NFL_Stack_Finder / src /streamlit_app.py
James McCool
Refactor 'Stack Finder' tab to prioritize QBs in player combinations and ensure valid combinations have QBs in the first position
acf3604
import streamlit as st
import numpy as np
import pandas as pd
from database import db
from itertools import combinations
st.set_page_config(layout="wide")
game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}',
'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'}
team_roo_format = {'Top Score%': '{:.2%}','0 Runs': '{:.2%}', '1 Run': '{:.2%}', '2 Runs': '{:.2%}', '3 Runs': '{:.2%}', '4 Runs': '{:.2%}',
'5 Runs': '{:.2%}','6 Runs': '{:.2%}', '7 Runs': '{:.2%}', '8 Runs': '{:.2%}', '9 Runs': '{:.2%}', '10 Runs': '{:.2%}'}
wrong_acro = ['WSH', 'AZ', 'CHW']
right_acro = ['WAS', 'ARI', 'CWS']
st.markdown("""
<style>
/* Tab styling */
.stElementContainer [data-baseweb="button-group"] {
gap: 2.000rem;
padding: 4px;
}
.stElementContainer [kind="segmented_control"] {
height: 2.000rem;
white-space: pre-wrap;
background-color: #DAA520;
color: white;
border-radius: 20px;
gap: 1px;
padding: 10px 20px;
font-weight: bold;
transition: all 0.3s ease;
}
.stElementContainer [kind="segmented_controlActive"] {
height: 3.000rem;
background-color: #DAA520;
border: 3px solid #FFD700;
border-radius: 10px;
color: black;
}
.stElementContainer [kind="segmented_control"]:hover {
background-color: #FFD700;
cursor: pointer;
}
div[data-baseweb="select"] > div {
background-color: #DAA520;
color: white;
}
</style>""", unsafe_allow_html=True)
@st.cache_resource(ttl=600)
def init_baselines():
collection = db["Player_Baselines"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['name', 'Team', 'Opp', 'Position', 'Salary', 'team_plays', 'team_pass', 'team_rush', 'team_tds', 'team_pass_tds', 'team_rush_tds', 'dropbacks', 'pass_yards', 'pass_tds',
'rush_att', 'rush_yards', 'rush_tds', 'targets', 'rec', 'rec_yards', 'rec_tds', 'PPR', 'Half_PPR', 'Own']]
player_stats = raw_display[raw_display['Position'] != 'K']
collection = db["DK_NFL_ROO"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display.rename(columns={'player_ID': 'player_id'})
raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%',
'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']]
load_display = raw_display[raw_display['Position'] != 'K']
dk_roo_raw = load_display.dropna(subset=['Median'])
collection = db["FD_NFL_ROO"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display.rename(columns={'player_ID': 'player_id'})
raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%',
'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']]
load_display = raw_display[raw_display['Position'] != 'K']
fd_roo_raw = load_display.dropna(subset=['Median'])
collection = db["DK_DFS_Stacks"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['Team', 'QB', 'WR1_TE', 'WR2_TE', 'Total', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '60+%', '2x%', '3x%', '4x%', 'Own', 'LevX', 'slate']]
dk_stacks_raw = raw_display.copy()
collection = db["FD_DFS_Stacks"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['Team', 'QB', 'WR1_TE', 'WR2_TE', 'Total', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '60+%', '2x%', '3x%', '4x%', 'Own', 'LevX', 'slate']]
fd_stacks_raw = raw_display.copy()
return player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw
@st.cache_data
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw = init_baselines()
app_load_reset_column, app_view_site_column = st.columns([1, 9])
with app_load_reset_column:
if st.button("Load/Reset Data", key='reset_data_button'):
st.cache_data.clear()
player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw = init_baselines()
for key in st.session_state.keys():
del st.session_state[key]
with app_view_site_column:
