James McCool
commited on
Commit
Β·
2131301
1
Parent(s):
0b825a6
Initial commit from old project
Browse files- Dockerfile +5 -0
- requirements.txt +8 -3
- src/streamlit_app.py +1311 -37
Dockerfile
CHANGED
|
@@ -14,6 +14,11 @@ COPY src/ ./src/
|
|
| 14 |
|
| 15 |
RUN pip3 install -r requirements.txt
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
EXPOSE 8501
|
| 18 |
|
| 19 |
HEALTHCHECK CMD curl --fail http://localhost:8501/_stcore/health
|
|
|
|
| 14 |
|
| 15 |
RUN pip3 install -r requirements.txt
|
| 16 |
|
| 17 |
+
# Expose the secret SECRET_EXAMPLE at buildtime and use its value as git remote URL
|
| 18 |
+
RUN --mount=type=secret,id=mongo_uri,mode=0444,required=true \
|
| 19 |
+
git init && \
|
| 20 |
+
git remote add origin $(cat /run/secrets/mongo_uri)
|
| 21 |
+
|
| 22 |
EXPOSE 8501
|
| 23 |
|
| 24 |
HEALTHCHECK CMD curl --fail http://localhost:8501/_stcore/health
|
requirements.txt
CHANGED
|
@@ -1,3 +1,8 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
+
openpyxl
|
| 3 |
+
matplotlib
|
| 4 |
+
pulp
|
| 5 |
+
docker
|
| 6 |
+
plotly
|
| 7 |
+
scipy
|
| 8 |
+
pymongo
|
src/streamlit_app.py
CHANGED
|
@@ -1,40 +1,1314 @@
|
|
| 1 |
-
import
|
| 2 |
import numpy as np
|
| 3 |
import pandas as pd
|
| 4 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
.
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
import numpy as np
|
| 3 |
import pandas as pd
|
| 4 |
+
import pymongo
|
| 5 |
+
import re
|
| 6 |
+
|
| 7 |
+
print(f"Streamlit version: {st.__version__}")
|
| 8 |
+
|
| 9 |
+
st.set_page_config(layout="wide")
|
| 10 |
+
|
| 11 |
+
@st.cache_resource
|
| 12 |
+
def init_conn():
|
| 13 |
+
uri = st.secrets['mongo_uri']
|
| 14 |
+
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
|
| 15 |
+
db = client["NFL_Database"]
|
| 16 |
+
|
| 17 |
+
return db
|
| 18 |
+
|
| 19 |
+
db = init_conn()
|
| 20 |
+
|
| 21 |
+
game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}',
|
| 22 |
+
'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'}
|
| 23 |
+
|
| 24 |
+
player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}',
|
| 25 |
+
'4x%': '{:.2%}','GPP%': '{:.2%}'}
|
| 26 |
+
|
| 27 |
+
dk_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
| 28 |
+
fd_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
| 29 |
+
dk_hb_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
|
| 30 |
+
fd_hb_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
|
| 31 |
+
dk_sd_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
| 32 |
+
fd_sd_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
| 33 |
+
|
| 34 |
+
st.markdown("""
|
| 35 |
+
<style>
|
| 36 |
+
/* Tab styling */
|
| 37 |
+
.stTabs [data-baseweb="tab-list"] {
|
| 38 |
+
gap: 8px;
|
| 39 |
+
padding: 4px;
|
| 40 |
+
}
|
| 41 |
+
.stTabs [data-baseweb="tab"] {
|
| 42 |
+
height: 50px;
|
| 43 |
+
white-space: pre-wrap;
|
| 44 |
+
background-color: #DAA520;
|
| 45 |
+
color: white;
|
| 46 |
+
border-radius: 10px;
|
| 47 |
+
gap: 1px;
|
| 48 |
+
padding: 10px 20px;
|
| 49 |
+
font-weight: bold;
|
| 50 |
+
transition: all 0.3s ease;
|
| 51 |
+
}
|
| 52 |
+
.stTabs [aria-selected="true"] {
|
| 53 |
+
background-color: #DAA520;
|
| 54 |
+
border: 3px solid #FFD700;
|
| 55 |
+
color: white;
|
| 56 |
+
}
|
| 57 |
+
.stTabs [data-baseweb="tab"]:hover {
|
| 58 |
+
background-color: #FFD700;
|
| 59 |
+
cursor: pointer;
|
| 60 |
+
}
|
| 61 |
+
|
| 62 |
+
div[data-baseweb="select"] > div {
|
| 63 |
+
background-color: #DAA520;
|
| 64 |
+
color: white;
|
| 65 |
+
}
|
| 66 |
+
|
| 67 |
+
div{
|
| 68 |
+
box-sizing: content-box !important;
|
| 69 |
+
}
|
| 70 |
+
|
| 71 |
+
</style>""", unsafe_allow_html=True)
|
| 72 |
+
|
| 73 |
+
@st.cache_resource(ttl=60)
|
| 74 |
+
def init_baselines():
|
| 75 |
+
|
| 76 |
+
collection = db["Player_Baselines"]
|
| 77 |
+
cursor = collection.find()
|
| 78 |
+
|
| 79 |
+
raw_display = pd.DataFrame(list(cursor))
|
| 80 |
+
raw_display = raw_display[['name', 'Team', 'Opp', 'Position', 'Salary', 'team_plays', 'team_pass', 'team_rush', 'team_tds', 'team_pass_tds', 'team_rush_tds', 'dropbacks', 'pass_yards', 'pass_tds',
|
| 81 |
+
'rush_att', 'rush_yards', 'rush_tds', 'targets', 'rec', 'rec_yards', 'rec_tds', 'PPR', 'Half_PPR', 'Own']]
|
| 82 |
+
player_stats = raw_display[raw_display['Position'] != 'K']
|
| 83 |
+
|
| 84 |
+
collection = db["DK_NFL_ROO"]
|
| 85 |
+
cursor = collection.find()
|
| 86 |
+
|
| 87 |
+
raw_display = pd.DataFrame(list(cursor))
|
| 88 |
+
raw_display = raw_display.rename(columns={'player_ID': 'player_id'})
|
| 89 |
+
raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%',
|
| 90 |
+
'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']]
|
| 91 |
+
load_display = raw_display[raw_display['Position'] != 'K']
|
| 92 |
+
dk_roo_raw = load_display.dropna(subset=['Median'])
|
| 93 |
+
|
| 94 |
+
dk_id_map = dict(zip(dk_roo_raw['Player'], dk_roo_raw['player_id']))
|
| 95 |
+
|
| 96 |
+
collection = db["FD_NFL_ROO"]
|
| 97 |
+
cursor = collection.find()
|
| 98 |
+
|
| 99 |
+
raw_display = pd.DataFrame(list(cursor))
|
| 100 |
+
raw_display = raw_display.rename(columns={'player_ID': 'player_id'})
|
| 101 |
+
raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%',
|
| 102 |
+
'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']]
|
| 103 |
+
load_display = raw_display[raw_display['Position'] != 'K']
|
| 104 |
+
fd_roo_raw = load_display.dropna(subset=['Median'])
|
| 105 |
+
|
| 106 |
+
fd_id_map = dict(zip(fd_roo_raw['Player'], fd_roo_raw['player_id']))
|
| 107 |
+
|
| 108 |
+
collection = db["DK_SD_NFL_ROO"]
|
| 109 |
+
cursor = collection.find()
|
| 110 |
+
|
| 111 |
+
raw_display = pd.DataFrame(list(cursor))
|
| 112 |
+
raw_display = raw_display.rename(columns={'player_ID': 'player_id'})
|
| 113 |
+
raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%',
|
| 114 |
+
'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']]
|
| 115 |
+
load_display = raw_display[raw_display['Position'] != 'K']
|
| 116 |
+
dk_sd_roo_raw = load_display.dropna(subset=['Median'])
|
| 117 |
+
|
| 118 |
+
dk_sd_id_map = dict(zip(dk_sd_roo_raw['Player'], dk_sd_roo_raw['player_id']))
|
| 119 |
+
|
| 120 |
+
collection = db["FD_SD_NFL_ROO"]
|
| 121 |
+
cursor = collection.find()
|
| 122 |
+
|
| 123 |
+
raw_display = pd.DataFrame(list(cursor))
|
| 124 |
+
raw_display = raw_display.rename(columns={'player_ID': 'player_id'})
|
| 125 |
+
raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%',
|
| 126 |
+
'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']]
|
| 127 |
+
load_display = raw_display[raw_display['Position'] != 'K']
|
| 128 |
+
fd_sd_roo_raw = load_display.dropna(subset=['Median'])
|
| 129 |
+
|
| 130 |
+
fd_sd_id_map = dict(zip(fd_sd_roo_raw['Player'], fd_sd_roo_raw['player_id']))
|
| 131 |
+
|
| 132 |
+
collection = db["DK_DFS_Stacks"]
|
| 133 |
+
cursor = collection.find()
|
| 134 |
+
|
| 135 |
+
raw_display = pd.DataFrame(list(cursor))
|
| 136 |
+
raw_display = raw_display[['Team', 'QB', 'WR1_TE', 'WR2_TE', 'Total', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '60+%', '2x%', '3x%', '4x%', 'Own', 'LevX', 'slate', 'version']]
|
| 137 |
+
dk_stacks_raw = raw_display.copy()
|
| 138 |
+
|
| 139 |
+
collection = db["FD_DFS_Stacks"]
|
| 140 |
+
cursor = collection.find()
|
| 141 |
+
|
| 142 |
+
raw_display = pd.DataFrame(list(cursor))
|
| 143 |
+
raw_display = raw_display[['Team', 'QB', 'WR1_TE', 'WR2_TE', 'Total', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '60+%', '2x%', '3x%', '4x%', 'Own', 'LevX', 'slate', 'version']]
|
| 144 |
+
fd_stacks_raw = raw_display.copy()
|
| 145 |
+
|
| 146 |
+
return player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw, dk_sd_roo_raw, fd_sd_roo_raw, dk_id_map, fd_id_map, dk_sd_id_map, fd_sd_id_map
|
| 147 |
+
|
| 148 |
+
@st.cache_resource(ttl = 60)
|
| 149 |
+
def init_DK_lineups(type_var, slate_var):
|
| 150 |
+
|
| 151 |
+
if type_var == 'Regular':
|
| 152 |
+
if slate_var == 'Main':
|
| 153 |
+
collection = db['DK_NFL_name_map']
|
| 154 |
+
cursor = collection.find()
|
| 155 |
+
raw_data = pd.DataFrame(list(cursor))
|
| 156 |
+
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
| 157 |
+
|
| 158 |
+
collection = db['DK_NFL_seed_frame']
|
| 159 |
+
cursor = collection.find().limit(10000)
|
| 160 |
+
|
| 161 |
+
raw_display = pd.DataFrame(list(cursor))
|
| 162 |
+
