Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -30,49 +30,31 @@ american_format = {'First Inning Lead Percentage': '{:.2%}', 'Fifth Inning Lead
|
|
| 30 |
master_hold = 'https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=694077504'
|
| 31 |
|
| 32 |
@st.cache_data
|
| 33 |
-
def
|
| 34 |
sh = gc.open_by_url(master_hold)
|
| 35 |
worksheet = sh.worksheet('Game_Betting')
|
| 36 |
raw_display = pd.DataFrame(worksheet.get_all_records())
|
| 37 |
raw_display.replace('#DIV/0!', np.nan, inplace=True)
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
return raw_display
|
| 41 |
-
|
| 42 |
-
@st.cache_data
|
| 43 |
-
def player_stat_table():
|
| 44 |
-
sh = gc.open_by_url(master_hold)
|
| 45 |
worksheet = sh.worksheet('Prop_Table')
|
| 46 |
raw_display = pd.DataFrame(worksheet.get_all_records())
|
| 47 |
raw_display.replace('', np.nan, inplace=True)
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
return raw_display
|
| 51 |
-
|
| 52 |
-
@st.cache_data
|
| 53 |
-
def timestamp_table():
|
| 54 |
-
sh = gc.open_by_url(master_hold)
|
| 55 |
worksheet = sh.worksheet('DK_ROO')
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
return raw_display
|
| 59 |
-
|
| 60 |
-
@st.cache_data
|
| 61 |
-
def player_prop_table():
|
| 62 |
-
sh = gc.open_by_url(master_hold)
|
| 63 |
worksheet = sh.worksheet('prop_frame')
|
| 64 |
raw_display = pd.DataFrame(worksheet.get_all_records())
|
| 65 |
raw_display.replace('', np.nan, inplace=True)
|
| 66 |
-
|
| 67 |
|
| 68 |
-
return
|
| 69 |
|
| 70 |
-
game_model =
|
| 71 |
-
overall_stats = player_stat_table()
|
| 72 |
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
| 73 |
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
| 74 |
-
timestamp = timestamp_table()
|
| 75 |
-
prop_frame = player_prop_table()
|
| 76 |
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
|
| 77 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
| 78 |
|
|
@@ -89,12 +71,11 @@ with tab1:
|
|
| 89 |
st.info(t_stamp)
|
| 90 |
if st.button("Reset Data", key='reset1'):
|
| 91 |
st.cache_data.clear()
|
| 92 |
-
game_model =
|
| 93 |
-
overall_stats = player_stat_table()
|
| 94 |
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
| 95 |
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
| 96 |
-
|
| 97 |
-
t_stamp = f"Last Update: " + str(
|
| 98 |
line_var1 = st.radio('How would you like to display odds?', options = ['Percentage', 'American'], key='line_var1')
|
| 99 |
team_frame = game_model
|
| 100 |
if line_var1 == 'Percentage':
|
|
@@ -118,12 +99,11 @@ with tab2:
|
|
| 118 |
st.info(t_stamp)
|
| 119 |
if st.button("Reset Data", key='reset2'):
|
| 120 |
st.cache_data.clear()
|
| 121 |
-
game_model =
|
| 122 |
-
overall_stats = player_stat_table()
|
| 123 |
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
| 124 |
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
| 125 |
-
|
| 126 |
-
t_stamp = f"Last Update: " + str(
|
| 127 |
split_var1 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var1')
|
| 128 |
if split_var1 == 'Specific Teams':
|
| 129 |
team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = qb_stats['Team'].unique(), key='team_var1')
|
|
@@ -145,12 +125,11 @@ with tab3:
|
|
| 145 |
st.info(t_stamp)
|
| 146 |
if st.button("Reset Data", key='reset3'):
|
| 147 |
st.cache_data.clear()
|
| 148 |
-
game_model =
|
| 149 |
-
overall_stats = player_stat_table()
|
| 150 |
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
| 151 |
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
| 152 |
-
|
| 153 |
-
t_stamp = f"Last Update: " + str(
|
| 154 |
split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
|
| 155 |
if split_var2 == 'Specific Teams':
|
| 156 |
team_var2 = st.multiselect('Which teams would you like to include in the tables?', options = non_qb_stats['Team'].unique(), key='team_var2')
|
|
@@ -172,12 +151,11 @@ with tab4:
|
|
| 172 |
st.info(t_stamp)
|
| 173 |
if st.button("Reset Data", key='reset4'):
|
| 174 |
st.cache_data.clear()
|
| 175 |
-
game_model =
|
| 176 |
-
overall_stats = player_stat_table()
|
| 177 |
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
| 178 |
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
| 179 |
-
|
| 180 |
-
t_stamp = f"Last Update: " + str(
|
| 181 |
col1, col2 = st.columns([1, 5])
|
| 182 |
|
| 183 |
with col2:
|
|
@@ -320,12 +298,11 @@ with tab5:
|
|
| 320 |
st.info('The Over and Under percentages are a compositve percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
|
| 321 |
if st.button("Reset Data/Load Data", key='reset5'):
|
| 322 |
st.cache_data.clear()
|
| 323 |
-
game_model =
|
| 324 |
-
overall_stats = player_stat_table()
|
| 325 |
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
| 326 |
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
| 327 |
-
|
| 328 |
-
t_stamp = f"Last Update: " + str(
|
| 329 |