with st.container():
app_view_column, app_site_column = st.columns([3, 3])
with app_view_column:
view_var = st.selectbox("Select view", ["Simple", "Advanced"], key='view_selectbox')
with app_site_column:
site_var = st.selectbox("What site do you want to view?", ('Draftkings', 'Fanduel'), key='site_selectbox')
selected_tab = st.segmented_control(
"Select Tab",
options=["Stack Finder", "User Upload"],
selection_mode='single',
default='Stack Finder',
width='stretch',
label_visibility='collapsed',
key='tab_selector'
)
if selected_tab == 'Stack Finder':
with st.expander("Info and Filters"):
app_info_column, slate_choice_column, filtering_column, stack_info_column = st.columns(4)
with app_info_column:
if st.button("Load/Reset Data", key='reset1'):
st.cache_data.clear()
player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw = init_baselines()
for key in st.session_state.keys():
del st.session_state[key]
st.info(f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST")
with slate_choice_column:
slate_var1 = st.radio("What slate are you working with?", ('Main Slate', 'Secondary Slate', 'Late Slate', 'Thurs-Mon Slate', 'User Upload'), key='slate_var1')
if slate_var1 == 'User Upload':
slate_var1 = st.session_state['proj_dataframe']
else:
if site_var == 'Draftkings':
raw_baselines = dk_roo_raw
if slate_var1 == 'Main Slate':
raw_baselines = raw_baselines[raw_baselines['slate'] == 'Main Slate']
elif slate_var1 == 'Secondary Slate':
raw_baselines = raw_baselines[raw_baselines['slate'] == 'Secondary Slate']
elif slate_var1 == 'Late Slate':
raw_baselines = raw_baselines[raw_baselines['slate'] == 'Late Slate']
elif slate_var1 == 'Thurs-Mon Slate':
raw_baselines = raw_baselines[raw_baselines['slate'] == 'Thurs-Mon Slate']
raw_baselines = raw_baselines.sort_values(by='Own', ascending=False)
qb_lookup = raw_baselines[raw_baselines['Position'] == 'QB']
elif site_var == 'Fanduel':
raw_baselines = fd_roo_raw
if slate_var1 == 'Main Slate':
raw_baselines = raw_baselines[raw_baselines['slate'] == 'Main Slate']
elif slate_var1 == 'Secondary Slate':
raw_baselines = raw_baselines[raw_baselines['slate'] == 'Secondary Slate']
elif slate_var1 == 'Late Slate':
raw_baselines = raw_baselines[raw_baselines['slate'] == 'Late Slate']
elif slate_var1 == 'Thurs-Mon Slate':
raw_baselines = raw_baselines[raw_baselines['slate'] == 'Thurs-Mon Slate']
raw_baselines = raw_baselines.sort_values(by='Own', ascending=False)
qb_lookup = raw_baselines[raw_baselines['Position'] == 'QB']
with filtering_column:
split_var2 = st.radio("Would you like to run stack analysis for the full slate or individual teams?", ('Full Slate Run', 'Specific Teams'), key='split_var2')
if split_var2 == 'Specific Teams':
team_var2 = st.multiselect('Which teams would you like to include in the analysis?', options = raw_baselines['Team'].unique(), key='team_var2')
elif split_var2 == 'Full Slate Run':
team_var2 = raw_baselines.Team.unique().tolist()
pos_var2 = st.multiselect('What Positions would you like to view?', options = ['WR', 'TE', 'RB'], default = ['WR', 'TE', 'RB'], key='pos_var2')
with stack_info_column:
if site_var == 'Draftkings':
max_sal2 = st.number_input('Max Salary', min_value = 5000, max_value = 50000, value = 35000, step = 100, key='max_sal2')
elif site_var == 'Fanduel':
max_sal2 = st.number_input('Max Salary', min_value = 5000, max_value = 35000, value = 25000, step = 100, key='max_sal2')
size_var2 = st.selectbox('What size of stacks are you analyzing?', options = ['QB+1', 'QB+2', 'QB+3'])
if size_var2 == 'QB+1':
stack_size = 2
if size_var2 == 'QB+2':
stack_size = 3
if size_var2 == 'QB+3':
stack_size = 4
team_dict = dict(zip(raw_baselines.Player, raw_baselines.Team))
proj_dict = dict(zip(raw_baselines.Player, raw_baselines.Median))
