = df['NFL_GAME_PLAYER_PASSING_YARDS']
|
| 412 |
+
elif prop == "rush_yards":
|
| 413 |
+
df['Median'] = df['NFL_GAME_PLAYER_RUSHING_YARDS']
|
| 414 |
+
elif prop == "rec_yards":
|
| 415 |
+
df['Median'] = df['NFL_GAME_PLAYER_RECEIVING_YARDS']
|
| 416 |
+
elif prop == "receptions":
|
| 417 |
+
df['Median'] = df['NFL_GAME_PLAYER_RECEIVING_RECEPTIONS']
|
| 418 |
+
elif prop == "rush_attempts":
|
| 419 |
+
df['Median'] = df['NFL_GAME_PLAYER_RUSHING_ATTEMPTS']
|
| 420 |
+
|
| 421 |
+
flex_file = df
|
| 422 |
+
flex_file['Floor'] = flex_file['Median'] * .25
|
| 423 |
+
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1.75)
|
| 424 |
+
flex_file['STD'] = flex_file['Median'] / 4
|
| 425 |
+
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
|
| 426 |
+
flex_file = flex_file[['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
|
| 427 |
+
|
| 428 |
+
hold_file = flex_file
|
| 429 |
+
overall_file = flex_file
|
| 430 |
+
prop_file = flex_file
|
| 431 |
+
|
| 432 |
+
overall_players = overall_file[['Player']]
|
| 433 |
+
|
| 434 |
+
for x in range(0,total_sims):
|
| 435 |
+
prop_file[x] = prop_file['Prop']
|
| 436 |
+
|
| 437 |
+
prop_file = prop_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
| 438 |
+
|
| 439 |
+
for x in range(0,total_sims):
|
| 440 |
+
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
| 441 |
+
|
| 442 |
+
overall_file=overall_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
| 443 |
+
|
| 444 |
+
players_only = hold_file[['Player']]
|
| 445 |
+
|
| 446 |
+
player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
|
| 447 |
+
|
| 448 |
+
prop_check = (overall_file - prop_file)
|
| 449 |
+
|
| 450 |
+
players_only['Mean_Outcome'] = overall_file.mean(axis=1)
|
| 451 |
+
players_only['10%'] = overall_file.quantile(0.1, axis=1)
|
| 452 |
+
players_only['90%'] = overall_file.quantile(0.9, axis=1)
|
| 453 |
+
players_only['Over'] = prop_check[prop_check > 0].count(axis=1)/float(total_sims)
|
| 454 |
+
players_only['Imp Over'] = players_only['Player'].map(over_dict)
|
| 455 |
+
players_only['Over%'] = players_only[["Over", "Imp Over"]].mean(axis=1)
|
| 456 |
+
players_only['Under'] = prop_check[prop_check < 0].count(axis=1)/float(total_sims)
|
| 457 |
+
players_only['Imp Under'] = players_only['Player'].map(under_dict)
|
| 458 |
+
players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
|
| 459 |
+
players_only['Prop'] = players_only['Player'].map(prop_dict)
|
| 460 |
+
players_only['Book'] = players_only['Player'].map(book_dict)
|
| 461 |
+
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
|
| 462 |
+
players_only['prop_threshold'] = .10
|
| 463 |
+
players_only = players_only.loc[players_only['Mean_Outcome'] > 0]
|
| 464 |
+
players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
|
| 465 |
+
players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
|
| 466 |
+
players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff'])
|
| 467 |
+
players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
|
| 468 |
+
players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
|
| 469 |
+
players_only['Edge'] = players_only['Bet_check']
|
| 470 |
+
players_only['Prop type'] = prop
|
| 471 |
+
|
| 472 |
+
players_only['Player'] = hold_file[['Player']]
|
| 473 |
+
players_only['Team'] = players_only['Player'].map(team_dict)
|
| 474 |
+
|
| 475 |
+
leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
|
| 476 |
+
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
|
| 477 |
+
|
| 478 |
+
final_outcomes = sim_all_hold
|
| 479 |
+
|
| 480 |
+
elif prop_type_var != 'All Props':
|
| 481 |
+
|
| 482 |
+
|
| 483 |
+
if game_select_var == 'Aggregate':
|
| 484 |
+
prop_df = prop_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
| 485 |
+
elif game_select_var == 'Pick6':
|
| 486 |
+
prop_df = pick_frame[['Full_name', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
| 487 |
+
prop_df.rename(columns={"Full_name": "Player"}, inplace = True)
|
| 488 |
+
|
| 489 |
+
for books in ['FANDUEL', 'DRAFTKINGS', 'BET365', 'CONSENSUS']:
|
| 490 |
+
if prop_type_var == "pass_yards":
|
| 491 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_PASSING_YARDS']
|
| 492 |
+
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
| 493 |
+
prop_df = prop_df['book'] == books
|
| 494 |
+
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
| 495 |
+
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
| 496 |
+
st.table(prop_df)
|
| 497 |
+
prop_df['Over'] = 1 / prop_df['over_line']
|
| 498 |
+
prop_df['Under'] = 1 / prop_df['under_line']
|
| 499 |
+
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
| 500 |
+
elif prop_type_var == "rush_yards":
|
| 501 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_YARDS']
|
| 502 |
+
prop_df = prop_df[~((prop_df['over_prop'] < 10) & (prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_YARDS'))]
|
| 503 |
+
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
| 504 |
+
prop_df = prop_df['book'] == books
|
| 505 |
+
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
| 506 |
+
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
| 507 |
+
st.table(prop_df)
|
| 508 |
+
prop_df['Over'] = 1 / prop_df['over_line']
|
| 509 |
+
prop_df['Under'] = 1 / prop_df['under_line']
|
| 510 |
+
