import streamlit as st import numpy as np import pandas as pd import time import math from difflib import SequenceMatcher import scipy.stats def calculate_weighted_ownership_vectorized(ownership_array): """ Vectorized version of calculate_weighted_ownership using NumPy operations. Args: ownership_array: 2D array of ownership values (rows x players) Returns: array: Calculated weighted ownership values for each row """ # Convert percentages to decimals and handle NaN values ownership_array = np.where(np.isnan(ownership_array), 0, ownership_array) / 100 # Calculate row means row_means = np.mean(ownership_array, axis=1, keepdims=True) # Calculate average of each value with the overall mean value_means = (ownership_array + row_means) / 2 # Take average of all those means avg_of_means = np.mean(value_means, axis=1) # Multiply by count of values weighted = avg_of_means * ownership_array.shape[1] # Subtract (max - min) for each row row_max = np.max(ownership_array, axis=1) row_min = np.min(ownership_array, axis=1) weighted = weighted - (row_max - row_min) # Convert back to percentage form return weighted * 10000 def calculate_flex_ranks_efficient(portfolio, start_col, end_col, maps_dict, map_key='own_map'): """Memory-efficient replacement for pd.concat + rank operations""" n_rows = len(portfolio) n_cols = end_col - start_col # Pre-allocate result arrays all_values = np.zeros(n_rows * n_cols, dtype=np.float32) # Fill values column by column for i, col_idx in enumerate(range(start_col, end_col)): start_idx = i * n_rows end_idx = (i + 1) * n_rows all_values[start_idx:end_idx] = portfolio.iloc[:, col_idx].map(maps_dict[map_key]).values # Calculate percentile ranks efficiently ranks = scipy.stats.rankdata(all_values, method='average') / len(all_values) # Reshape back to individual column ranks result_ranks = {} for i in range(n_cols): start_idx = i * n_rows end_idx = (i + 1) * n_rows result_ranks[i] = ranks[start_idx:end_idx] return result_ranks def calculate_weighted_ownership_wrapper(row_ownerships): """ Wrapper function for the original calculate_weighted_ownership to work with Pandas .apply() Args: row_ownerships: Series containing ownership values in percentage form Returns: float: Calculated weighted ownership value """ # Convert Series to 2D array for vectorized function ownership_array = row_ownerships.values.reshape(1, -1) return calculate_weighted_ownership_vectorized(ownership_array)[0] def calculate_player_similarity_score_chunked(portfolio, player_columns, chunk_size=1000): """ Memory-efficient version that processes similarities in chunks """ # Same setup as before player_data = portfolio[player_columns].astype(str).fillna('').values all_players = set() for row in player_data: for val in row: if isinstance(val, str) and val.strip() != '': all_players.add(val) player_to_id = {player: idx for idx, player in enumerate(sorted(all_players))} n_players = len(all_players) n_rows = len(portfolio) binary_matrix = np.zeros((n_rows, n_players), dtype=np.int8) for i, row in enumerate(player_data): for val in row: if isinstance(val, str) and str(val).strip() != '' and str(val) in player_to_id: binary_matrix[i, player_to_id[str(val)]] = 1 # Process similarities in chunks to avoid massive matrices similarity_scores = np.zeros(n_rows) for i in range(0, n_rows, chunk_size): end_i = min(i + chunk_size, n_rows) chunk_binary = binary_matrix[i:end_i] # Calculate similarities for this chunk only intersection = np.dot(chunk_binary, binary_matrix.T) chunk_row_sums = np.sum(chunk_binary, axis=1) all_row_sums = np.sum(binary_matrix, axis=1) union = chunk_row_sums[:, np.newaxis] + all_row_sums - intersection with np.errstate(divide='ignore', invalid='ignore'): jaccard_sim = np.divide(intersection, union, out=np.zeros_like(intersection, dtype=float), where=union != 0) jaccard_dist = 1 - jaccard_sim # Exclude self-comparison and calculate average for j in range(len(jaccard_dist)): actual_idx = i + j jaccard_dist[j, actual_idx] = 0 # Exclude self similarity_scores[i:end_i] = np.sum(jaccard_dist, axis=1) / (n_rows - 1) # Normalize score_range = similarity_scores.max() - similarity_scores.min() if score_range > 0: similarity_scores = (similarity_scores - similarity_scores.min()) / score_range return similarity_scores # Keep the original function for backward compatibility def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, strength_var, sport_var, max_salary): if strength_var == 'Weak': dupes_multiplier = .75 percentile_multiplier = .90 elif strength_var == 'Average': dupes_multiplier = 1.00 percentile_multiplier = 1.00 elif strength_var == 'Sharp': dupes_multiplier = 1.25 percentile_multiplier = 1.10 if sport_var == 'NFL': own_baseline = 180 else: own_baseline = 120 max_ownership = max(maps_dict['own_map'].values()) / 100 average_ownership = np.mean(list(maps_dict['own_map'].values())) / 100 if type_var == 'Showdown': if sport_var == 'GOLF': dup_count_columns = ['FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank', 'FLEX5_Own_percent_rank', 'FLEX6_Own_percent_rank'] own_columns = ['FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own', 'FLEX5_Own', 'FLEX6_Own'] else: dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank', 'FLEX5_Own_percent_rank'] own_columns = ['CPT_Own', 'FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own', 'FLEX5_Own'] calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio'] # Get the original player columns (first 6 columns excluding salary, median, Own) player_columns = [col for col in portfolio.columns[:6] if col not in ['salary', 'median', 'Own']] n_rows = len(portfolio) # Assign ranks back to individual columns using the same rank scale if sport_var == 'GOLF': flex_ranks = calculate_flex_ranks_efficient(portfolio, 1, 7, maps_dict) portfolio['FLEX1_Own_percent_rank'] = flex_ranks[0] portfolio['FLEX2_Own_percent_rank'] = flex_ranks[1] portfolio['FLEX3_Own_percent_rank'] = flex_ranks[2] portfolio['FLEX4_Own_percent_rank'] = flex_ranks[3] portfolio['FLEX5_Own_percent_rank'] = flex_ranks[4] portfolio['FLEX6_Own_percent_rank'] = flex_ranks[5] portfolio['FLEX1_Own'] = portfolio.iloc[:,0].map(maps_dict['own_map']).astype('float32') / 100 portfolio['FLEX2_Own'] = portfolio.iloc[:,1].map(maps_dict['own_map']).astype('float32') / 100 portfolio['FLEX3_Own'] = portfolio.iloc[:,2].map(maps_dict['own_map']).astype('float32') / 100 portfolio['FLEX4_Own'] = portfolio.iloc[:,3].map(maps_dict['own_map']).astype('float32') / 100 portfolio['FLEX5_Own'] = portfolio.iloc[:,4].map(maps_dict['own_map']).astype('float32') / 100 portfolio['FLEX6_Own'] = portfolio.iloc[:,5].map(maps_dict['own_map']).astype('float32') / 100 else: flex_ranks = calculate_flex_ranks_efficient(portfolio, 1, 6, maps_dict) portfolio['CPT_Own_percent_rank'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).rank(pct=True) portfolio['FLEX1_Own_percent_rank'] = flex_ranks[0] portfolio['FLEX2_Own_percent_rank'] = flex_ranks[1] portfolio['FLEX3_Own_percent_rank'] = flex_ranks[2] portfolio['FLEX4_Own_percent_rank'] = flex_ranks[3] portfolio['FLEX5_Own_percent_rank'] = flex_ranks[4] portfolio['CPT_Own'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).astype('float32') / 100 portfolio['FLEX1_Own'] = portfolio.iloc[:,1].map(maps_dict['own_map']).astype('float32') / 100 portfolio['FLEX2_Own'] = portfolio.iloc[:,2].map(maps_dict['own_map']).astype('float32') / 100 portfolio['FLEX3_Own'] = portfolio.iloc[:,3].map(maps_dict['own_map']).astype('float32') / 100 portfolio['FLEX4_Own'] = portfolio.iloc[:,4].map(maps_dict['own_map']).astype('float32') / 100 portfolio['FLEX5_Own'] = portfolio.iloc[:,5].map(maps_dict['own_map']).astype('float32') / 100 portfolio['own_product'] = (portfolio[own_columns].product(axis=1)) portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100 portfolio['own_sum'] = portfolio[own_columns].sum(axis=1) portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1) # Calculate dupes formula (in progress still) portfolio['dupes_calc'] = ((portfolio['own_product'] + ((portfolio['CPT_Own_percent_rank'] - .50) / 1000) + ((portfolio['Own'] / 6) / (max_salary / 2))) * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (max_salary - portfolio['Own'])) / 100) - ((max_salary - portfolio['salary']) / 100) portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier * (portfolio['Own'] / (own_baseline + (Contest_Size / 