import streamlit as st st.set_page_config(layout="wide") import pandas as pd from rapidfuzz import process import random from collections import Counter import io ## import global functions from global_func.clean_player_name import clean_player_name from global_func.load_file import load_file from global_func.load_ss_file import load_ss_file from global_func.load_dk_fd_file import load_dk_fd_file from global_func.find_name_mismatches import find_name_mismatches from global_func.predict_dupes import predict_dupes from global_func.highlight_rows import highlight_changes, highlight_changes_winners, highlight_changes_losers from global_func.load_csv import load_csv from global_func.find_csv_mismatches import find_csv_mismatches from global_func.trim_portfolio import trim_portfolio from global_func.get_portfolio_names import get_portfolio_names from global_func.small_field_preset import small_field_preset from global_func.large_field_preset import large_field_preset from global_func.hedging_preset import hedging_preset from global_func.volatility_preset import volatility_preset from global_func.reduce_volatility_preset import reduce_volatility_preset from global_func.analyze_player_combos import analyze_player_combos from global_func.stratification_function import stratification_function from global_func.exposure_spread import exposure_spread from global_func.reassess_edge import reassess_edge from global_func.recalc_diversity import recalc_diversity freq_format = {'Finish_percentile': '{:.2%}', 'Lineup Edge': '{:.2%}', 'Lineup Edge_Raw': '{:.2%}', 'Win%': '{:.2%}'} stacking_sports = ['MLB', 'NHL', 'NFL', 'LOL', 'NCAAF'] stack_column_dict = { 'Draftkings': { 'Classic': { 'MLB': ['C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3'], 'NHL': ['C', 'W', 'D'], 'NFL': ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX'], 'LOL': ['TOP', 'JNG', 'MID', 'ADC', 'SUP', 'TEAM'], 'NCAAF': ['QB', 'WR1', 'WR2', 'WR3', 'FLEX', 'SFLEX'], }, 'Showdown': { 'MLB': ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'], 'NHL': ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'], 'NFL': ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'], 'LOL': ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'], 'NCAAF': ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'], }, }, 'Fanduel': { 'Classic': { 'MLB': ['C/1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL'], 'NHL': ['C', 'W', 'D'], 'NFL': ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX'], 'LOL': ['TOP', 'JNG', 'MID', 'ADC', 'SUP', 'TEAM'], 'NCAAF': ['QB', 'WR1', 'WR2', 'WR3', 'FLEX', 'SFLEX'], }, 'Showdown': { 'MLB': ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'], 'NHL': ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'], 'NFL': ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'], 'LOL': ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'], 'NCAAF': ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'], }, }, } player_wrong_names_mlb = ['Enrique Hernandez', 'Joseph Cantillo', 'Mike Soroka', 'Jakob Bauers', 'Temi Fágbénlé'] player_right_names_mlb = ['Kike Hernandez', 'Joey Cantillo', 'Michael Soroka', 'Jake Bauers', 'Temi Fagbenle'] st.markdown(""" """, unsafe_allow_html=True) # Memory optimization helper functions def chunk_name_matching(portfolio_names, csv_names, chunk_size=1000): """Process name matching in chunks to reduce memory usage""" portfolio_match_dict = {} unmatched_names = [] for i in range(0, len(portfolio_names), chunk_size): chunk = portfolio_names[i:i+chunk_size] for portfolio_name in chunk: match = process.extractOne( portfolio_name, csv_names, score_cutoff=90 ) if match: portfolio_match_dict[portfolio_name] = match[0] if match[1] < 100: st.write(f"{portfolio_name} matched from portfolio to site csv {match[0]} with a score of {match[1]}%") else: portfolio_match_dict[portfolio_name] = portfolio_name unmatched_names.append(portfolio_name) return portfolio_match_dict, unmatched_names def