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
| 511 |
+
elif prop_type_var == "rec_yards":
|
| 512 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RECEIVING_YARDS']
|
| 513 |
+
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
| 514 |
+
prop_df = prop_df['book'] == books
|
| 515 |
+
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
| 516 |
+
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
| 517 |
+
st.table(prop_df)
|
| 518 |
+
prop_df['Over'] = 1 / prop_df['over_line']
|
| 519 |
+
prop_df['Under'] = 1 / prop_df['under_line']
|
| 520 |
+
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
| 521 |
+
elif prop_type_var == "receptions":
|
| 522 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RECEIVING_RECEPTIONS']
|
| 523 |
+
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
| 524 |
+
prop_df = prop_df['book'] == books
|
| 525 |
+
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
| 526 |
+
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
| 527 |
+
st.table(prop_df)
|
| 528 |
+
prop_df['Over'] = 1 / prop_df['over_line']
|
| 529 |
+
prop_df['Under'] = 1 / prop_df['under_line']
|
| 530 |
+
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
| 531 |
+
elif prop_type_var == "rush_attempts":
|
| 532 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_ATTEMPTS']
|
| 533 |
+
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
| 534 |
+
prop_df = prop_df['book'] == books
|
| 535 |
+
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
| 536 |
+
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
| 537 |
+
st.table(prop_df)
|
| 538 |
+
prop_df['Over'] = 1 / prop_df['over_line']
|
| 539 |
+
prop_df['Under'] = 1 / prop_df['under_line']
|
| 540 |
+
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
| 541 |
+
elif prop_type_var == "pass_attempts":
|
| 542 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_PASSING_ATTEMPTS']
|
| 543 |
+
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
| 544 |
+
prop_df = prop_df['book'] == books
|
| 545 |
+
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
| 546 |
+
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
| 547 |
+
st.table(prop_df)
|
| 548 |
+
prop_df['Over'] = 1 / prop_df['over_line']
|
| 549 |
+
prop_df['Under'] = 1 / prop_df['under_line']
|
| 550 |
+
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
| 551 |
+
elif prop_type_var == "pass_completions":
|
| 552 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_PASSING_COMPLETIONS']
|
| 553 |
+
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
| 554 |
+
prop_df = prop_df['book'] == books
|
| 555 |
+
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
| 556 |
+
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
| 557 |
+
st.table(prop_df)
|
| 558 |
+
prop_df['Over'] = 1 / prop_df['over_line']
|
| 559 |
+
prop_df['Under'] = 1 / prop_df['under_line']
|
| 560 |
+
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
| 561 |
|
| 562 |
prop_dict = dict(zip(df.Player, df.Prop))
|
| 563 |
book_dict = dict(zip(df.Player, df.book))
|
|
|
|
| 567 |
total_sims = 5000
|
| 568 |
|
| 569 |
df.replace("", 0, inplace=True)
|
| 570 |
+
|
| 571 |
+
if prop_type_var == "pass_yards":
|
| 572 |
+
df['Median'] = df['pass_yards']
|
| 573 |
+
elif prop_type_var == "rush_yards":
|
| 574 |
+
df['Median'] = df['rush_yards']
|
| 575 |
+
elif prop_type_var == "rec_yards":
|
| 576 |
+
df['Median'] = df['rec_yards']
|
| 577 |
+
elif prop_type_var == "receptions":
|
| 578 |
+
df['Median'] = df['rec']
|
| 579 |
+
elif prop_type_var == "rush_attempts":
|
| 580 |
+
df['Median'] = df['rush_att']
|
| 581 |
|
| 582 |
flex_file = df
|
| 583 |
flex_file['Floor'] = flex_file['Median'] * .25
|
|
|
|
| 600 |
for x in range(0,total_sims):
|
| 601 |
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
| 602 |
|
| 603 |
+
overall_file=overall_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
| 604 |
|
| 605 |
players_only = hold_file[['Player']]
|
| 606 |
|
|
|
|
| 617 |
players_only['Under'] = prop_check[prop_check < 0].count(axis=1)/float(total_sims)
|
| 618 |
players_only['Imp Under'] = players_only['Player'].map(under_dict)
|
| 619 |
players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
|
|
|
|
| 620 |
players_only['Book'] = players_only['Player'].map(book_dict)
|
| 621 |
+
players_only['Prop'] = players_only['Player'].map(prop_dict)
|
| 622 |
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
|
| 623 |
players_only['prop_threshold'] = .10
|
| 624 |
players_only = players_only.loc[players_only['Mean_Outcome'] > 0]
|
|
|
|
| 628 |
players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
|
| 629 |
players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
|
| 630 |
players_only['Edge'] = players_only['Bet_check']
|
|
|
|
| 631 |
|
| 632 |
players_only['Player'] = hold_file[['Player']]
|
| 633 |
players_only['Team'] = players_only['Player'].map(team_dict)
|
| 634 |
|
| 635 |
+
leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
|
| 636 |
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
|
| 637 |
|
| 638 |
final_outcomes = sim_all_hold
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 639 |
|
| 640 |
final_outcomes = final_outcomes.dropna()
|
| 641 |
final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False)
|