1000))) portfolio['dupes_calc'] = ((((portfolio['salary'] / (max_salary * 0.98)) - 1)*(max_salary / 10000)) + 1) * portfolio['dupes_calc'] portfolio['dupes_calc'] = portfolio['dupes_calc'] * ((portfolio['CPT_Own_percent_rank'] + .50) / (portfolio['Own'] / 110)) # Round and handle negative values portfolio['Dupes'] = np.where( portfolio['salary'] == max_salary, portfolio['dupes_calc'] + (portfolio['dupes_calc'] * .10), portfolio['dupes_calc'] ) portfolio['Dupes'] = np.where( np.round(portfolio['Dupes'], 0) <= 0, 0, np.round(portfolio['Dupes'], 0) - 1 ) elif type_var == 'Classic': if sport_var == 'CS2': dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank', 'FLEX5_Own_percent_rank'] own_columns = ['CPT_Own', 'FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own', 'FLEX5_Own'] calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio'] # Get the original player columns (first 6 columns excluding salary, median, Own) player_columns = [col for col in portfolio.columns[:6] if col not in ['salary', 'median', 'Own']] n_rows = len(portfolio) flex_ranks = calculate_flex_ranks_efficient(portfolio, 1, 6, maps_dict) # Assign ranks back to individual columns using the same rank scale portfolio['CPT_Own_percent_rank'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).rank(pct=True) portfolio['FLEX1_Own_percent_rank'] = flex_ranks[0] portfolio['FLEX2_Own_percent_rank'] = flex_ranks[1] portfolio['FLEX3_Own_percent_rank'] = flex_ranks[2] portfolio['FLEX4_Own_percent_rank'] = flex_ranks[3] portfolio['FLEX5_Own_percent_rank'] = flex_ranks[4] portfolio['CPT_Own'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).astype('float32') / 100 portfolio['FLEX1_Own'] = portfolio.iloc[:,1].map(maps_dict['own_map']).astype('float32') / 100 portfolio['FLEX2_Own'] = portfolio.iloc[:,2].map(maps_dict['own_map']).astype('float32') / 100 portfolio['FLEX3_Own'] = portfolio.iloc[:,3].map(maps_dict['own_map']).astype('float32') / 100 portfolio['FLEX4_Own'] = portfolio.iloc[:,4].map(maps_dict['own_map']).astype('float32') / 100 portfolio['FLEX5_Own'] = portfolio.iloc[:,5].map(maps_dict['own_map']).astype('float32') / 100 portfolio['own_product'] = (portfolio[own_columns].product(axis=1)) * max(Contest_Size / 10000, 1) portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100 portfolio['own_sum'] = portfolio[own_columns].sum(axis=1) portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1) # Calculate dupes formula portfolio['dupes_calc'] = ((portfolio['own_product'] * 10) * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (max_salary - portfolio['Own'])) / 50) - ((max_salary - portfolio['salary']) / 50) portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier * (portfolio['Own'] / (90 + (Contest_Size / 1000))) # Round and handle negative values portfolio['Dupes'] = np.where( portfolio['salary'] == max_salary, portfolio['dupes_calc'] + (portfolio['dupes_calc'] * .10), portfolio['dupes_calc'] ) portfolio['Dupes'] = np.where( np.round(portfolio['Dupes'], 0) <= 0, 0, np.round(portfolio['Dupes'], 0) - 1 ) if sport_var == 'LOL': dup_count_columns = ['CPT_Own_percent_rank', 'TOP_Own_percent_rank', 'JNG_Own_percent_rank', 'MID_Own_percent_rank', 'ADC_Own_percent_rank', 'SUP_Own_percent_rank', 'Team_Own_percent_rank'] own_columns = ['CPT_Own', 'TOP_Own', 'JNG_Own', 'MID_Own', 'ADC_Own', 'SUP_Own', 'Team_Own'] calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio'] # Get the original player columns (first 6 columns excluding salary, median, Own) player_columns = [col for col in portfolio.columns[:7] if col not in ['salary', 'median', 'Own']] n_rows = len(portfolio) flex_ranks = calculate_flex_ranks_efficient(portfolio, 1, 7, maps_dict) # Assign ranks back to individual columns using the same rank scale portfolio['CPT_Own_percent_rank'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).rank(pct=True) portfolio['TOP_Own_percent_rank'] = flex_ranks[0] portfolio['JNG_Own_percent_rank'] = flex_ranks[1] portfolio['MID_Own_percent_rank'] = flex_ranks[2] portfolio['ADC_Own_percent_rank'] = flex_ranks[3] portfolio['SUP_Own_percent_rank'] = flex_ranks[4] portfolio['Team_Own_percent_rank'] = flex_ranks[5] portfolio['CPT_Own'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).astype('float32') / 