optimize_dataframe_dtypes(df): """Optimize DataFrame data types for memory efficiency""" # For now, disable categorical conversion entirely to avoid issues with exposure_spread and other operations # This maintains compatibility while still providing other memory optimizations # Future enhancement: implement smarter categorical handling that preserves mutability # Only optimize numeric columns to more efficient dtypes for col in df.columns: if df[col].dtype == 'float64': # Convert float64 to float32 if possible without significant precision loss try: if df[col].max() < 3.4e+38 and df[col].min() > -3.4e+38: # float32 range df[col] = df[col].astype('float32') except: pass elif df[col].dtype == 'int64': # Convert int64 to smaller int types if possible try: if df[col].max() <= 32767 and df[col].min() >= -32768: df[col] = df[col].astype('int16') elif df[col].max() <= 2147483647 and df[col].min() >= -2147483648: df[col] = df[col].astype('int32') except: pass return df def create_memory_efficient_mappings(projections_df, site_var, type_var, sport_var): """Create mappings with optimized data types""" # Optimize projections data types first projections_df = projections_df.copy() # Convert to more efficient data types if 'position' in projections_df.columns: projections_df['position'] = projections_df['position'].astype('category') if 'team' in projections_df.columns: projections_df['team'] = projections_df['team'].astype('category') if 'salary' in projections_df.columns: projections_df['salary'] = projections_df['salary'].astype('int32') if 'median' in projections_df.columns: projections_df['median'] = projections_df['median'].astype('float32') if 'ownership' in projections_df.columns: projections_df['ownership'] = projections_df['ownership'].astype('float32') if 'captain ownership' in projections_df.columns: projections_df['captain ownership'] = projections_df['captain ownership'].astype('float32') # Create base mappings base_mappings = { 'pos_map': dict(zip(projections_df['player_names'], projections_df['position'])), 'team_map': dict(zip(projections_df['player_names'], projections_df['team'])), 'salary_map': dict(zip(projections_df['player_names'], projections_df['salary'])), 'proj_map': dict(zip(projections_df['player_names'], projections_df['median'])), 'own_map': dict(zip(projections_df['player_names'], projections_df['ownership'])), 'own_percent_rank': dict(zip(projections_df['player_names'], projections_df['ownership'].rank(pct=True).astype('float32'))) } # Add site/type specific mappings if site_var == 'Draftkings': if type_var == 'Classic': if sport_var == 'CS2' or sport_var == 'LOL': base_mappings.update({ 'cpt_salary_map': dict(zip(projections_df['player_names'], projections_df['salary'] * 1.5)), 'cpt_proj_map': dict(zip(projections_df['player_names'], projections_df['median'] * 1.5)), 'cpt_own_map': dict(zip(projections_df['player_names'], projections_df['captain ownership'])) }) else: base_mappings.update({ 'cpt_salary_map': dict(zip(projections_df['player_names'], projections_df['salary'])), 'cpt_proj_map': dict(zip(projections_df['player_names'], projections_df['median'] * 1.5)), 'cpt_own_map': dict(zip(projections_df['player_names'], projections_df['captain ownership'])) }) elif type_var == 'Showdown': if sport_var == 'GOLF': base_mappings.update({ 'cpt_salary_map': dict(zip(projections_df['player_names'], projections_df['salary'])), 'cpt_proj_map': dict(zip(projections_df['player_names'], projections_df['median'])), 'cpt_own_map': dict(zip(projections_df['player_names'], projections_df['ownership'])) }) else: base_mappings.update({ 'cpt_salary_map': dict(zip(projections_df['player_names'], projections_df['salary'] * 1.5)), 'cpt_proj_map': dict(zip(projections_df['player_names'], projections_df['median'] * 1.5)), 'cpt_own_map': dict(zip(projections_df['player_names'], projections_df['captain ownership'])) }) elif site_var == 'Fanduel': base_mappings.update({ 