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
| 163 |
+
dict_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
|
| 164 |
+
# Map names
|
| 165 |
+
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
|
| 166 |
+
elif slate_var == 'Secondary':
|
| 167 |
+
collection = db['DK_NFL_Secondary_name_map']
|
| 168 |
+
cursor = collection.find()
|
| 169 |
+
raw_data = pd.DataFrame(list(cursor))
|
| 170 |
+
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
| 171 |
+
|
| 172 |
+
collection = db['DK_NFL_Secondary_seed_frame']
|
| 173 |
+
cursor = collection.find().limit(10000)
|
| 174 |
+
|
| 175 |
+
raw_display = pd.DataFrame(list(cursor))
|
| 176 |
+
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
| 177 |
+
dict_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
|
| 178 |
+
# Map names
|
| 179 |
+
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
|
| 180 |
+
elif slate_var == 'Auxiliary':
|
| 181 |
+
collection = db['DK_NFL_Turbo_name_map']
|
| 182 |
+
cursor = collection.find()
|
| 183 |
+
raw_data = pd.DataFrame(list(cursor))
|
| 184 |
+
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
| 185 |
+
|
| 186 |
+
collection = db['DK_NFL_Turbo_seed_frame']
|
| 187 |
+
cursor = collection.find().limit(10000)
|
| 188 |
+
|
| 189 |
+
raw_display = pd.DataFrame(list(cursor))
|
| 190 |
+
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
| 191 |
+
dict_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
|
| 192 |
+
# Map names
|
| 193 |
+
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
|
| 194 |
+
elif type_var == 'Showdown':
|
| 195 |
+
if slate_var == 'Main':
|
| 196 |
+
collection = db['DK_NFL_SD1_seed_frame']
|
| 197 |
+
cursor = collection.find().limit(10000)
|
| 198 |
+
|
| 199 |
+
raw_display = pd.DataFrame(list(cursor))
|
| 200 |
+
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
| 201 |
+
elif slate_var == 'Secondary':
|
| 202 |
+
collection = db['DK_NFL_SD2_seed_frame']
|
| 203 |
+
cursor = collection.find().limit(10000)
|
| 204 |
+
|
| 205 |
+
raw_display = pd.DataFrame(list(cursor))
|
| 206 |
+
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
| 207 |
+
elif slate_var == 'Auxiliary':
|
| 208 |
+
collection = db['DK_NFL_SD3_seed_frame']
|
| 209 |
+
cursor = collection.find().limit(10000)
|
| 210 |
+
|
| 211 |
+
raw_display = pd.DataFrame(list(cursor))
|
| 212 |
+
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
| 213 |
+
|
| 214 |
+
DK_seed = raw_display.to_numpy()
|
| 215 |
+
|
| 216 |
+
return DK_seed
|
| 217 |
+
|
| 218 |
+
@st.cache_resource(ttl = 60)
|
| 219 |
+
def init_FD_lineups(type_var, slate_var):
|
| 220 |
+
|
| 221 |
+
if type_var == 'Regular':
|
| 222 |
+
if slate_var == 'Main':
|
| 223 |
+
collection = db['FD_NFL_name_map']
|
| 224 |
+
cursor = collection.find()
|
| 225 |
+
raw_data = pd.DataFrame(list(cursor))
|
| 226 |
+
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
| 227 |
+
|
| 228 |
+
collection = db['FD_NFL_seed_frame']
|
| 229 |
+
cursor = collection.find().limit(10000)
|
| 230 |
+
|
| 231 |
+
raw_display = pd.DataFrame(list(cursor))
|
| 232 |
+
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
| 233 |
+
dict_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
|
| 234 |
+
# Map names
|
| 235 |
+
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
|
| 236 |
+
elif slate_var == 'Secondary':
|
| 237 |
+
collection = db['FD_NFL_Secondary_name_map']
|
| 238 |
+
cursor = collection.find()
|
| 239 |
+
raw_data = pd.DataFrame(list(cursor))
|
| 240 |
+
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
| 241 |
+
|
| 242 |
+
collection = db['FD_NFL_Secondary_seed_frame']
|
| 243 |
+
cursor = collection.find().limit(10000)
|
| 244 |
+
|
| 245 |
+
raw_display = pd.DataFrame(list(cursor))
|
| 246 |
+
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
| 247 |
+
dict_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
|
| 248 |
+
# Map names
|
| 249 |
+
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
|
| 250 |
+
elif slate_var == 'Auxiliary':
|
| 251 |
+
collection = db['FD_NFL_Turbo_name_map']
|
| 252 |
+
cursor = collection.find()
|
| 253 |
+
raw_data = pd.DataFrame(list(cursor))
|
| 254 |
+
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
| 255 |
+
|
| 256 |
+
collection = db['FD_NFL_Turbo_seed_frame']
|
| 257 |
+
cursor = collection.find().limit(10000)
|
| 258 |
+
|
| 259 |
+
raw_display = pd.DataFrame(list(cursor))
|
| 260 |
+
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
| 261 |
+
dict_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
|
| 262 |
+
# Map names
|
| 263 |
+
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
|
| 264 |
+
|
| 265 |
+
elif type_var == 'Showdown':
|
| 266 |
+
if slate_var == 'Main':
|
| 267 |
+
collection = db['FD_NFL_SD1_seed_frame']
|
| 268 |
+
cursor = collection.find().limit(10000)
|
| 269 |
+
|
| 270 |
+
raw_display = pd.DataFrame(list(cursor))
|
| 271 |
+
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
| 272 |
+
elif slate_var == 'Secondary':
|
| 273 |
+
collection = db['FD_NFL_SD2_seed_frame']
|
| 274 |
+
cursor = collection.find().limit(10000)
|
| 275 |
+
|
| 276 |
+
raw_display = pd.DataFrame(list(cursor))
|
| 277 |
+
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
| 278 |
+
elif slate_var == 'Auxiliary':
|
| 279 |
+
collection = db['FD_NFL_SD3_seed_frame']
|
| 280 |
+
cursor = collection.find().limit(10000)
|
| 281 |
+
|
| 282 |
+
raw_display = pd.DataFrame(list(cursor))
|
| 283 |
+
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
| 284 |
+
|
| 285 |
+
FD_seed = raw_display.to_numpy()
|
| 286 |
+
|
| 287 |
+
return FD_seed
|
| 288 |
+
|
| 289 |
+
@st.cache_data
|
| 290 |
+
def convert_df_to_csv(df):
|
| 291 |
+
return df.to_csv().encode('utf-8')
|
| 292 |
+
|
| 293 |
+
@st.cache_data
|
| 294 |
+
def convert_df(array):
|
| 295 |
+
array = pd.DataFrame(array, columns=column_names)
|
| 296 |
+
return array.to_csv().encode('utf-8')
|
| 297 |
+
|
| 298 |
+
@st.cache_data
|
| 299 |
+
def convert_pm_df(array):
|
| 300 |
+
array = pd.DataFrame(array)
|
| 301 |
+
return array.to_csv().encode('utf-8')
|
| 302 |
+
|
| 303 |
+
@st.cache_data
|
| 304 |
+
def convert_hb_df(array, column_names):
|
| 305 |
+
array = pd.DataFrame(array, columns=column_names)
|
| 306 |
+
return array.to_csv().encode('utf-8')
|
| 307 |
+
|
| 308 |
+
col1, col2 = st.columns([1, 9])
|
| 309 |
+
with col1:
|
| 310 |
+
if st.button("Load/Reset Data", key='reset'):
|
| 311 |
+
st.cache_data.clear()
|
| 312 |
+
player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw, dk_sd_roo_raw, fd_sd_roo_raw, dk_id_map, fd_id_map, dk_sd_id_map, fd_sd_id_map = init_baselines()
|
| 313 |
+
dk_lineups = init_DK_lineups('Regular', 'Main')
|
| 314 |
+
fd_lineups = init_FD_lineups('Regular', 'Main')
|
| 315 |
+
for key in st.session_state.keys():
|
| 316 |
+
del st.session_state[key]
|
| 317 |
+
with col2:
|
| 318 |
+
with st.container():
|
| 319 |
+
col1, col2 = st.columns([3, 3])
|
| 320 |
+
with col1:
|
| 321 |
+
view_var = st.selectbox("Select view", ["Simple", "Advanced"], key='view_var')
|
| 322 |
+
with col2:
|
| 323 |
+
site_var = st.selectbox("What site do you want to view?", ('Draftkings', 'Fanduel'), key='site_var')
|
| 324 |
+
|
| 325 |
+
player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw, dk_sd_roo_raw, fd_sd_roo_raw, dk_id_map, fd_id_map, dk_sd_id_map, fd_sd_id_map = init_baselines()
|
| 326 |
+
|
| 327 |
+
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
| 328 |
+
|
| 329 |
+
tab1, tab2, tab3, tab4 = st.tabs(["Stacks ROO", "Player ROO", "Optimals", "Handbuilder"])
|
| 330 |
+
|
| 331 |
+
with tab1:
|
| 332 |
+
with st.expander("Info and Filters"):
|
| 333 |
+
st.info(t_stamp)
|
| 334 |
+
with st.container():
|
| 335 |
+
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Late Slate', 'Thurs-Mon Slate'), key='slate_var1')
|
| 336 |
+
split_var1 = st.radio("Would you like to view the whole slate or just specific games?", ('Full Slate Run', 'Specific Games'), key='split_var1')
|
| 337 |
+
if site_var == 'Draftkings':
|
| 338 |
+
raw_baselines = dk_stacks_raw[dk_stacks_raw['slate'] == str(slate_var1)]
|
| 339 |
+
raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
|
| 340 |
+
raw_baselines = raw_baselines.iloc[:,:-2]
|
| 341 |
+
elif site_var == 'Fanduel':
|
| 342 |
+
raw_baselines = fd_stacks_raw[fd_stacks_raw['slate'] == str(slate_var1)]