100 portfolio['TOP_Own'] = portfolio.iloc[:,1].map(maps_dict['own_map']).astype('float32') / 100 portfolio['JNG_Own'] = portfolio.iloc[:,2].map(maps_dict['own_map']).astype('float32') / 100 portfolio['MID_Own'] = portfolio.iloc[:,3].map(maps_dict['own_map']).astype('float32') / 100 portfolio['ADC_Own'] = portfolio.iloc[:,4].map(maps_dict['own_map']).astype('float32') / 100 portfolio['SUP_Own'] = portfolio.iloc[:,5].map(maps_dict['own_map']).astype('float32') / 100 portfolio['Team_Own'] = portfolio.iloc[:,6].map(maps_dict['own_map']).astype('float32') / 100 portfolio['own_product'] = (portfolio[own_columns].product(axis=1)) * max(Contest_Size / 10000, 1) portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100 portfolio['own_sum'] = portfolio[own_columns].sum(axis=1) portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1) # Calculate dupes formula portfolio['dupes_calc'] = ((portfolio['own_product'] * 10) * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (max_salary - portfolio['Own'])) / 50) - ((max_salary - portfolio['salary']) / 50) portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier * (portfolio['Own'] / (90 + (Contest_Size / 1000))) # Round and handle negative values portfolio['Dupes'] = np.where( portfolio['salary'] == max_salary, portfolio['dupes_calc'] + (portfolio['dupes_calc'] * .10), portfolio['dupes_calc'] ) portfolio['Dupes'] = np.where( np.round(portfolio['Dupes'], 0) <= 0, 0, np.round(portfolio['Dupes'], 0) - 1 ) elif sport_var == 'GOLF': num_players = len([col for col in portfolio.columns if col not in ['salary', 'median', 'Own']]) dup_count_columns = [f'player_{i}_percent_rank' for i in range(1, num_players + 1)] own_columns = [f'player_{i}_own' for i in range(1, num_players + 1)] calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio'] # Get the original player columns (first num_players columns excluding salary, median, Own) player_columns = [col for col in portfolio.columns[:num_players] if col not in ['salary', 'median', 'Own']] for i in range(1, num_players + 1): portfolio[f'player_{i}_percent_rank'] = portfolio.iloc[:,i-1].map(maps_dict['own_percent_rank']) portfolio[f'player_{i}_own'] = portfolio.iloc[:,i-1].map(maps_dict['own_map']).astype('float32') / 100 portfolio['own_product'] = (portfolio[own_columns].product(axis=1)) * max(Contest_Size / 10000, 1) portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100 portfolio['own_sum'] = portfolio[own_columns].sum(axis=1) portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1) portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (max_salary - portfolio['Own'])) / 100) - ((max_salary - portfolio['salary']) / 100) portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier * (portfolio['Own'] / (90 + (Contest_Size / 1000))) # Round and handle negative values portfolio['Dupes'] = np.where( portfolio['salary'] == max_salary, portfolio['dupes_calc'] + (portfolio['dupes_calc'] * .10), portfolio['dupes_calc'] ) portfolio['Dupes'] = np.where( np.round(portfolio['Dupes'], 0) <= 0, 0, np.round(portfolio['Dupes'], 0) - 1 ) else: num_players = len([col for col in portfolio.columns if col not in ['salary', 'median', 'Own']]) dup_count_columns = [f'player_{i}_percent_rank' for i in range(1, num_players + 1)] own_columns = [f'player_{i}_own' for i in range(1, num_players + 1)] calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio'] # Get the original player columns (first num_players columns excluding salary, median, Own) player_columns = [col for col in portfolio.columns[:num_players] if col not in ['salary', 'median', 'Own']] for i in range(1, num_players + 1): portfolio[f'player_{i}_percent_rank'] = portfolio.iloc[:,i-1].map(maps_dict['own_percent_rank']) portfolio[f'player_{i}_own'] = portfolio.iloc[:,i-1].map(maps_dict['own_map']).astype('float32') / 100 portfolio['own_product'] = (portfolio[own_columns].product(axis=1)) portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100 portfolio['own_sum'] = portfolio[own_columns].sum(axis=1) portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1) portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (max_salary - portfolio['Own'])) / 100) - ((max_salary - portfolio['salary']) / 100) portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier * (portfolio['Own'] / (90 + (Contest_Size / 1000))) # Round and handle negative values portfolio['Dupes'] = np.where( portfolio['salary'] == max_salary, portfolio['dupes_calc'] + (portfolio['dupes_calc'] * .10), portfolio['dupes_calc'] ) portfolio['Dupes'] = np.where( np.round(portfolio['Dupes'], 0) <= 0, 0, np.round(portfolio['Dupes'], 0) - 1 ) portfolio['Dupes'] = np.round(portfolio['Dupes'], 0) portfolio['own_ratio'] = np.where( portfolio[own_columns].isin([max_ownership]).any(axis=1), portfolio['own_sum'] / portfolio['own_average'], (portfolio['own_sum'] - max_ownership) / portfolio['own_average'] ) percentile_cut_scalar = portfolio['median'].max() if type_var == 'Classic': if sport_var == 'CS2': own_ratio_nerf = 2 elif sport_var == 'LOL': own_ratio_nerf = 2 else: own_ratio_nerf = 1.5 elif type_var == 'Showdown': own_ratio_nerf = 1.5 portfolio['Finish_percentile'] = portfolio.apply( lambda row: .0005 if (row['own_ratio'] - own_ratio_nerf) / ((5 * (row['median'] / percentile_cut_scalar)) / 3) < .0005 else ((row['own_ratio'] - own_ratio_nerf) / ((5 * (row['median'] / percentile_cut_scalar)) / 3)) / 2, axis=1 ) portfolio['Ref_Proj'] = portfolio['median'].max() portfolio['Max_Proj'] = portfolio['Ref_Proj'] + 10 portfolio['Min_Proj'] = portfolio['Ref_Proj'] - 10 portfolio['Avg_Ref'] = (portfolio['Max_Proj'] + portfolio['Min_Proj']) / 2 portfolio['Win%'] = (((portfolio['median'] / portfolio['Avg_Ref']) - (0.1 + ((portfolio['Ref_Proj'] - portfolio['median'])/100))) / (Contest_Size / 1000)) / 10 max_allowed_win = (1 / Contest_Size) * 5 portfolio['Win%'] = portfolio['Win%'] / portfolio['Win%'].max() * max_allowed_win portfolio['Finish_percentile'] = portfolio['Finish_percentile'] + .005 + (.005 * (Contest_Size / 10000)) portfolio['Finish_percentile'] = portfolio['Finish_percentile'] * percentile_multiplier * (portfolio['Own'] / (100 + (Contest_Size / 1000))) portfolio['Win%'] = portfolio['Win%'] * (1 - portfolio['Finish_percentile']) portfolio['Win%'] = portfolio['Win%'].clip(lower=0, upper=max_allowed_win) portfolio['low_own_count'] = portfolio[own_columns].apply(lambda row: (row < 0.10).sum(), axis=1) portfolio['Finish_percentile'] = portfolio.apply(lambda row: row['Finish_percentile'] if row['low_own_count'] <= 0 else row['Finish_percentile'] / row['low_own_count'], axis=1) portfolio['Lineup Edge'] = (portfolio['Win%'] * ((.5 - portfolio['Finish_percentile']) * (Contest_Size / 2.5))) # portfolio['Lineup Edge'] = portfolio.apply(lambda row: row['Lineup Edge'] / (row['Dupes'] + 1) if row['Dupes'] > 0 else row['Lineup Edge'], axis=1) portfolio['Lineup Edge'] = ((portfolio['Lineup Edge'] - portfolio['Lineup Edge'].mean())) - ((portfolio['Dupes'] - portfolio['Dupes'].mean()) / 50) max_edge = portfolio['Lineup Edge'].max() portfolio['Lineup Edge'] = 2 * max_edge * (portfolio['Lineup Edge'] - portfolio['Lineup Edge'].min()) / (portfolio['Lineup Edge'].max() - portfolio['Lineup Edge'].min()) - max_edge portfolio['Weighted Own'] = portfolio[own_columns].apply(calculate_weighted_ownership_wrapper, axis=1) portfolio['Geomean'] = np.power((portfolio[own_columns] * 100).product(axis=1), 1 / len(own_columns)) # Calculate similarity score based on actual player selection portfolio['Diversity'] = calculate_player_similarity_score_chunked(portfolio, player_columns) # check_portfolio = portfolio.copy() portfolio = portfolio.drop(columns=dup_count_columns) portfolio = portfolio.drop(columns=own_columns) portfolio = portfolio.drop(columns=calc_columns) int16_columns_stacks = ['Dupes', 'Size', 'salary'] int16_columns_nstacks = ['Dupes', 'salary'] float32_columns = ['median', 'Own', 'Finish_percentile', 'Win%', 'Lineup Edge', 'Weighted Own', 'Geomean', 'Diversity'] try: portfolio[int16_columns_stacks] = portfolio[int16_columns_stacks].astype('uint16') except: pass try: portfolio[int16_columns_nstacks] = portfolio[int16_columns_nstacks].astype('uint16') except: pass if sport_var != 'LOL': try: portfolio[float32_columns] = portfolio[float32_columns].astype('float32') except: pass return portfolio