col1, col2 = st.columns([1, 5])
|
| 330 |
|
| 331 |
with col2:
|
|
|
|
| 30 |
master_hold = 'https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=694077504'
|
| 31 |
|
| 32 |
@st.cache_data
|
| 33 |
+
def init_baselines():
|
| 34 |
sh = gc.open_by_url(master_hold)
|
| 35 |
worksheet = sh.worksheet('Game_Betting')
|
| 36 |
raw_display = pd.DataFrame(worksheet.get_all_records())
|
| 37 |
raw_display.replace('#DIV/0!', np.nan, inplace=True)
|
| 38 |
+
game_model = raw_display.dropna()
|
| 39 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
worksheet = sh.worksheet('Prop_Table')
|
| 41 |
raw_display = pd.DataFrame(worksheet.get_all_records())
|
| 42 |
raw_display.replace('', np.nan, inplace=True)
|
| 43 |
+
overall_stats = raw_display.dropna()
|
| 44 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
worksheet = sh.worksheet('DK_ROO')
|
| 46 |
+
timestamp = worksheet.acell('U2').value
|
| 47 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
worksheet = sh.worksheet('prop_frame')
|
| 49 |
raw_display = pd.DataFrame(worksheet.get_all_records())
|
| 50 |
raw_display.replace('', np.nan, inplace=True)
|
| 51 |
+
prop_frame = raw_display.dropna()
|
| 52 |
|
| 53 |
+
return game_model, overall_stats, timestamp, prop_frame
|
| 54 |
|
| 55 |
+
game_model, overall_stats, timestamp, prop_frame = init_baselines()
|
|
|
|
| 56 |
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
| 57 |
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
|
|
|
|
|
|
| 58 |
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
|
| 59 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
| 60 |
|
|
|
|
| 71 |
st.info(t_stamp)
|
| 72 |
if st.button("Reset Data", key='reset1'):
|
| 73 |
st.cache_data.clear()
|
| 74 |
+
game_model, overall_stats, timestamp, prop_frame = init_baselines()
|
|
|
|
| 75 |
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
| 76 |
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
| 77 |
+
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
|
| 78 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
| 79 |
line_var1 = st.radio('How would you like to display odds?', options = ['Percentage', 'American'], key='line_var1')
|
| 80 |
team_frame = game_model
|
| 81 |
if line_var1 == 'Percentage':
|
|
|
|
| 99 |
st.info(t_stamp)
|
| 100 |
if st.button("Reset Data", key='reset2'):
|
| 101 |
st.cache_data.clear()
|
| 102 |
+
game_model, overall_stats, timestamp, prop_frame = init_baselines()
|
|
|
|
| 103 |
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
| 104 |
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
| 105 |
+
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
|
| 106 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
| 107 |
split_var1 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var1')
|
| 108 |
if split_var1 == 'Specific Teams':
|
| 109 |
team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = qb_stats['Team'].unique(), key='team_var1')
|
|
|
|
| 125 |
st.info(t_stamp)
|
| 126 |
if st.button("Reset Data", key='reset3'):
|
| 127 |
st.cache_data.clear()
|
| 128 |
+
game_model, overall_stats, timestamp, prop_frame = init_baselines()
|
|
|
|
| 129 |
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
| 130 |
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
| 131 |
+
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
|
| 132 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
| 133 |
split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
|
| 134 |
if split_var2 == 'Specific Teams':
|
| 135 |
team_var2 = st.multiselect('Which teams would you like to include in the tables?', options = non_qb_stats['Team'].unique(), key='team_var2')
|
|
|
|
| 151 |
st.info(t_stamp)
|
| 152 |
if st.button("Reset Data", key='reset4'):
|
| 153 |
st.cache_data.clear()
|
| 154 |
+
game_model, overall_stats, timestamp, prop_frame = init_baselines()
|
|
|
|
| 155 |
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
| 156 |
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
| 157 |
+
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
|
| 158 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
| 159 |
col1, col2 = st.columns([1, 5])
|
| 160 |
|
| 161 |
with col2:
|
|
|
|
| 298 |
st.info('The Over and Under percentages are a compositve percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
|
| 299 |
if st.button("Reset Data/Load Data", key='reset5'):
|
| 300 |
st.cache_data.clear()
|
| 301 |
+
game_model, overall_stats, timestamp, prop_frame = init_baselines()
|
|
|
|
| 302 |
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
| 303 |
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
| 304 |
+
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
|
| 305 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
| 306 |
col1, col2 = st.columns([1, 5])
|
| 307 |
|
| 308 |
with col2:
|