|
| 343 |
+
raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
|
| 344 |
+
raw_baselines = raw_baselines.iloc[:,:-2]
|
| 345 |
+
if split_var1 == 'Specific Games':
|
| 346 |
+
team_var1 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var1')
|
| 347 |
+
elif split_var1 == 'Full Slate Run':
|
| 348 |
+
team_var1 = raw_baselines.Team.values.tolist()
|
| 349 |
+
|
| 350 |
+
final_stacks = raw_baselines[raw_baselines['Team'].isin(team_var1)]
|
| 351 |
+
if view_var == 'Simple':
|
| 352 |
+
final_stacks = final_stacks[['Team', 'QB', 'WR1_TE', 'WR2_TE', 'Salary', 'Median', '60+%', '4x%']]
|
| 353 |
+
elif view_var == 'Advanced':
|
| 354 |
+
final_stacks = final_stacks[['Team', 'QB', 'WR1_TE', 'WR2_TE', 'Total', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish',
|
| 355 |
+
'Top_10_finish', '60+%', '2x%', '3x%', '4x%', 'Own', 'LevX']]
|
| 356 |
+
st.dataframe(final_stacks.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), height=750, use_container_width = True)
|
| 357 |
+
st.download_button(
|
| 358 |
+
label="Export Tables",
|
| 359 |
+
data=convert_df_to_csv(final_stacks),
|
| 360 |
+
file_name='NFL_stacks_export.csv',
|
| 361 |
+
mime='text/csv',
|
| 362 |
+
)
|
| 363 |
+
|
| 364 |
+
with tab2:
|
| 365 |
+
with st.expander("Info and Filters"):
|
| 366 |
+
st.info(t_stamp)
|
| 367 |
+
slate_var2 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Late Slate', 'Thurs-Mon Slate'), key='slate_var2')
|
| 368 |
+
if site_var == 'Draftkings':
|
| 369 |
+
raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var2)]
|
| 370 |
+
|
| 371 |
+
raw_baselines = raw_baselines.iloc[:,:-2]
|
| 372 |
+
elif site_var == 'Fanduel':
|
| 373 |
+
raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var2)]
|
| 374 |
+
raw_baselines = raw_baselines.iloc[:,:-2]
|
| 375 |
+
split_var2 = st.radio("Would you like to view the whole slate or just specific games?", ('Full Slate Run', 'Specific Games'), key='split_var2')
|
| 376 |
+
if split_var2 == 'Specific Games':
|
| 377 |
+
team_var2 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var2')
|
| 378 |
+
elif split_var2 == 'Full Slate Run':
|
| 379 |
+
team_var2 = raw_baselines.Team.values.tolist()
|
| 380 |
+
pos_split2 = st.selectbox('What Position table would you like to view?', options = ['Overall', 'QB', 'RB', 'WR', 'TE'], key='pos_split2')
|
| 381 |
+
pos_combos2 = st.multiselect('If Overall, specific positions?', options = ['QB', 'RB', 'WR', 'TE', 'DST'], default = ['QB', 'RB', 'WR', 'TE', 'DST'], key='pos_combos2')
|
| 382 |
+
sal_var2 = st.slider("Is there a certain price range you want to view?", 2000, 15000, (2000, 15000), key='sal_var2')
|
| 383 |
+
|
| 384 |
+
if pos_split2 == 'Overall':
|
| 385 |
+
raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
|
| 386 |
+
elif pos_split2 == 'QB':
|
| 387 |
+
if site_var == 'Draftkings':
|
| 388 |
+
raw_baselines = raw_baselines[raw_baselines['version'] == 'dk_qbs']
|
| 389 |
+
elif site_var == 'Fanduel':
|
| 390 |
+
raw_baselines = raw_baselines[raw_baselines['version'] == 'fd_qbs']
|
| 391 |
+
elif pos_split2 == 'RB':
|
| 392 |
+
if site_var == 'Draftkings':
|
| 393 |
+
raw_baselines = raw_baselines[raw_baselines['version'] == 'dk_rbs']
|
| 394 |
+
elif site_var == 'Fanduel':
|
| 395 |
+
raw_baselines = raw_baselines[raw_baselines['version'] == 'fd_rbs']
|
| 396 |
+
elif pos_split2 == 'WR':
|
| 397 |
+
if site_var == 'Draftkings':
|
| 398 |
+
raw_baselines = raw_baselines[raw_baselines['version'] == 'dk_wrs']
|
| 399 |
+
elif site_var == 'Fanduel':
|
| 400 |
+
raw_baselines = raw_baselines[raw_baselines['version'] == 'fd_wrs']
|
| 401 |
+
elif pos_split2 == 'TE':
|
| 402 |
+
if site_var == 'Draftkings':
|
| 403 |
+
raw_baselines = raw_baselines[raw_baselines['version'] == 'dk_tes']
|
| 404 |
+
elif site_var == 'Fanduel':
|
| 405 |
+
raw_baselines = raw_baselines[raw_baselines['version'] == 'fd_tes']
|
| 406 |
+
raw_baselines = raw_baselines[raw_baselines['Position'].str.contains('|'.join(pos_combos2))]
|
| 407 |
+
final_Proj = raw_baselines[raw_baselines['Team'].isin(team_var2)]
|
| 408 |
+
final_Proj = final_Proj[final_Proj['Salary'] >= sal_var2[0]]
|
| 409 |
+
final_Proj = final_Proj[final_Proj['Salary'] <= sal_var2[1]]
|
| 410 |
+
|
| 411 |
+
if view_var == 'Simple':
|
| 412 |
+
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Salary', 'Median', 'Top_5_finish', '4x%']]
|
| 413 |
+
disp_proj = final_Proj.set_index('Player')
|
| 414 |
+
elif view_var == 'Advanced':
|
| 415 |
+
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX']]
|
| 416 |
+
disp_proj = final_Proj.set_index('Player')
|
| 417 |
+
st.dataframe(disp_proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), height=750, use_container_width = True)
|
| 418 |
+
st.download_button(
|
| 419 |
+
label="Export Tables",
|
| 420 |
+
data=convert_df_to_csv(final_Proj),
|
| 421 |
+
file_name='NFL_ROO_export.csv',
|
| 422 |
+
mime='text/csv',
|
| 423 |
+
)
|
| 424 |
+
|
| 425 |
+
with tab3:
|
| 426 |
+
st.header("Optimals")
|
| 427 |
+
with st.expander("Info and Filters"):
|
| 428 |
+
st.info("These filters will display various optimals in the table below to pick from. If you want to export the entire set of 10,000 optimals, hit the 'Prepare full data export' button. If you would like to apply the filters here to the 10,000 optimals before you export, use the 'Prepare full data export (Filter)' button.")
|
| 429 |
+
col1, col2, col3, col4 = st.columns(4)
|
| 430 |
+
with col1:
|
| 431 |
+
slate_type_var3 = st.radio("Which slate type are you loading?", ('Regular', 'Showdown'), key='slate_type_var3')
|
| 432 |
+
if slate_type_var3 == 'Regular':
|
| 433 |
+
if site_var == 'Draftkings':
|
| 434 |
+
raw_baselines = dk_roo_raw
|
| 435 |
+
elif site_var == 'Fanduel':
|
| 436 |
+
raw_baselines = fd_roo_raw
|
| 437 |
+
elif slate_type_var3 == 'Showdown':
|
| 438 |
+
if site_var == 'Draftkings':
|
| 439 |
+
raw_baselines = dk_sd_roo_raw
|
| 440 |
+
elif site_var == 'Fanduel':
|
| 441 |
+
raw_baselines = fd_sd_roo_raw
|
| 442 |
+
slate_var3 = st.radio("Which slate data are you loading?", ('Main', 'Secondary', 'Auxiliary'), key='slate_var3')
|
| 443 |
+
if slate_type_var3 == 'Regular':
|
| 444 |
+
if site_var == 'Draftkings':
|
| 445 |
+
dk_lineups = init_DK_lineups(slate_type_var3, slate_var3)
|
| 446 |
+
elif site_var == 'Fanduel':
|
| 447 |
+
fd_lineups = init_FD_lineups(slate_type_var3, slate_var3)
|
| 448 |
+
elif slate_type_var3 == 'Showdown':
|
| 449 |
+
if site_var == 'Draftkings':
|
| 450 |
+
dk_lineups = init_DK_lineups(slate_type_var3, slate_var3)
|
| 451 |
+
elif site_var == 'Fanduel':
|
| 452 |
+
fd_lineups = init_FD_lineups(slate_type_var3, slate_var3)
|
| 453 |
+
with col2:
|
| 454 |
+
lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=1000, value=150, step=1)
|
| 455 |
+
player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
|
| 456 |
+
if player_var1 == 'Specific Players':
|
| 457 |
+
player_var2 = st.multiselect('Which players do you want?', options = raw_baselines['Player'].unique())
|
| 458 |
+
elif player_var1 == 'Full Slate':
|
| 459 |
+
player_var2 = raw_baselines.Player.values.tolist()
|
| 460 |
+
with col3:
|
| 461 |
+
if site_var == 'Draftkings':
|
| 462 |
+
salary_min_var = st.number_input("Minimum salary used", min_value = 0, max_value = 50000, value = 49000, step = 100, key = 'salary_min_var')
|
| 463 |
+
salary_max_var = st.number_input("Maximum salary used", min_value = 0, max_value = 50000, value = 50000, step = 100, key = 'salary_max_var')
|
| 464 |
+
elif site_var == 'Fanduel':
|
| 465 |
+
salary_min_var = st.number_input("Minimum salary used", min_value = 0, max_value = 60000, value = 59000, step = 100, key = 'salary_min_var')
|
| 466 |
+
salary_max_var = st.number_input("Maximum salary used", min_value = 0, max_value = 60000, value = 60000, step = 100, key = 'salary_max_var')
|
| 467 |
+
with col4:
|
| 468 |
+
if site_var == 'Draftkings':
|
| 469 |
+
min_stacks_var = st.number_input("Minimum stacks used", min_value = 0, max_value = 5, value = 1, step = 1, key = 'min_stacks_var')
|
| 470 |
+
max_stacks_var = st.number_input("Maximum stacks used", min_value = 0, max_value = 5, value = 5, step = 1, key = 'max_stacks_var')
|
| 471 |
+
elif site_var == 'Fanduel':
|
| 472 |
+
min_stacks_var = st.number_input("Minimum stacks used", min_value = 0, max_value = 4, value = 1, step = 1, key = 'min_stacks_var')