own_dict = dict(zip(raw_baselines.Player, raw_baselines.Own))
cost_dict = dict(zip(raw_baselines.Player, raw_baselines.Salary))
qb_dict = dict(zip(qb_lookup.Team, qb_lookup.Player))
if st.button("Run Stack Analysis", key='run_stack_analysis'):
if site_var == 'Draftkings':
position_limits = {
'QB': 1,
'RB': 2,
'WR': 3,
'TE': 1,
'UTIL': 1,
'DST': 1,
}
max_salary = max_sal2
max_players = 9
else:
position_limits = {
'QB': 1,
'RB': 2,
'WR': 3,
'TE': 1,
'UTIL': 1,
'DST': 1,
}
max_salary = max_sal2
max_players = 9
stack_hold_container = st.empty()
comb_list = []
raw_baselines = raw_baselines[raw_baselines['Position'].str.contains('|'.join(pos_var2 + ['QB']))]
# Create a position dictionary mapping players to their eligible positions
pos_dict = dict(zip(raw_baselines.Player, raw_baselines.Position))
pos_reverse_dict = dict(zip(raw_baselines.Position, raw_baselines.Player))
def is_valid_combination(combo):
# Count positions in this combination
position_counts = {pos: 0 for pos in position_limits.keys()}
# For each player in the combination
for player in combo:
# Get their eligible positions
player_positions = pos_dict[player].split('/')
for pos in player_positions:
position_counts[pos] += 1
# Check if any position exceeds its limit
for pos, limit in position_limits.items():
if position_counts[pos] > limit:
return False
return True
# Modify the combination generation code
comb_list = []
for cur_team in team_var2:
working_baselines = raw_baselines
working_baselines = working_baselines[working_baselines['Team'] == cur_team]
working_baselines = working_baselines[working_baselines['Position'] != 'DST']
working_baselines = working_baselines[working_baselines['Position'] != 'K']
qb_var = qb_dict[cur_team]
# Create order_list with QBs first to ensure they appear in first column
qb_players = working_baselines[working_baselines['Position'] == 'QB']['Player'].unique()
other_players = working_baselines[working_baselines['Position'] != 'QB']['Player'].unique()
order_list = list(qb_players) + list(other_players)
comb = combinations(order_list, stack_size)
for i in list(comb):
if qb_var in i and is_valid_combination(i):
# Ensure QB is in first position
combo_list = list(i)
if qb_var in combo_list:
qb_index = combo_list.index(qb_var)
combo_list[0], combo_list[qb_index] = combo_list[qb_index], combo_list[0]
comb_list.append(tuple(combo_list))
comb_DF = pd.DataFrame(comb_list)
print(comb_DF.head(10))
if stack_size == 2:
comb_DF['Team'] = comb_DF[0].map(team_dict)
comb_DF['Proj'] = sum([comb_DF[0].map(proj_dict),
comb_DF[1].map(proj_dict)])
comb_DF['Salary'] = sum([comb_DF[0].map(cost_dict),
comb_DF[1].map(cost_dict)])
comb_DF['Own%'] = sum([comb_DF[0].map(own_dict),
comb_DF[1].map(own_dict)])
elif stack_size == 3:
comb_DF['Team'] = comb_DF[0].map(team_dict)
comb_DF['Proj'] = sum([comb_DF[0].map(proj_dict),
comb_DF[1].map(proj_dict),
comb_DF[2].map(proj_dict)])
comb_DF['Salary'] = sum([comb_DF[0].map(cost_dict),
comb_DF[1].map(cost_dict),
comb_DF[2].map(cost_dict)])
comb_DF['Own%'] = sum([comb_DF[0].map(own_dict),
comb_DF[1].map(own_dict),
comb_DF[2].map(own_dict)])
elif stack_size == 4:
comb_DF['Team'] = comb_DF[0].map(team_dict)
comb_DF['Proj'] = sum([comb_DF[0].map(proj_dict),
comb_DF[1].map(proj_dict),
comb_DF[2].map(proj_dict),
comb_DF[3].map(proj_dict)])
comb_DF['Salary'] = sum([comb_DF[0].map(cost_dict),
comb_DF[1].map(cost_dict),
comb_DF[2].map(cost_dict),
comb_DF[3].map(cost_dict)])
comb_DF['Own%'] = sum([comb_DF[0].map(own_dict),
comb_DF[1].map(own_dict),
comb_DF[2].map(own_dict),
comb_DF[3].map(own_dict)])
elif stack_size == 5:
comb_DF['Team'] = comb_DF[0].map(team_dict)
comb_DF['Proj'] = sum([comb_DF[0].map(proj_dict),
comb_DF[1].map(proj_dict),
comb_DF[2].map(proj_dict),
comb_DF[3].map(proj_dict),