'cpt_salary_map': dict(zip(projections_df['player_names'], projections_df['salary'] * 1.5)), 'cpt_proj_map': dict(zip(projections_df['player_names'], projections_df['median'] * 1.5)), 'cpt_own_map': dict(zip(projections_df['player_names'], projections_df['captain ownership'])) }) return base_mappings def calculate_salary_vectorized(df, player_columns, map_dict, type_var, sport_var): """Vectorized salary calculation to replace expensive apply operations""" def safe_map_and_fill(series, mapping, fill_value=0): """Safely map values and fill NaN, handling categorical columns""" mapped = series.map(mapping) if hasattr(series, 'cat'): # Handle categorical columns by converting to object first mapped = mapped.astype('object') return mapped.fillna(fill_value) if type_var == 'Classic' and (sport_var == 'CS2' or sport_var == 'LOL'): # Captain + flex calculations cpt_salaries = safe_map_and_fill(df.iloc[:, 0], map_dict['cpt_salary_map']) flex_salaries = sum(safe_map_and_fill(df.iloc[:, i], map_dict['salary_map']) for i in range(1, len(player_columns))) return cpt_salaries + flex_salaries elif type_var == 'Showdown': if sport_var == 'GOLF': return sum(safe_map_and_fill(df[col], map_dict['salary_map']) for col in player_columns) else: cpt_salaries = safe_map_and_fill(df.iloc[:, 0], map_dict['cpt_salary_map']) flex_salaries = sum(safe_map_and_fill(df.iloc[:, i], map_dict['salary_map']) for i in range(1, len(player_columns))) return cpt_salaries + flex_salaries else: # Classic non-CS2/LOL return sum(safe_map_and_fill(df[col], map_dict['salary_map']) for col in player_columns) def calculate_median_vectorized(df, player_columns, map_dict, type_var, sport_var): """Vectorized median calculation to replace expensive apply operations""" def safe_map_and_fill(series, mapping, fill_value=0): """Safely map values and fill NaN, handling categorical columns""" mapped = series.map(mapping) if hasattr(series, 'cat'): # Handle categorical columns by converting to object first mapped = mapped.astype('object') return mapped.fillna(fill_value) if type_var == 'Classic' and (sport_var == 'CS2' or sport_var == 'LOL'): cpt_medians = safe_map_and_fill(df.iloc[:, 0], map_dict['cpt_proj_map']) flex_medians = sum(safe_map_and_fill(df.iloc[:, i], map_dict['proj_map']) for i in range(1, len(player_columns))) return cpt_medians + flex_medians elif type_var == 'Showdown': if sport_var == 'GOLF': return sum(safe_map_and_fill(df[col], map_dict['proj_map']) for col in player_columns) else: cpt_medians = safe_map_and_fill(df.iloc[:, 0], map_dict['cpt_proj_map']) flex_medians = sum(safe_map_and_fill(df.iloc[:, i], map_dict['proj_map']) for i in range(1, len(player_columns))) return cpt_medians + flex_medians else: return sum(safe_map_and_fill(df[col], map_dict['proj_map']) for col in player_columns) def calculate_ownership_vectorized(df, player_columns, map_dict, type_var, sport_var): """Vectorized ownership calculation to replace expensive apply operations""" def safe_map_and_fill(series, mapping, fill_value=0): """Safely map values and fill NaN, handling categorical columns""" mapped = series.map(mapping) if hasattr(series, 'cat'): # Handle categorical columns by converting to object first mapped = mapped.astype('object') return mapped.fillna(fill_value) if type_var == 'Classic' and (sport_var == 'CS2' or sport_var == 'LOL'): cpt_own = safe_map_and_fill(df.iloc[:, 0], map_dict['cpt_own_map']) flex_own = sum(safe_map_and_fill(df.iloc[:, i], map_dict['own_map']) for i in range(1, len(player_columns))) return cpt_own + flex_own elif type_var == 'Showdown': if sport_var == 'GOLF': return sum(safe_map_and_fill(df[col], map_dict['own_map']) for col in player_columns) else: cpt_own = safe_map_and_fill(df.iloc[:, 0], map_dict['cpt_own_map']) flex_own = sum(safe_map_and_fill(df.iloc[:, i], map_dict['own_map']) for i in range(1, len(player_columns))) return cpt_own + flex_own else: return sum(safe_map_and_fill(df[col], map_dict['own_map']) for col in player_columns) def