|
| 473 |
+
max_stacks_var = st.number_input("Maximum stacks used", min_value = 0, max_value = 4, value = 4, step = 1, key = 'max_stacks_var')
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
if site_var == 'Draftkings':
|
| 477 |
+
raw_baselines = dk_roo_raw
|
| 478 |
+
if slate_type_var3 == 'Regular':
|
| 479 |
+
ROO_slice = raw_baselines
|
| 480 |
+
player_salaries = dict(zip(ROO_slice['Player'], ROO_slice['Salary']))
|
| 481 |
+
column_names = dk_columns
|
| 482 |
+
elif slate_type_var3 == 'Showdown':
|
| 483 |
+
player_salaries = dict(zip(raw_baselines['Player'], raw_baselines['Salary']))
|
| 484 |
+
column_names = dk_sd_columns
|
| 485 |
+
|
| 486 |
+
|
| 487 |
+
elif site_var == 'Fanduel':
|
| 488 |
+
raw_baselines = fd_roo_raw
|
| 489 |
+
if slate_type_var3 == 'Regular':
|
| 490 |
+
ROO_slice = raw_baselines
|
| 491 |
+
player_salaries = dict(zip(ROO_slice['Player'], ROO_slice['Salary']))
|
| 492 |
+
column_names = fd_columns
|
| 493 |
+
elif slate_type_var3 == 'Showdown':
|
| 494 |
+
player_salaries = dict(zip(raw_baselines['Player'], raw_baselines['Salary']))
|
| 495 |
+
column_names = fd_sd_columns
|
| 496 |
+
|
| 497 |
+
reg_dl_col, filtered_dl_col, blank_dl_col = st.columns([2, 2, 6])
|
| 498 |
+
with reg_dl_col:
|
| 499 |
+
if st.button("Prepare full data export", key='data_export'):
|
| 500 |
+
name_export = pd.DataFrame(st.session_state.working_seed.copy(), columns=column_names)
|
| 501 |
+
data_export = pd.DataFrame(st.session_state.working_seed.copy(), columns=column_names)
|
| 502 |
+
if site_var == 'Draftkings':
|
| 503 |
+
if slate_type_var3 == 'Regular':
|
| 504 |
+
map_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
|
| 505 |
+
for col_idx in map_columns:
|
| 506 |
+
data_export[col_idx] = data_export[col_idx].map(dk_id_map)
|
| 507 |
+
elif slate_type_var3 == 'Showdown':
|
| 508 |
+
map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5']
|
| 509 |
+
for col_idx in map_columns:
|
| 510 |
+
data_export[col_idx] = data_export[col_idx].map(dk_sd_id_map)
|
| 511 |
+
elif site_var == 'Fanduel':
|
| 512 |
+
if slate_type_var3 == 'Regular':
|
| 513 |
+
map_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
|
| 514 |
+
for col_idx in map_columns:
|
| 515 |
+
data_export[col_idx] = data_export[col_idx].map(fd_id_map)
|
| 516 |
+
elif slate_type_var3 == 'Showdown':
|
| 517 |
+
map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5']
|
| 518 |
+
for col_idx in map_columns:
|
| 519 |
+
data_export[col_idx] = data_export[col_idx].map(fd_sd_id_map)
|
| 520 |
+
reg_opt_col, pm_opt_col = st.columns(2)
|
| 521 |
+
with reg_opt_col:
|
| 522 |
+
st.download_button(
|
| 523 |
+
label="Export optimals set (IDs)",
|
| 524 |
+
data=convert_df(data_export),
|
| 525 |
+
file_name='NFL_optimals_export.csv',
|
| 526 |
+
mime='text/csv',
|
| 527 |
+
)
|
| 528 |
+
st.download_button(
|
| 529 |
+
label="Export optimals set (Names)",
|
| 530 |
+
data=convert_df(name_export),
|
| 531 |
+
file_name='NFL_optimals_export.csv',
|
| 532 |
+
mime='text/csv',
|
| 533 |
+
)
|
| 534 |
+
with pm_opt_col:
|
| 535 |
+
if site_var == 'Draftkings':
|
| 536 |
+
if slate_type_var3 == 'Regular':
|
| 537 |
+
data_export = data_export.set_index('QB').drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
|
| 538 |
+
elif slate_type_var3 == 'Showdown':
|
| 539 |
+
data_export = data_export.set_index('CPT').drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
|
| 540 |
+
elif site_var == 'Fanduel':
|
| 541 |
+
if slate_type_var3 == 'Regular':
|
| 542 |
+
data_export = data_export.set_index('QB').drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
|
| 543 |
+
elif slate_type_var3 == 'Showdown':
|
| 544 |
+
data_export = data_export.set_index('CPT').drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
|
| 545 |
+
st.download_button(
|
| 546 |
+
label="Portfolio Manager Export (IDs)",
|
| 547 |
+
data=convert_pm_df(data_export),
|
| 548 |
+
file_name='NFL_optimals_export.csv',
|
| 549 |
+
mime='text/csv',
|
| 550 |
+
)
|
| 551 |
+
|
| 552 |
+
if site_var == 'Draftkings':
|
| 553 |
+
if slate_type_var3 == 'Regular':
|
| 554 |
+
name_export = name_export.set_index('QB').drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
|
| 555 |
+
elif slate_type_var3 == 'Showdown':
|
| 556 |
+
name_export = name_export.set_index('CPT').drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
|
| 557 |
+
elif site_var == 'Fanduel':
|
| 558 |
+
if slate_type_var3 == 'Regular':
|
| 559 |
+
name_export = name_export.set_index('QB').drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
|
| 560 |
+
elif slate_type_var3 == 'Showdown':
|
| 561 |
+
name_export = name_export.set_index('CPT').drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
|
| 562 |
+
st.download_button(
|
| 563 |
+
label="Portfolio Manager Export (Names)",
|
| 564 |
+
data=convert_pm_df(name_export),
|
| 565 |
+
file_name='NFL_optimals_export.csv',
|
| 566 |
+
mime='text/csv',
|
| 567 |
+
)
|
| 568 |
+
with filtered_dl_col:
|
| 569 |
+
if st.button("Prepare full data export (Filtered)", key='data_export_filtered'):
|
| 570 |
+
name_export = pd.DataFrame(st.session_state.working_seed.copy(), columns=column_names)
|
| 571 |
+
data_export = pd.DataFrame(st.session_state.working_seed.copy(), columns=column_names)
|
| 572 |
+
if site_var == 'Draftkings':
|
| 573 |
+
if slate_type_var3 == 'Regular':
|
| 574 |
+
map_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
|
| 575 |
+
elif slate_type_var3 == 'Showdown':
|
| 576 |
+
map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5']
|
| 577 |
+
for col_idx in map_columns:
|
| 578 |
+
data_export[col_idx] = data_export[col_idx].map(dk_id_map)
|
| 579 |
+
elif site_var == 'Fanduel':
|
| 580 |
+
if slate_type_var3 == 'Regular':
|
| 581 |
+
map_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
|
| 582 |
+
elif slate_type_var3 == 'Showdown':
|
| 583 |
+
map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5']
|
| 584 |
+
for col_idx in map_columns:
|
| 585 |
+
data_export[col_idx] = data_export[col_idx].map(fd_id_map)
|
| 586 |
+
data_export = data_export[data_export['salary'] >= salary_min_var]
|
| 587 |
+
data_export = data_export[data_export['salary'] <= salary_max_var]
|
| 588 |
+
data_export = data_export[data_export['Team_count'] >= min_stacks_var]
|
| 589 |
+
data_export = data_export[data_export['Team_count'] <= max_stacks_var]
|
| 590 |
+
|
| 591 |
+
name_export = name_export[name_export['salary'] >= salary_min_var]
|
| 592 |
+
name_export = name_export[name_export['salary'] <= salary_max_var]
|
| 593 |
+
name_export = name_export[name_export['Team_count'] >= min_stacks_var]
|
| 594 |
+
name_export = name_export[name_export['Team_count'] <= max_stacks_var]
|
| 595 |
+
|
| 596 |
+
reg_opt_col, pm_opt_col = st.columns(2)
|
| 597 |
+
with reg_opt_col:
|
| 598 |
+
st.download_button(
|
| 599 |
+
label="Export optimals set (IDs)",
|
| 600 |
+
data=convert_df(data_export),
|
| 601 |
+
file_name='NFL_optimals_export.csv',
|
| 602 |
+
mime='text/csv',
|
| 603 |
+
)
|
| 604 |
+
st.download_button(
|
| 605 |
+
label="Export optimals set (Names)",
|
| 606 |
+
data=convert_df(name_export),
|
| 607 |
+
file_name='NFL_optimals_export.csv',
|
| 608 |
+
mime='text/csv',
|
| 609 |
+
)
|
| 610 |
+
with pm_opt_col:
|
| 611 |
+
if site_var == 'Draftkings':
|
| 612 |
+
if slate_type_var3 == 'Regular':
|
| 613 |
+
data_export = data_export.set_index('QB').drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
|
| 614 |
+
elif slate_type_var3 == 'Showdown':
|
| 615 |
+
data_export = data_export.set_index('CPT').drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
|
| 616 |
+
elif site_var == 'Fanduel':
|
| 617 |
+
if slate_type_var3 == 'Regular':
|
| 618 |
+
data_export = data_export.set_index('QB').drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
|
| 619 |
+
elif slate_type_var3 == 'Showdown':
|
| 620 |
+
data_export = data_export.set_index('CPT').drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
|
| 621 |
+
st.download_button(
|
| 622 |
+
label="Portfolio Manager Export (IDs)",
|
| 623 |
+
data=convert_pm_df(data_export),
|
| 624 |
+
file_name='NFL_optimals_export.csv',
|
| 625 |
+
mime='text/csv',
|
| 626 |
+
)
|
| 627 |
+
|
| 628 |
+
if site_var == 'Draftkings':
|
| 629 |
+
if slate_type_var3 == 'Regular':
