import pandas as pd from global_func.predict_dupes import predict_dupes def reassess_edge(modified_frame: pd.DataFrame, base_frame: pd.DataFrame, maps_dict: dict, site_var: str, type_var: str, Contest_Size: int, strength_var: str, sport_var: str, max_salary: int) -> pd.DataFrame: """ Reassess edge by concatenating modified frame with base frame, running predict_dupes, and then extracting the first N rows (where N is the length of modified_frame). Args: modified_frame: DataFrame with rows that were modified by exposure_spread base_frame: Original base frame (base_frame for Portfolio, original export_base for Export) maps_dict: Dictionary containing player mappings site_var: Site variable (Draftkings/Fanduel) type_var: Type variable (Classic/Showdown) Contest_Size: Contest size for calculations strength_var: Strength variable (Weak/Average/Sharp) sport_var: Sport variable max_salary: Maximum salary for the contest Returns: DataFrame: Updated modified_frame with recalculated metrics """ # Store the number of rows in the modified frame num_modified_rows = len(modified_frame) # Define columns to drop for memory efficiency cols_to_drop = ['Dupes', 'Finish_percentile', 'Lineup Edge', 'Win%', 'Weighted Own', 'Geomean', 'Diversity'] # More memory-efficient concatenation modified_clean = modified_frame.drop(columns=[col for col in cols_to_drop if col in modified_frame.columns]) base_clean = base_frame.drop(columns=[col for col in cols_to_drop if col in base_frame.columns]) # Use ignore_index=True and avoid unnecessary copies combined_frame = pd.concat([modified_clean, base_clean], ignore_index=True, copy=False) # Run predict_dupes on the combined frame updated_combined_frame = predict_dupes(combined_frame, maps_dict, site_var, type_var, Contest_Size, strength_var, sport_var, max_salary) # Extract the first N rows (which correspond to our modified frame) - use iloc for efficiency result_frame = updated_combined_frame.iloc[:num_modified_rows].copy() return result_frame