comb_DF[4].map(proj_dict)])
comb_DF['Salary'] = sum([comb_DF[0].map(cost_dict),
comb_DF[1].map(cost_dict),
comb_DF[2].map(cost_dict),
comb_DF[3].map(cost_dict),
comb_DF[4].map(cost_dict)])
comb_DF['Own%'] = sum([comb_DF[0].map(own_dict),
comb_DF[1].map(own_dict),
comb_DF[2].map(own_dict),
comb_DF[3].map(own_dict),
comb_DF[4].map(own_dict)])
comb_DF = comb_DF.sort_values(by='Proj', ascending=False)
comb_DF = comb_DF.loc[comb_DF['Salary'] <= max_sal2]
cut_var = 0
if stack_size == 2:
while cut_var <= int(len(comb_DF)):
try:
if int(cut_var) == 0:
cur_proj = float(comb_DF.iat[cut_var, 3])
cur_own = float(comb_DF.iat[cut_var, 5])
elif int(cut_var) >= 1:
check_own = float(comb_DF.iat[cut_var, 5])
if check_own > cur_own:
comb_DF = comb_DF.drop([cut_var])
cur_own = cur_own
cut_var = cut_var - 1
comb_DF = comb_DF.reset_index()
comb_DF = comb_DF.drop(['index'], axis=1)
elif check_own <= cur_own:
cur_own = float(comb_DF.iat[cut_var, 5])
cut_var = cut_var
cut_var += 1
except:
cut_var += 1
elif stack_size == 3:
while cut_var <= int(len(comb_DF)):
try:
if int(cut_var) == 0:
cur_proj = float(comb_DF.iat[cut_var,4])
cur_own = float(comb_DF.iat[cut_var,6])
elif int(cut_var) >= 1:
check_own = float(comb_DF.iat[cut_var,6])
if check_own > cur_own:
comb_DF = comb_DF.drop([cut_var])
cur_own = cur_own
cut_var = cut_var - 1
comb_DF = comb_DF.reset_index()
comb_DF = comb_DF.drop(['index'], axis=1)
elif check_own <= cur_own:
cur_own = float(comb_DF.iat[cut_var,6])
cut_var = cut_var
cut_var += 1
except:
cut_var += 1
elif stack_size == 4:
while cut_var <= int(len(comb_DF)):
try:
if int(cut_var) == 0:
cur_proj = float(comb_DF.iat[cut_var,5])
cur_own = float(comb_DF.iat[cut_var,7])
elif int(cut_var) >= 1:
check_own = float(comb_DF.iat[cut_var,7])
if check_own > cur_own:
comb_DF = comb_DF.drop([cut_var])
cur_own = cur_own
cut_var = cut_var - 1
comb_DF = comb_DF.reset_index()
comb_DF = comb_DF.drop(['index'], axis=1)
elif check_own <= cur_own:
cur_own = float(comb_DF.iat[cut_var,7])
cut_var = cut_var
cut_var += 1
except:
cut_var += 1
elif stack_size == 5:
while cut_var <= int(len(comb_DF)):
try:
if int(cut_var) == 0:
cur_proj = float(comb_DF.iat[cut_var,6])
cur_own = float(comb_DF.iat[cut_var,8])
elif int(cut_var) >= 1:
check_own = float(comb_DF.iat[cut_var,8])
if check_own > cur_own:
comb_DF = comb_DF.drop([cut_var])
cur_own = cur_own
cut_var = cut_var - 1
comb_DF = comb_DF.reset_index()
comb_DF = comb_DF.drop(['index'], axis=1)
elif check_own <= cur_own:
cur_own = float(comb_DF.iat[cut_var,8])
cut_var = cut_var
cut_var += 1
except:
cut_var += 1
st.session_state['display_frame'] = comb_DF
if 'display_frame' in st.session_state:
st.dataframe(st.session_state['display_frame'].style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), hide_index=True, use_container_width = True)
st.download_button(
label="Export Tables",
data=convert_df_to_csv(st.session_state['display_frame']),
file_name='NFL_Stack_Options_export.csv',
mime='text/csv',
)
else:
st.info("When you run the stack analysis, the results will be displayed here. Open up the 'Info and Filters' tab to check the settings.")
if selected_tab == 'User Upload':
st.info("The Projections file can have any columns in any order, but must contain columns explicitly named: 'Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', and 'Own'.")
col1, col2 = st.columns([1, 5])
with col1:
proj_file = st.file_uploader("Upload Projections", key = 'proj_uploader')
if proj_file is not None:
try:
st.session_state['proj_dataframe'] = pd.read_csv(proj_file)
except:
st.session_state['proj_dataframe'] = pd.read_excel(proj_file)
with col2:
if proj_file is not None:
st.dataframe(st.session_state['proj_dataframe'].style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)