|
| 630 |
+
name_export = name_export.set_index('QB').drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
|
| 631 |
+
elif slate_type_var3 == 'Showdown':
|
| 632 |
+
name_export = name_export.set_index('CPT').drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
|
| 633 |
+
elif site_var == 'Fanduel':
|
| 634 |
+
if slate_type_var3 == 'Regular':
|
| 635 |
+
name_export = name_export.set_index('QB').drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
|
| 636 |
+
elif slate_type_var3 == 'Showdown':
|
| 637 |
+
name_export = name_export.set_index('CPT').drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
|
| 638 |
+
st.download_button(
|
| 639 |
+
label="Portfolio Manager Export (Names)",
|
| 640 |
+
data=convert_pm_df(name_export),
|
| 641 |
+
file_name='NFL_optimals_export.csv',
|
| 642 |
+
mime='text/csv',
|
| 643 |
+
)
|
| 644 |
+
|
| 645 |
+
if site_var == 'Draftkings':
|
| 646 |
+
if 'working_seed' in st.session_state:
|
| 647 |
+
st.session_state.working_seed = st.session_state.working_seed
|
| 648 |
+
if player_var1 == 'Specific Players':
|
| 649 |
+
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
|
| 650 |
+
elif player_var1 == 'Full Slate':
|
| 651 |
+
st.session_state.working_seed = dk_lineups.copy()
|
| 652 |
+
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
|
| 653 |
+
elif 'working_seed' not in st.session_state:
|
| 654 |
+
st.session_state.working_seed = dk_lineups.copy()
|
| 655 |
+
st.session_state.working_seed = st.session_state.working_seed
|
| 656 |
+
if player_var1 == 'Specific Players':
|
| 657 |
+
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
|
| 658 |
+
elif player_var1 == 'Full Slate':
|
| 659 |
+
st.session_state.working_seed = dk_lineups.copy()
|
| 660 |
+
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
|
| 661 |
+
|
| 662 |
+
elif site_var == 'Fanduel':
|
| 663 |
+
if 'working_seed' in st.session_state:
|
| 664 |
+
st.session_state.working_seed = st.session_state.working_seed
|
| 665 |
+
if player_var1 == 'Specific Players':
|
| 666 |
+
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
|
| 667 |
+
elif player_var1 == 'Full Slate':
|
| 668 |
+
st.session_state.working_seed = fd_lineups.copy()
|
| 669 |
+
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
|
| 670 |
+
elif 'working_seed' not in st.session_state:
|
| 671 |
+
st.session_state.working_seed = fd_lineups.copy()
|
| 672 |
+
st.session_state.working_seed = st.session_state.working_seed
|
| 673 |
+
if player_var1 == 'Specific Players':
|
| 674 |
+
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
|
| 675 |
+
elif player_var1 == 'Full Slate':
|
| 676 |
+
st.session_state.working_seed = fd_lineups.copy()
|
| 677 |
+
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
|
| 678 |
+
st.session_state.data_export_display = st.session_state.data_export_display[st.session_state.data_export_display['salary'] >= salary_min_var]
|
| 679 |
+
st.session_state.data_export_display = st.session_state.data_export_display[st.session_state.data_export_display['salary'] <= salary_max_var]
|
| 680 |
+
st.session_state.data_export_display = st.session_state.data_export_display[st.session_state.data_export_display['Team_count'] >= min_stacks_var]
|
| 681 |
+
st.session_state.data_export_display = st.session_state.data_export_display[st.session_state.data_export_display['Team_count'] <= max_stacks_var]
|
| 682 |
+
export_file = st.session_state.data_export_display.copy()
|
| 683 |
+
name_export = st.session_state.data_export_display.copy()
|
| 684 |
+
if site_var == 'Draftkings':
|
| 685 |
+
if slate_type_var3 == 'Regular':
|
| 686 |
+
map_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
|
| 687 |
+
elif slate_type_var3 == 'Showdown':
|
| 688 |
+
map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5']
|
| 689 |
+
for col_idx in map_columns:
|
| 690 |
+
export_file[col_idx] = export_file[col_idx].map(dk_id_map)
|
| 691 |
+
elif site_var == 'Fanduel':
|
| 692 |
+
if slate_type_var3 == 'Regular':
|
| 693 |
+
map_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
|
| 694 |
+
elif slate_type_var3 == 'Showdown':
|
| 695 |
+
map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5']
|
| 696 |
+
for col_idx in map_columns:
|
| 697 |
+
export_file[col_idx] = export_file[col_idx].map(fd_id_map)
|
| 698 |
+
|
| 699 |
+
with st.container():
|
| 700 |
+
if st.button("Reset Optimals", key='reset3'):
|
| 701 |
+
for key in st.session_state.keys():
|
| 702 |
+
del st.session_state[key]
|
| 703 |
+
if site_var == 'Draftkings':
|
| 704 |
+
st.session_state.working_seed = dk_lineups.copy()
|
| 705 |
+
elif site_var == 'Fanduel':
|
| 706 |
+
st.session_state.working_seed = fd_lineups.copy()
|
| 707 |
+
if 'data_export_display' in st.session_state:
|
| 708 |
+
st.dataframe(st.session_state.data_export_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=500, use_container_width = True)
|
| 709 |
+
st.download_button(
|
| 710 |
+
label="Export display optimals (IDs)",
|
| 711 |
+
data=convert_df(export_file),
|
| 712 |
+
file_name='NFL_display_optimals.csv',
|
| 713 |
+
mime='text/csv',
|
| 714 |
+
)
|
| 715 |
+
st.download_button(
|
| 716 |
+
label="Export display optimals (Names)",
|
| 717 |
+
data=convert_df(name_export),
|
| 718 |
+
file_name='NFL_display_optimals.csv',
|
| 719 |
+
mime='text/csv',
|
| 720 |
+
)
|
| 721 |
+
|
| 722 |
+
with st.container():
|
| 723 |
+
if slate_type_var3 == 'Regular':
|
| 724 |
+
if 'working_seed' in st.session_state:
|
| 725 |
+
# Create a new dataframe with summary statistics
|
| 726 |
+
if site_var == 'Draftkings':
|
| 727 |
+
summary_df = pd.DataFrame({
|
| 728 |
+
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
|
| 729 |
+
'Salary': [
|
| 730 |
+
np.min(st.session_state.working_seed[:,9]),
|
| 731 |
+
np.mean(st.session_state.working_seed[:,9]),
|
| 732 |
+
np.max(st.session_state.working_seed[:,9]),
|
| 733 |
+
np.std(st.session_state.working_seed[:,9])
|
| 734 |
+
],
|
| 735 |
+
'Proj': [
|
| 736 |
+
np.min(st.session_state.working_seed[:,10]),
|
| 737 |
+
np.mean(st.session_state.working_seed[:,10]),
|
| 738 |
+
np.max(st.session_state.working_seed[:,10]),
|
| 739 |
+
np.std(st.session_state.working_seed[:,10])
|
| 740 |
+
],
|
| 741 |
+
'Own': [
|
| 742 |
+
np.min(st.session_state.working_seed[:,15]),
|
| 743 |
+
np.mean(st.session_state.working_seed[:,15]),
|
| 744 |
+
np.max(st.session_state.working_seed[:,15]),
|
| 745 |
+
np.std(st.session_state.working_seed[:,15])
|
| 746 |
+
]
|
| 747 |
+
})
|
| 748 |
+
elif site_var == 'Fanduel':
|
| 749 |
+
summary_df = pd.DataFrame({
|
| 750 |
+
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
|
| 751 |
+
'Salary': [
|
| 752 |
+
np.min(st.session_state.working_seed[:,9]),
|
| 753 |
+
np.mean(st.session_state.working_seed[:,9]),
|
| 754 |
+
np.max(st.session_state.working_seed[:,9]),
|
| 755 |
+
np.std(st.session_state.working_seed[:,9])
|
| 756 |
+
],
|
| 757 |
+
'Proj': [
|
| 758 |
+
np.min(st.session_state.working_seed[:,10]),
|
| 759 |
+
np.mean(st.session_state.working_seed[:,10]),
|
| 760 |
+
np.max(st.session_state.working_seed[:,10]),
|
| 761 |
+
np.std(st.session_state.working_seed[:,10])
|
| 762 |
+
],
|
| 763 |
+
'Own': [
|
| 764 |
+
np.min(st.session_state.working_seed[:,15]),
|
| 765 |
+
np.mean(st.session_state.working_seed[:,15]),
|
| 766 |
+
np.max(st.session_state.working_seed[:,15]),
|
| 767 |
+
np.std(st.session_state.working_seed[:,15])
|
| 768 |
+
]
|
| 769 |
+
})
|
| 770 |
+
elif slate_type_var3 == 'Showdown':
|
| 771 |
+
if 'working_seed' in st.session_state:
|
| 772 |
+
# Create a new dataframe with summary statistics
|
| 773 |
+
if site_var == 'Draftkings':
|
| 774 |
+
summary_df = pd.DataFrame({
|
| 775 |
+
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
|
| 776 |
+
'Salary': [
|
| 777 |
+
np.min(st.session_state.working_seed[:,6]),
|
| 778 |
+
np.mean(st.session_state.working_seed[:,6]),
|
| 779 |
+
np.max(st.session_state.working_seed[:,6]),
|
| 780 |
+
np.std(st.session_state.working_seed[:,6])
|
| 781 |
+
],
|
| 782 |
+
'Proj': [
|
| 783 |
+
np.min(st.session_state.working_seed[:,7]),
|
| 784 |
+
np.mean(st.session_state.working_seed[:,7]),
|
| 785 |
+
np.max(st.session_state.working_seed[:,7]),
|
| 786 |
+
np.std(st.session_state.working_seed[:,7])
|
| 787 |
+
],
|
| 788 |
+
'Own': [
|
| 789 |
+