calculate_lineup_metrics(df, player_columns, map_dict, type_var, sport_var, projections_df=None): """Centralized function to calculate salary, median, and ownership efficiently""" df = df.copy() # Work on a copy to avoid modifying original # Ensure player columns are object type to avoid categorical issues with exposure_spread for col in player_columns: if df[col].dtype.name == 'category': df[col] = df[col].astype('object') # Vectorized calculations df['salary'] = calculate_salary_vectorized(df[player_columns], player_columns, map_dict, type_var, sport_var) df['median'] = calculate_median_vectorized(df[player_columns], player_columns, map_dict, type_var, sport_var) df['Own'] = calculate_ownership_vectorized(df[player_columns], player_columns, map_dict, type_var, sport_var) return df def create_team_filter_mask(df, player_columns, team_map, teams_to_filter, focus_type='Overall', type_var='Classic'): """Create boolean mask for team filtering without creating intermediate DataFrames""" mask = pd.Series(False, index=df.index) if type_var == 'Showdown' and focus_type != 'Overall': if focus_type == 'CPT': focus_columns = [player_columns[0]] # First column only elif focus_type == 'FLEX': focus_columns = player_columns[1:] # All except first else: focus_columns = player_columns else: # For Classic or Overall focus, use appropriate columns if type_var == 'Classic': focus_columns = [col for col in player_columns if col not in ['SP1', 'SP2']] # Exclude pitchers else: focus_columns = player_columns for team in teams_to_filter: for col in focus_columns: team_mask = df[col].map(team_map) == team mask |= team_mask return mask def prepare_dataframe_for_exposure_spread(df, player_columns): """Ensure DataFrame is ready for exposure_spread by converting player columns to object type""" df_prepared = df.copy() # Convert any categorical player columns back to object type for col in player_columns: if col in df_prepared.columns and df_prepared[col].dtype.name == 'category': df_prepared[col] = df_prepared[col].astype('object') return df_prepared def create_position_export_dict(column_name, csv_file, site_var, type_var, sport_var): try: # Remove any numbers from the column name to get the position import re position_filter = re.sub(r'\d+$', '', column_name) # Filter CSV file by position if 'Position' in csv_file.columns: if type_var == 'Showdown': filtered_df = csv_file.copy() else: if position_filter == 'SP': filtered_df = csv_file[ csv_file['Roster Position'] == 'P' ] elif position_filter == 'CPT': filtered_df = csv_file.copy() elif position_filter == 'FLEX' or position_filter == 'UTIL': if sport_var == 'NFL': filtered_df = csv_file[csv_file['Position'].isin(['RB', 'WR', 'TE'])] elif sport_var == 'SOC': filtered_df = csv_file[csv_file['Position'].str.contains('D|M|F', na=False, regex=True)] elif sport_var == 'NCAAF': filtered_df = csv_file[csv_file['Position'].str.contains('RB|WR', na=False, regex=True)] elif sport_var == 'NHL': filtered_df = csv_file[csv_file['Position'].str.contains('C|W|D', na=False, regex=True)] else: filtered_df = csv_file.copy() elif position_filter == 'SFLEX': filtered_df = csv_file.copy() elif position_filter == 'C/1B': filtered_df = csv_file[ csv_file['Position'].str.contains(['C', '1B'], na=False, regex=False) ] else: filtered_df = csv_file[ csv_file['Position'].str.contains(position_filter, na=False, regex=False) ] else: # Fallback to all players if no position column found filtered_df = csv_file # Create the export dictionary for this position if site_var == 'Draftkings': filtered_df = filtered_df.sort_values(by='Salary', ascending=False).drop_duplicates(subset=['Name']) return dict(zip(filtered_df['Name'], filtered_df['Name + ID'])) else: filtered_df = filtered_df.sort_values(by='Salary', ascending=False).drop_duplicates(subset=['Nickname']) return dict(zip(filtered_df['Nickname'], filtered_df['Id'])) except Exception as e: st.error(f"Error creating position export dict for {column_name}: {str(e)}") return {} with st.container(): col1, col2, col3, col4 = st.columns([1, 4, 4, 4]) with col1: if st.button('Clear data', key='reset3'): st.session_state.clear() with col2: site_var = st.selectbox("Select Site", ['Draftkings', 'Fanduel']) with col3: sport_var = st.selectbox("Select Sport", ['NFL', 'MLB', 'NBA', 'NHL', 'NCAAF', 'MMA', 'CS2', 'LOL', 'TENNIS', 'NASCAR', 'GOLF', 'WNBA', 'F1']) with col4: type_var = st.selectbox("Select Game Type", ['Classic', 'Showdown']) if sport_var == 'GOLF': position_var = 'G' team_var = 'GOLF' elif sport_var == 'TENNIS': position_var = 'T' team_var = 'TENNIS' elif sport_var == 'MMA': position_var = 'F' team_var = 'MMA' elif sport_var == 'NASCAR': position_var = 'D' team_var = 'NASCAR' elif sport_var == 'F1': position_var = 'D' team_var = 'F1' else: position_var = None team_var = None if site_var == 'Draftkings': salary_max = 50000 elif site_var == 'Fanduel': if type_var == 'Classic': if sport_var == 'MLB': salary_max = 40000 elif sport_var == 'WNBA': salary_max = 40000 elif sport_var == 'GOLF': salary_max = 60000 elif sport_var == 'MMA': salary_max = 100 elif sport_var == 'NFL': salary_max = 60000 elif sport_var == 'NASCAR': salary_max = 50000 else: salary_max = 60000 elif type_var == 'Showdown': salary_max = 60000 try: selected_tab = st.segmented_control( "Select Tab", options=["Data Load", "Manage Portfolio"], selection_mode='single', default='Data Load', label_visibility='collapsed', width='stretch', key='tab_selector' ) except: selected_tab = st.segmented_control( "Select Tab", options=["Data Load", "Manage Portfolio"], selection_mode='single', default='Data Load', label_visibility='collapsed', key='tab_selector' ) if selected_tab == 'Data Load': # Add file uploaders to your app col1, col2, col3 = st.columns(3) with col1: st.subheader("Draftkings/Fanduel CSV") st.info("Upload the player pricing CSV from the site you are playing on") upload_csv_col, csv_template_col = st.columns([3, 1]) with upload_csv_col: csv_file = st.file_uploader("Upload CSV File", type=['csv']) if 'csv_file' in st.session_state: del st.session_state['csv_file'] with csv_template_col: if site_var == 'Draftkings': csv_template_df = pd.DataFrame(columns=['Name', 'ID', 'Roster Position', 'Salary']) else: csv_template_df = pd.DataFrame(columns=['Nickname', 'Id', 'Roster Position', 'Salary']) st.download_button( label="CSV Template", data=csv_template_df.to_csv(index=False), file_name="csv_template.csv", mime="text/csv" ) st.session_state['csv_file'] = load_csv(csv_file) try: st.session_state['csv_file']['Salary'] = st.session_state['csv_file']['Salary'].astype(str).str.replace(',', '').astype(int) except: pass if csv_file: if type_var == 'Showdown': st.session_state['csv_file']['Position'] = 'FLEX' else: if sport_var == 'GOLF': st.session_state['csv_file']['Position'] = 'FLEX' st.session_state['csv_file']['Team'] = 'GOLF' elif sport_var == 'TENNIS': st.session_state['csv_file']['Position'] = 'FLEX' st.session_state['csv_file']['Team'] = 'TENNIS' elif sport_var == 'MMA': st.session_state['csv_file']['Position'] = 'FLEX' st.session_state['csv_file']['Team'] = 'MMA' elif sport_var == 'NASCAR': st.session_state['csv_file']['Position'] = 'FLEX' st.session_state['csv_file']['Team'] = 'NASCAR' if site_var == 'Fanduel': try: st.session_state['csv_file']['Position'] = st.session_state['csv_file']['Position'].replace('D', 'DST', regex=False) except: pass st.success('Projections file loaded successfully!') st.dataframe(st.session_state['csv_file'].head(10)) with col2: st.subheader("Portfolio File") st.info("Go ahead and upload a portfolio file here. Only include player columns.") upload_toggle = st.selectbox("What source are you uploading from?", options=['SaberSim (Just IDs)', 'Draftkings/Fanduel (Names + IDs)', 'Other (Just Names)']) if upload_toggle == 'SaberSim (Just IDs)' or upload_toggle == 'Draftkings/Fanduel (Names + IDs)': portfolio_file = st.file_uploader("Upload Portfolio File (CSV or