Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -396,6 +396,7 @@ with tab6:
|
|
| 396 |
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
| 397 |
|
| 398 |
prop_dict = dict(zip(df.Player, df.Prop))
|
|
|
|
| 399 |
over_dict = dict(zip(df.Player, df.Over))
|
| 400 |
under_dict = dict(zip(df.Player, df.Under))
|
| 401 |
|
|
@@ -453,6 +454,7 @@ with tab6:
|
|
| 453 |
players_only['Imp Under'] = players_only['Player'].map(under_dict)
|
| 454 |
players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
|
| 455 |
players_only['Prop'] = players_only['Player'].map(prop_dict)
|
|
|
|
| 456 |
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
|
| 457 |
players_only['prop_threshold'] = .10
|
| 458 |
players_only = players_only.loc[players_only['Mean_Outcome'] > 0]
|
|
@@ -467,7 +469,7 @@ with tab6:
|
|
| 467 |
players_only['Player'] = hold_file[['Player']]
|
| 468 |
players_only['Team'] = players_only['Player'].map(team_dict)
|
| 469 |
|
| 470 |
-
leg_outcomes = players_only[['Player', 'Team', '
|
| 471 |
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
|
| 472 |
|
| 473 |
final_outcomes = sim_all_hold
|
|
@@ -552,6 +554,7 @@ with tab6:
|
|
| 552 |
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
| 553 |
|
| 554 |
prop_dict = dict(zip(df.Player, df.Prop))
|
|
|
|
| 555 |
over_dict = dict(zip(df.Player, df.Over))
|
| 556 |
under_dict = dict(zip(df.Player, df.Under))
|
| 557 |
|
|
@@ -591,7 +594,7 @@ with tab6:
|
|
| 591 |
for x in range(0,total_sims):
|
| 592 |
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
| 593 |
|
| 594 |
-
overall_file=overall_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
| 595 |
|
| 596 |
players_only = hold_file[['Player']]
|
| 597 |
|
|
@@ -608,6 +611,7 @@ with tab6:
|
|
| 608 |
players_only['Under'] = prop_check[prop_check < 0].count(axis=1)/float(total_sims)
|
| 609 |
players_only['Imp Under'] = players_only['Player'].map(under_dict)
|
| 610 |
players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
|
|
|
|
| 611 |
players_only['Prop'] = players_only['Player'].map(prop_dict)
|
| 612 |
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
|
| 613 |
players_only['prop_threshold'] = .10
|
|
@@ -622,7 +626,7 @@ with tab6:
|
|
| 622 |
players_only['Player'] = hold_file[['Player']]
|
| 623 |
players_only['Team'] = players_only['Player'].map(team_dict)
|
| 624 |
|
| 625 |
-
final_outcomes = players_only[['Player', 'Team', '
|
| 626 |
|
| 627 |
final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False)
|
| 628 |
|
|
|
|
| 396 |
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
| 397 |
|
| 398 |
prop_dict = dict(zip(df.Player, df.Prop))
|
| 399 |
+
book_dict = dict(zip(df.Player, df.book))
|
| 400 |
over_dict = dict(zip(df.Player, df.Over))
|
| 401 |
under_dict = dict(zip(df.Player, df.Under))
|
| 402 |
|
|
|
|
| 454 |
players_only['Imp Under'] = players_only['Player'].map(under_dict)
|
| 455 |
players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
|
| 456 |
players_only['Prop'] = players_only['Player'].map(prop_dict)
|
| 457 |
+
players_only['Book'] = players_only['Player'].map(book_dict)
|
| 458 |
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
|
| 459 |
players_only['prop_threshold'] = .10
|
| 460 |
players_only = players_only.loc[players_only['Mean_Outcome'] > 0]
|
|
|
|
| 469 |
players_only['Player'] = hold_file[['Player']]
|
| 470 |
players_only['Team'] = players_only['Player'].map(team_dict)
|
| 471 |
|
| 472 |
+
leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
|
| 473 |
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
|
| 474 |
|
| 475 |
final_outcomes = sim_all_hold
|
|
|
|
| 554 |
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
| 555 |
|
| 556 |
prop_dict = dict(zip(df.Player, df.Prop))
|
| 557 |
+
book_dict = dict(zip(df.Player, df.book))
|
| 558 |
over_dict = dict(zip(df.Player, df.Over))
|
| 559 |
under_dict = dict(zip(df.Player, df.Under))
|
| 560 |
|
|
|
|
| 594 |
for x in range(0,total_sims):
|
| 595 |
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
| 596 |
|
| 597 |
+
overall_file=overall_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
| 598 |
|
| 599 |
players_only = hold_file[['Player']]
|
| 600 |
|
|
|
|
| 611 |
players_only['Under'] = prop_check[prop_check < 0].count(axis=1)/float(total_sims)
|
| 612 |
players_only['Imp Under'] = players_only['Player'].map(under_dict)
|
| 613 |
players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
|
| 614 |
+
players_only['Book'] = players_only['Player'].map(book_dict)
|
| 615 |
players_only['Prop'] = players_only['Player'].map(prop_dict)
|
| 616 |
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
|
| 617 |
players_only['prop_threshold'] = .10
|
|
|
|
| 626 |
players_only['Player'] = hold_file[['Player']]
|
| 627 |
players_only['Team'] = players_only['Player'].map(team_dict)
|
| 628 |
|
| 629 |
+
final_outcomes = players_only[['Player', 'Team', 'Book', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
|
| 630 |
|
| 631 |
final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False)
|
| 632 |
|