np.min(st.session_state.working_seed[:,12]),
|
| 790 |
+
np.mean(st.session_state.working_seed[:,12]),
|
| 791 |
+
np.max(st.session_state.working_seed[:,12]),
|
| 792 |
+
np.std(st.session_state.working_seed[:,12])
|
| 793 |
+
]
|
| 794 |
+
})
|
| 795 |
+
elif site_var == 'Fanduel':
|
| 796 |
+
summary_df = pd.DataFrame({
|
| 797 |
+
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
|
| 798 |
+
'Salary': [
|
| 799 |
+
np.min(st.session_state.working_seed[:,6]),
|
| 800 |
+
np.mean(st.session_state.working_seed[:,6]),
|
| 801 |
+
np.max(st.session_state.working_seed[:,6]),
|
| 802 |
+
np.std(st.session_state.working_seed[:,6])
|
| 803 |
+
],
|
| 804 |
+
'Proj': [
|
| 805 |
+
np.min(st.session_state.working_seed[:,7]),
|
| 806 |
+
np.mean(st.session_state.working_seed[:,7]),
|
| 807 |
+
np.max(st.session_state.working_seed[:,7]),
|
| 808 |
+
np.std(st.session_state.working_seed[:,7])
|
| 809 |
+
],
|
| 810 |
+
'Own': [
|
| 811 |
+
np.min(st.session_state.working_seed[:,12]),
|
| 812 |
+
np.mean(st.session_state.working_seed[:,12]),
|
| 813 |
+
np.max(st.session_state.working_seed[:,12]),
|
| 814 |
+
np.std(st.session_state.working_seed[:,12])
|
| 815 |
+
]
|
| 816 |
+
})
|
| 817 |
+
|
| 818 |
+
# Set the index of the summary dataframe as the "Metric" column
|
| 819 |
+
summary_df = summary_df.set_index('Metric')
|
| 820 |
+
|
| 821 |
+
# Display the summary dataframe
|
| 822 |
+
st.subheader("Optimal Statistics")
|
| 823 |
+
st.dataframe(summary_df.style.format({
|
| 824 |
+
'Salary': '{:.2f}',
|
| 825 |
+
'Proj': '{:.2f}',
|
| 826 |
+
'Own': '{:.2f}'
|
| 827 |
+
}).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own']), use_container_width=True)
|
| 828 |
+
|
| 829 |
+
with st.container():
|
| 830 |
+
tab1, tab2 = st.tabs(["Display Frequency", "Seed Frame Frequency"])
|
| 831 |
+
with tab1:
|
| 832 |
+
if 'data_export_display' in st.session_state:
|
| 833 |
+
if site_var == 'Draftkings':
|
| 834 |
+
if slate_type_var3 == 'Regular':
|
| 835 |
+
player_columns = st.session_state.data_export_display.iloc[:, :9]
|
| 836 |
+
elif slate_type_var3 == 'Showdown':
|
| 837 |
+
player_columns = st.session_state.data_export_display.iloc[:, :6]
|
| 838 |
+
elif site_var == 'Fanduel':
|
| 839 |
+
if slate_type_var3 == 'Regular':
|
| 840 |
+
player_columns = st.session_state.data_export_display.iloc[:, :9]
|
| 841 |
+
elif slate_type_var3 == 'Showdown':
|
| 842 |
+
player_columns = st.session_state.data_export_display.iloc[:, :6]
|
| 843 |
+
|
| 844 |
+
# Flatten the DataFrame and count unique values
|
| 845 |
+
value_counts = player_columns.values.flatten().tolist()
|
| 846 |
+
value_counts = pd.Series(value_counts).value_counts()
|
| 847 |
+
|
| 848 |
+
percentages = (value_counts / lineup_num_var * 100).round(2)
|
| 849 |
+
|
| 850 |
+
# Create a DataFrame with the results
|
| 851 |
+
summary_df = pd.DataFrame({
|
| 852 |
+
'Player': value_counts.index,
|
| 853 |
+
'Frequency': value_counts.values,
|
| 854 |
+
'Percentage': percentages.values
|
| 855 |
+
})
|
| 856 |
+
|
| 857 |
+
# Sort by frequency in descending order
|
| 858 |
+
summary_df['Salary'] = summary_df['Player'].map(player_salaries)
|
| 859 |
+
summary_df = summary_df[['Player', 'Salary', 'Frequency', 'Percentage']]
|
| 860 |
+
summary_df = summary_df.sort_values('Frequency', ascending=False)
|
| 861 |
+
summary_df = summary_df.set_index('Player')
|
| 862 |
+
|
| 863 |
+
# Display the table
|
| 864 |
+
st.write("Player Frequency Table:")
|
| 865 |
+
st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}), height=500, use_container_width=True)
|
| 866 |
+
|
| 867 |
+
st.download_button(
|
| 868 |
+
label="Export player frequency",
|
| 869 |
+
data=convert_df_to_csv(summary_df),
|
| 870 |
+
file_name='NFL_player_frequency.csv',
|
| 871 |
+
mime='text/csv',
|
| 872 |
+
)
|
| 873 |
+
with tab2:
|
| 874 |
+
if 'working_seed' in st.session_state:
|
| 875 |
+
if site_var == 'Draftkings':
|
| 876 |
+
if slate_type_var3 == 'Regular':
|
| 877 |
+
player_columns = st.session_state.working_seed[:, :9]
|
| 878 |
+
elif slate_type_var3 == 'Showdown':
|
| 879 |
+
player_columns = st.session_state.working_seed[:, :6]
|
| 880 |
+
elif site_var == 'Fanduel':
|
| 881 |
+
if slate_type_var3 == 'Regular':
|
| 882 |
+
player_columns = st.session_state.working_seed[:, :9]
|
| 883 |
+
elif slate_type_var3 == 'Showdown':
|
| 884 |
+
player_columns = st.session_state.working_seed[:, :6]
|
| 885 |
+
|
| 886 |
+
# Flatten the DataFrame and count unique values
|
| 887 |
+
value_counts = player_columns.flatten().tolist()
|
| 888 |
+
value_counts = pd.Series(value_counts).value_counts()
|
| 889 |
+
|
| 890 |
+
percentages = (value_counts / len(st.session_state.working_seed) * 100).round(2)
|
| 891 |
+
# Create a DataFrame with the results
|
| 892 |
+
summary_df = pd.DataFrame({
|
| 893 |
+
'Player': value_counts.index,
|
| 894 |
+
'Frequency': value_counts.values,
|
| 895 |
+
'Percentage': percentages.values
|
| 896 |
+
})
|
| 897 |
+
|
| 898 |
+
# Sort by frequency in descending order
|
| 899 |
+
summary_df['Salary'] = summary_df['Player'].map(player_salaries)
|
| 900 |
+
summary_df = summary_df[['Player', 'Salary', 'Frequency', 'Percentage']]
|
| 901 |
+
summary_df = summary_df.sort_values('Frequency', ascending=False)
|
| 902 |
+
summary_df = summary_df.set_index('Player')
|
| 903 |
+
|
| 904 |
+
# Display the table
|
| 905 |
+
st.write("Seed Frame Frequency Table:")
|
| 906 |
+
st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}), height=500, use_container_width=True)
|
| 907 |
+
|
| 908 |
+
st.download_button(
|
| 909 |
+
label="Export seed frame frequency",
|
| 910 |
+
data=convert_df_to_csv(summary_df),
|
| 911 |
+
file_name='NFL_seed_frame_frequency.csv',
|
| 912 |
+
mime='text/csv',
|
| 913 |
+
)
|
| 914 |
+
|
| 915 |
+
with tab4:
|
| 916 |
+
col1, col2 = st.columns(2)
|
| 917 |
+
with col1:
|
| 918 |
+
st.header("Handbuilder")
|
| 919 |
+
with col2:
|
| 920 |
+
slate_var3 = st.selectbox("Slate Selection", options=['Main', 'Secondary', 'Auxiliary'])
|
| 921 |
+
if site_var == 'Draftkings':
|
| 922 |
+
if slate_var3 == 'Main':
|
| 923 |
+
handbuild_roo = dk_roo_raw[dk_roo_raw['slate'] == 'Main Slate']
|
| 924 |
+
elif slate_var3 == 'Secondary':
|
| 925 |
+
handbuild_roo = dk_roo_raw[dk_roo_raw['slate'] == 'Secondary Slate']
|
| 926 |
+
elif slate_var3 == 'Auxiliary':
|
| 927 |
+
handbuild_roo = dk_roo_raw[dk_roo_raw['slate'] == 'Late Slate']
|
| 928 |
+
elif site_var == 'Fanduel':
|
| 929 |
+
if slate_var3 == 'Main':
|
| 930 |
+
handbuild_roo = fd_roo_raw[fd_roo_raw['slate'] == 'Main Slate']
|
| 931 |
+
elif slate_var3 == 'Secondary':
|
| 932 |
+
handbuild_roo = fd_roo_raw[fd_roo_raw['slate'] == 'Secondary Slate']
|
| 933 |
+
elif slate_var3 == 'Auxiliary':
|
| 934 |
+
handbuild_roo = fd_roo_raw[fd_roo_raw['slate'] == 'Late Slate']
|
| 935 |
+
|
| 936 |
+
# --- POSITION LIMITS ---
|
| 937 |
+
if site_var == 'Draftkings':
|
| 938 |
+
position_limits = {
|
| 939 |
+
'QB': 1,
|
| 940 |
+
'RB': 2,
|
| 941 |
+
'WR': 3,
|
| 942 |
+
'TE': 1,
|
| 943 |
+
'UTIL': 1,
|
| 944 |
+
'DST': 1,
|
| 945 |
+
# Add more as needed
|
| 946 |
+
}
|
| 947 |
+
max_salary = 50000
|
| 948 |
+
max_players = 9
|
| 949 |
+
else:
|
| 950 |
+
position_limits = {
|
| 951 |
+
'QB': 1,
|
| 952 |
+
'RB': 2,
|
| 953 |
+
'WR': 3,
|
| 954 |
+
'TE': 1,
|
| 955 |
+
'UTIL': 1,
|
| 956 |
+
'DST': 1,
|
| 957 |
+
# Add more as needed
|
| 958 |
+
}
|
| 959 |
+
max_salary = 60000
|
| 960 |
+
max_players = 9
|
| 961 |
+
|
| 962 |
+
# --- LINEUP STATE ---
|
| 963 |
+
if 'handbuilder_lineup' not in st.session_state:
|
| 964 |
+
st.session_state['handbuilder_lineup'] = pd.DataFrame(columns=['Player', 'Position', 'Team', 'Salary', 'Median', '2x%', 'Own'])
|
| 965 |
+
if 'handbuilder_select_key' not in st.session_state:
|
| 966 |
+
st.session_state['handbuilder_select_key'] = 0
|
| 967 |
+
|
| 968 |
+
# Count positions in the current lineup
|
| 969 |
+
lineup = st.session_state['handbuilder_lineup']
|
| 970 |
+
slot_counts = lineup['Slot'].value_counts() if not lineup.empty else {}
|
| 971 |
+
|
| 972 |
+
# --- PLAYER FILTERS ---
|
| 973 |
+
with st.expander("Player Filters"):
|
| 974 |
+
col1, col2 = st.columns(2)
|
| 975 |
+
with col1:
|
| 976 |
+
pos_select3 = st.multiselect("Select your position(s)", options=['QB', 'RB', 'WR', 'TE', 'UTIL', 'DST'], key='pos_select3')
|
| 977 |
+
with col2:
|
| 978 |
+
salary_var = st.number_input("Salary Max", min_value = 0, max_value = 20000, value = 20000, step = 100)
|
| 979 |
+
|
| 980 |
+
# --- TEAM FILTER UI ---
|
| 981 |
+
with st.expander("Team Filters"):
|
| 982 |
+
all_teams = sorted(handbuild_roo['Team'].unique())
|
| 983 |
+
st.markdown("**Toggle teams to include:**")
|
| 984 |
+
team_cols = st.columns(len(all_teams) // 2 + 1)
|
| 985 |
+
|
| 986 |
+
selected_teams = []
|
| 987 |
+
for idx, team in enumerate(all_teams):
|
| 988 |
+
col = team_cols[idx % len(team_cols)]
|
| 989 |
+
if f"handbuilder_team_{team}" not in st.session_state:
|
| 990 |
+
st.session_state[f"handbuilder_team_{team}"] = False
|
| 991 |
+
checked = col.toggle(team, value=st.session_state[f"handbuilder_team_{team}"], key=f"handbuilder_team_{team}")
|
| 992 |
+
if checked:
|
| 993 |
+
selected_teams.append(team)
|
| 994 |
+
|
| 995 |
+
# If no teams selected, show all teams
|
| 996 |
+
if selected_teams:
|
| 997 |
+
player_select_df = handbuild_roo[
|
| 998 |
+
handbuild_roo['Team'].isin(selected_teams)
|
| 999 |
+
][['Player', 'Position', 'Team', 'Salary', 'Median', '2x%', 'Own']].drop_duplicates(subset=['Player', 'Team']).copy()
|
| 1000 |
+
else:
|
| 1001 |
+
player_select_df = handbuild_roo[['Player', 'Position', 'Team', 'Salary', 'Median', '2x%', 'Own']].drop_duplicates(subset=['Player', 'Team']).copy()
|
| 1002 |
+
|
| 1003 |
+
# If no teams selected, show all teams
|
| 1004 |
+
if pos_select3:
|
| 1005 |
+
position_mask_2 = handbuild_roo['Position'].apply(lambda x: any(pos in x for pos in pos_select3))
|
| 1006 |
+
player_select_df = player_select_df[position_mask_2][['Player', 'Position', 'Team', 'Salary', 'Median', '2x%', 'Own']].drop_duplicates(subset=['Player', 'Team']).copy()
|
| 1007 |
+
else:
|
| 1008 |
+
player_select_df = player_select_df[['Player', 'Position', 'Team', 'Salary', 'Median', '2x%', 'Own']].drop_duplicates(subset=['Player', 'Team']).copy()
|
| 1009 |
+
|
| 1010 |
+
player_select_df = player_select_df[player_select_df['Salary'] <= salary_var]
|
| 1011 |
+
|
| 1012 |
+
|
| 1013 |
+
with st.expander("Quick Fill Options"):
|
| 1014 |
+
auto_team_var = st.selectbox("Auto Fill Team", options=all_teams)
|
| 1015 |
+
auto_size_var = st.selectbox("Auto Fill Size", options=[3, 4, 5])
|
| 1016 |
+
auto_range_var = st.selectbox("Auto Fill Options", options=['QB/WR', 'RB/WR/TE', 'QB/WR/TE/RB'])
|
| 1017 |
+
# --- QUICK FILL LOGIC ---
|
| 1018 |
+
if st.button("Quick Fill", key="quick_fill"):
|
| 1019 |
+
# 1. Get all eligible players from the selected team, not already in the lineup
|
| 1020 |
+
current_players = set(st.session_state['handbuilder_lineup']['Player'])
|
| 1021 |
+
team_players = player_select_df[
|
| 1022 |
+
(player_select_df['Team'] == auto_team_var) &
|
| 1023 |
+
(~player_select_df['Player'].isin(current_players))
|
| 1024 |
+
].copy()
|
| 1025 |
+
|
| 1026 |
+
# 2. Sort by Order
|
| 1027 |
+
team_players = team_players.sort_values(by='Median', ascending=False)
|
| 1028 |
+
|
| 1029 |
+
# 3. Select the order range
|
| 1030 |
+
if auto_range_var == 'QB/WR':
|
| 1031 |
+
selected_players = team_players[team_players['Position'] == 'QB'].head(1)
|
| 1032 |
+
selected_players = pd.concat([selected_players, team_players[team_players['Position'] == 'WR'].head(auto_size_var - 1)])
|
| 1033 |
+
if len(selected_players) < auto_size_var:
|
| 1034 |
+
team_players = player_select_df[
|
| 1035 |
+
(player_select_df['Team'] == auto_team_var) &
|
| 1036 |
+
(~player_select_df['Player'].isin(current_players))
|
| 1037 |
+
].copy()
|
| 1038 |
+
|
| 1039 |
+
# 2. Sort by Order
|
| 1040 |
+
team_players = team_players.sort_values(by='Median', ascending=False)
|
| 1041 |
+
selected_players = team_players.head(auto_size_var + 1)
|
| 1042 |
+
elif auto_range_var == 'QB/WR/TE':
|
| 1043 |
+
selected_players = team_players[team_players['Position'] == 'QB'].head(1)
|
| 1044 |
+
selected_players = pd.concat([selected_players, team_players[team_players['Position'].isin(['WR', 'TE'])].head(auto_size_var - 1)])
|
| 1045 |
+
if len(selected_players) < auto_size_var:
|
| 1046 |
+
team_players = player_select_df[
|
| 1047 |
+
(player_select_df['Team'] == auto_team_var) &
|
| 1048 |
+
(~player_select_df['Player'].isin(current_players))
|
| 1049 |
+
].copy()
|
| 1050 |
+
|
| 1051 |
+
# 2. Sort by Order
|
| 1052 |
+
team_players = team_players.sort_values(by='Median', ascending=False)
|
| 1053 |
+
selected_players = team_players.head(auto_size_var + 1)
|
| 1054 |
+
elif auto_range_var == 'QB/WR/TE/RB':
|
| 1055 |
+
selected_players = team_players[team_players['Position'] == 'QB'].head(1)
|
| 1056 |
+
selected_players = pd.concat([selected_players, team_players[team_players['Position'].isin(['RB', 'WR', 'TE'])].head(auto_size_var - 1)])
|
| 1057 |
+
if len(selected_players) < auto_size_var:
|
| 1058 |
+
team_players = player_select_df[
|
| 1059 |
+
(player_select_df['Team'] == auto_team_var) &
|
| 1060 |
+
(~player_select_df['Player'].isin(current_players))
|
| 1061 |
+
].copy()
|
| 1062 |
+
|
| 1063 |
+
# 2. Sort by Order
|
| 1064 |
+
team_players = team_players.sort_values(by='Median', ascending=False)
|
| 1065 |
+
selected_players = team_players.head(auto_size_var + 1)
|
| 1066 |
+
else:
|
| 1067 |
+
selected_players = team_players.head(auto_size_var)
|
| 1068 |
+
|
| 1069 |
+
# 4. Add each player to the lineup, filling the first available eligible slot
|
| 1070 |
+
for _, player_row in selected_players.iterrows():
|
| 1071 |
+
eligible_positions = re.split(r'[/, ]+', player_row['Position'])
|
| 1072 |
+
slot_to_fill = None
|
| 1073 |
+
|
| 1074 |
+
for slot in ['QB', 'RB', 'WR', 'TE', 'UTIL', 'DST']:
|
| 1075 |
+
if slot_counts.get(slot, 0) < position_limits.get(slot, 0):
|
| 1076 |
+
if slot == 'UTIL':
|
| 1077 |
+
if 'DST' not in eligible_positions and 'QB' not in eligible_positions:
|
| 1078 |
+
slot_to_fill = slot
|
| 1079 |
+
break
|
| 1080 |
+
elif slot in eligible_positions:
|
| 1081 |
+
slot_to_fill = slot
|
| 1082 |
+
break
|
| 1083 |
+
|
| 1084 |
+
if slot_to_fill is not None:
|
| 1085 |
+
# Avoid duplicates
|
| 1086 |
+
if player_row['Player'] not in st.session_state['handbuilder_lineup']['Player'].values:
|
| 1087 |
+
add_row = player_row.copy()
|
| 1088 |
+
add_row['Slot'] = slot_to_fill
|
| 1089 |
+
st.session_state['handbuilder_lineup'] = pd.concat(
|
| 1090 |
+
[st.session_state['handbuilder_lineup'], pd.DataFrame([add_row[[
|
| 1091 |
+
'Player', 'Position', 'Team', 'Salary', 'Median', '2x%', 'Own', 'Slot'
|
| 1092 |
+
]]])],
|
| 1093 |
+
ignore_index=True
|
| 1094 |
+
)
|
| 1095 |
+
# Update slot_counts for next player
|
| 1096 |
+
slot_counts[slot_to_fill] = slot_counts.get(slot_to_fill, 0) + 1
|
| 1097 |
+
st.rerun()
|
| 1098 |
+
|
| 1099 |
+
# --- FILTER OUT PLAYERS WHOSE ALL ELIGIBLE POSITIONS ARE FILLED ---
|
| 1100 |
+
def is_player_eligible(row):
|
| 1101 |
+
eligible_positions = re.split(r'[/, ]+', row['Position'])
|
| 1102 |
+
# Player is eligible if at least one of their positions is not at max
|
| 1103 |
+
for pos in eligible_positions:
|
| 1104 |
+
if slot_counts.get(pos, 0) < position_limits.get(pos, 0):
|
| 1105 |
+
return True
|
| 1106 |
+
return False
|
| 1107 |
+
|
| 1108 |
+
# player_select_df = player_select_df[player_select_df.apply(is_player_eligible, axis=1)]
|
| 1109 |
+
print(player_select_df.head(10))
|
| 1110 |
+
|
| 1111 |
+
col1, col2 = st.columns([1, 2])
|
| 1112 |
+
with col2:
|
| 1113 |
+
st.subheader("Player Select")
|
| 1114 |
+
event = st.dataframe(
|
| 1115 |
+
player_select_df.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Salary', 'Own']).format(precision=2),
|
| 1116 |
+
on_select="rerun",
|
| 1117 |
+
selection_mode=["single-row"],
|
| 1118 |
+
key=f"handbuilder_select_{st.session_state['handbuilder_select_key']}",
|
| 1119 |
+
height=500,
|
| 1120 |
+
hide_index=True
|
| 1121 |
+
)
|
| 1122 |
+
# If a row is selected, add that player to the lineup and reset selection
|
| 1123 |
+
if event and "rows" in event.selection and len(event.selection["rows"]) > 0:
|
| 1124 |
+
idx = event.selection["rows"][0]
|
| 1125 |
+
player_row = player_select_df.iloc[[idx]]
|
| 1126 |
+
eligible_positions = re.split(r'[/, ]+', player_row['Position'].iloc[0])
|
| 1127 |
+
# Find the first eligible slot that is not full
|
| 1128 |
+
slot_to_fill = None
|
| 1129 |
+
|
| 1130 |
+
for slot in ['QB', 'RB', 'WR', 'TE', 'UTIL', 'DST']:
|
| 1131 |
+
if slot_counts.get(slot, 0) < position_limits.get(slot, 0):
|
| 1132 |
+
if slot == 'UTIL':
|
| 1133 |
+
if 'DST' not in eligible_positions and 'QB' not in eligible_positions:
|
| 1134 |
+
slot_to_fill = slot
|
| 1135 |
+
break
|
| 1136 |
+
elif slot in eligible_positions:
|
| 1137 |
+
slot_to_fill = slot
|
| 1138 |
+
break
|
| 1139 |
+
|
| 1140 |
+
if slot_to_fill is not None:
|
| 1141 |
+
# Avoid duplicates
|
| 1142 |
+
if not player_row['Player'].iloc[0] in st.session_state['handbuilder_lineup']['Player'].values:
|
| 1143 |
+
# Add the slot info
|
| 1144 |
+
player_row = player_row.assign(Slot=slot_to_fill)
|
| 1145 |
+
st.session_state['handbuilder_lineup'] = pd.concat(
|
| 1146 |
+
[st.session_state['handbuilder_lineup'], player_row[['Player', 'Position', 'Team', 'Salary', 'Median', '2x%', 'Own', 'Slot']]],
|
| 1147 |
+
ignore_index=True
|
| 1148 |
+
)
|
| 1149 |
+
st.session_state['handbuilder_select_key'] += 1
|
| 1150 |
+
st.rerun()
|
| 1151 |
+
|
| 1152 |
+
|
| 1153 |
+
with col1:
|
| 1154 |
+
st.subheader("Lineup Build")
|
| 1155 |
+
|
| 1156 |
+
# --- EXPLICIT LINEUP ORDER ---
|
| 1157 |
+
if site_var == 'Draftkings':
|
| 1158 |
+
lineup_slots = ['QB', 'RB', 'RB', 'WR', 'WR', 'WR', 'TE', 'UTIL', 'DST']
|
| 1159 |
+
else:
|
| 1160 |
+
lineup_slots = ['QB', 'RB', 'RB', 'WR', 'WR', 'WR', 'TE', 'UTIL', 'DST']
|
| 1161 |
+
display_columns = ['Slot', 'Player', 'Position', 'Team', 'Salary', 'Median', 'Own']
|
| 1162 |
+
|
| 1163 |
+
filled_lineup = st.session_state['handbuilder_lineup']
|
| 1164 |
+
display_rows = []
|
| 1165 |
+
used_indices = set()
|
| 1166 |
+
if not filled_lineup.empty:
|
| 1167 |
+
for slot in lineup_slots:
|
| 1168 |
+
match = filled_lineup[(filled_lineup['Slot'] == slot) & (~filled_lineup.index.isin(used_indices))]
|
| 1169 |
+
if not match.empty:
|
| 1170 |
+
row = match.iloc[0]
|
| 1171 |
+
used_indices.add(match.index[0])
|
| 1172 |
+
display_rows.append({
|
| 1173 |
+
'Slot': slot,
|
| 1174 |
+
'Player': row['Player'],
|
| 1175 |
+
'Position': row['Position'],
|
| 1176 |
+
'Team': row['Team'],
|
| 1177 |
+
'Salary': row['Salary'],
|
| 1178 |
+
'Median': row['Median'],
|
| 1179 |
+
'2x%': row['2x%'],
|
| 1180 |
+
'Own': row['Own']
|
| 1181 |
+
})
|
| 1182 |
+
else:
|
| 1183 |
+
display_rows.append({
|
| 1184 |
+
'Slot': slot,
|
| 1185 |
+
'Player': '',
|
| 1186 |
+
'Position': '',
|
| 1187 |
+
'Team': '',
|
| 1188 |
+
'Salary': np.nan,
|
| 1189 |
+
'Median': np.nan,
|
| 1190 |
+
'2x%': np.nan,
|
| 1191 |
+
'Own': np.nan
|
| 1192 |
+
})
|
| 1193 |
+
|
| 1194 |
+
lineup_display_df = pd.DataFrame(display_rows, columns=display_columns)
|
| 1195 |
+
|
| 1196 |
+
# Show the lineup table with single-row selection for removal
|
| 1197 |
+
event_remove = st.dataframe(
|
| 1198 |
+
lineup_display_df.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn', subset=['Median']).background_gradient(cmap='RdYlGn_r', subset=['Salary', 'Own']).format(precision=2),
|
| 1199 |
+
on_select="rerun",
|
| 1200 |
+
selection_mode=["single-row"],
|
| 1201 |
+
key="lineup_remove",
|
| 1202 |
+
height=445,
|
| 1203 |
+
hide_index=True
|
| 1204 |
+
)
|
| 1205 |
+
|
| 1206 |
+
# If a row is selected and not blank, remove that player from the lineup
|
| 1207 |
+
if event_remove and "rows" in event_remove.selection and len(event_remove.selection["rows"]) > 0:
|
| 1208 |
+
idx = event_remove.selection["rows"][0]
|
| 1209 |
+
player_to_remove = lineup_display_df.iloc[idx]['Player']
|
| 1210 |
+
slot_to_remove = lineup_display_df.iloc[idx]['Slot']
|
| 1211 |
+
if player_to_remove: # Only remove if not blank
|
| 1212 |
+
st.session_state['handbuilder_lineup'] = filled_lineup[
|
| 1213 |
+
~((filled_lineup['Player'] == player_to_remove) & (filled_lineup['Slot'] == slot_to_remove))
|
| 1214 |
+
]
|
| 1215 |
+
st.rerun()
|
| 1216 |
+
|
| 1217 |
+
# --- SUMMARY ROW ---
|
| 1218 |
+
if not filled_lineup.empty:
|
| 1219 |
+
total_salary = filled_lineup['Salary'].sum()
|
| 1220 |
+
total_median = filled_lineup['Median'].sum()
|
| 1221 |
+
avg_2x = filled_lineup['2x%'].mean()
|
| 1222 |
+
total_own = filled_lineup['Own'].sum()
|
| 1223 |
+
most_common_team = filled_lineup['Team'].mode()[0] if not filled_lineup['Team'].mode().empty else ""
|
| 1224 |
+
|
| 1225 |
+
summary_row = pd.DataFrame({
|
| 1226 |
+
'Slot': [''],
|
| 1227 |
+
'Player': ['TOTAL'],
|
| 1228 |
+
'Position': [''],
|
| 1229 |
+
'Team': [most_common_team],
|
| 1230 |
+
'Salary': [total_salary],
|
| 1231 |
+
'Median': [total_median],
|
| 1232 |
+
'2x%': [avg_2x],
|
| 1233 |
+
'Own': [total_own]
|
| 1234 |
+
})
|
| 1235 |
+
summary_row = summary_row[['Salary', 'Median', 'Own']].head(max_players)
|
| 1236 |
+
|
| 1237 |
+
col1, col3 = st.columns([2, 3])
|
| 1238 |
+
|
| 1239 |
+
with col1:
|
| 1240 |
+
if (max_players - len(filled_lineup)) > 0:
|
| 1241 |
+
st.markdown(f"""
|
| 1242 |
+
<div style='text-align: left; vertical-align: top; margin-top: 0; padding-top: 0;''>
|
| 1243 |
+
<b>π° Per Player:</b> ${round((max_salary - total_salary) / (max_players - len(filled_lineup)), 0)}
|
| 1244 |
+
</div>
|
| 1245 |
+
""",
|
| 1246 |
+
unsafe_allow_html=True)
|
| 1247 |
+
else:
|
| 1248 |
+
st.markdown(f"""
|
| 1249 |
+
<div style='text-align: left; vertical-align: top; margin-top: 0; padding-top: 0;''>
|
| 1250 |
+
<b>π° Leftover:</b> ${round(max_salary - total_salary, 0)}
|
| 1251 |
+
</div>
|
| 1252 |
+
""",
|
| 1253 |
+
unsafe_allow_html=True)
|
| 1254 |
+
|
| 1255 |
+
with col3:
|
| 1256 |
+
if total_salary <= max_salary:
|
| 1257 |
+
st.markdown(
|
| 1258 |
+
f"""
|
| 1259 |
+
<div style='text-align: right; vertical-align: top; margin-top: 0; padding-top: 0;''>
|
| 1260 |
+
<b>π° Salary:</b> ${round(total_salary, 0)}
|
| 1261 |
+
<b>π₯ Median:</b> {round(total_median, 2)}
|
| 1262 |
+
</div>
|
| 1263 |
+
""",
|
| 1264 |
+
unsafe_allow_html=True
|
| 1265 |
+
)
|
| 1266 |
+
else:
|
| 1267 |
+
st.markdown(
|
| 1268 |
+
f"""
|
| 1269 |
+
<div style='text-align: right; vertical-align: top; margin-top: 0; padding-top: 0;''>
|
| 1270 |
+
<b>β Salary:</b> ${round(total_salary, 0)}
|
| 1271 |
+
<b>π₯ Median:</b> {round(total_median, 2)}
|
| 1272 |
+
</div>
|
| 1273 |
+
""",
|
| 1274 |
+
unsafe_allow_html=True
|
| 1275 |
+
)
|
| 1276 |
|
| 1277 |
+
# Optionally, add a button to clear the lineup
|
| 1278 |
+
clear_col, save_col, export_col, clear_saved_col, blank_col = st.columns([2, 2, 2, 2, 12])
|
| 1279 |
+
with clear_col:
|
| 1280 |
+
if st.button("Clear Lineup", key='clear_lineup'):
|
| 1281 |
+
st.session_state['handbuilder_lineup'] = pd.DataFrame(columns=['Player', 'Position', 'Team', 'Salary', 'Median', '2x%', 'Own', 'Slot'])
|
| 1282 |
+
st.rerun()
|
| 1283 |
+
with save_col:
|
| 1284 |
+
if st.button("Save Lineup", key='save_lineup'):
|
| 1285 |
+
if 'saved_lineups' in st.session_state:
|
| 1286 |
+
st.session_state['saved_lineups'].append(lineup_display_df['Player'].tolist())
|
| 1287 |
+
print(st.session_state['saved_lineups'])
|
| 1288 |
+
else:
|
| 1289 |
+
st.session_state['saved_lineups'] = [lineup_display_df['Player'].tolist()]
|
| 1290 |
+
print(st.session_state['saved_lineups'])
|
| 1291 |
+
st.rerun()
|
| 1292 |
+
with export_col:
|
| 1293 |
+
if 'saved_lineups' in st.session_state and st.session_state['saved_lineups']:
|
| 1294 |
+
# Convert list of lists to numpy array
|
| 1295 |
+
saved_lineups_array = np.array(st.session_state['saved_lineups'])
|
| 1296 |
+
st.download_button(
|
| 1297 |
+
label="Export Handbuilds",
|
| 1298 |
+
data=convert_hb_df(saved_lineups_array, dk_hb_columns if site_var == 'Draftkings' else fd_hb_columns),
|
| 1299 |
+
file_name='handbuilds_export.csv',
|
| 1300 |
+
mime='text/csv',
|
| 1301 |
+
)
|
| 1302 |
+
else:
|
| 1303 |
+
st.write("No saved lineups to export")
|
| 1304 |
+
|
| 1305 |
+
if 'saved_lineups' in st.session_state:
|
| 1306 |
+
st.table(pd.DataFrame(st.session_state['saved_lineups'], columns=dk_hb_columns if site_var == 'Draftkings' else fd_hb_columns))
|
| 1307 |
+
else:
|
| 1308 |
+
st.write("No saved lineups")
|
| 1309 |
+
|
| 1310 |
+
with clear_saved_col:
|
| 1311 |
+
if st.button("Clear Saved", key='clear_saved'):
|
| 1312 |
+
if 'saved_lineups' in st.session_state:
|
| 1313 |
+
del st.session_state['saved_lineups']
|
| 1314 |
+
st.rerun()
|