Excel)", type=['csv', 'xlsx', 'xls']) if 'portfolio' in st.session_state: del st.session_state['portfolio'] if 'export_portfolio' in st.session_state: del st.session_state['export_portfolio'] else: portfolio_file = st.file_uploader("Upload Portfolio File (CSV or Excel)", type=['csv', 'xlsx', 'xls']) if 'portfolio' in st.session_state: del st.session_state['portfolio'] if 'export_portfolio' in st.session_state: del st.session_state['export_portfolio'] if 'portfolio' not in st.session_state: if portfolio_file: if upload_toggle == 'SaberSim (Just IDs)': st.session_state['export_portfolio'], st.session_state['portfolio'] = load_ss_file(portfolio_file, st.session_state['csv_file'], site_var, type_var, sport_var) st.session_state['export_portfolio'] = st.session_state['export_portfolio'].dropna(how='all') st.session_state['export_portfolio'] = st.session_state['export_portfolio'].reset_index(drop=True) st.session_state['portfolio'] = st.session_state['portfolio'].dropna(how='all') st.session_state['portfolio'] = st.session_state['portfolio'].reset_index(drop=True) elif upload_toggle == 'Draftkings/Fanduel (Names + IDs)': st.session_state['export_portfolio'], st.session_state['portfolio'] = load_dk_fd_file(portfolio_file, st.session_state['csv_file'], site_var, type_var, sport_var) st.session_state['export_portfolio'] = st.session_state['export_portfolio'].dropna(how='all') st.session_state['export_portfolio'] = st.session_state['export_portfolio'].reset_index(drop=True) st.session_state['portfolio'] = st.session_state['portfolio'].dropna(how='all') st.session_state['portfolio'] = st.session_state['portfolio'].reset_index(drop=True) else: st.session_state['export_portfolio'], st.session_state['portfolio'] = load_file(portfolio_file, site_var, type_var, sport_var, 'portfolio') st.session_state['export_portfolio'] = st.session_state['export_portfolio'].dropna(how='all') st.session_state['export_portfolio'] = st.session_state['export_portfolio'].reset_index(drop=True) st.session_state['portfolio'] = st.session_state['portfolio'].dropna(how='all') st.session_state['portfolio'] = st.session_state['portfolio'].reset_index(drop=True) if st.session_state['portfolio'] is not None: # Optimize data types early for memory efficiency st.session_state['portfolio'] = optimize_dataframe_dtypes(st.session_state['portfolio']) st.success('Portfolio file loaded successfully!') for col in st.session_state['portfolio'].select_dtypes(include=['object', 'category']).columns: if st.session_state['portfolio'][col].dtype == 'category': # Handle categorical columns st.session_state['portfolio'][col] = st.session_state['portfolio'][col].cat.rename_categories( lambda x: player_right_names_mlb.get(x, x) if x in player_wrong_names_mlb else x ) else: # Handle object columns st.session_state['portfolio'][col] = st.session_state['portfolio'][col].replace(player_wrong_names_mlb) st.dataframe(st.session_state['portfolio'].head(10)) with col3: st.subheader("Projections File") st.info("upload a projections file that has 'player_names', 'salary', 'median', 'ownership', and 'captain ownership' columns. Note that the salary for showdown needs to be the FLEX salary, not the captain salary.") # Create two columns for the uploader and template button upload_col, template_col = st.columns([3, 1]) with upload_col: projections_file = st.file_uploader("Upload Projections File (CSV or Excel)", type=['csv', 'xlsx', 'xls']) if 'projections_df' in st.session_state: del st.session_state['projections_df'] with template_col: # Create empty DataFrame with required columns template_df = pd.DataFrame(columns=['player_names', 'position', 'team', 'salary', 'median', 'ownership', 'captain ownership']) # Add download button for template st.download_button( label="Template", data=template_df.to_csv(index=False), file_name="projections_template.csv", mime="text/csv" ) if projections_file: export_projections, projections = load_file(projections_file, site_var, type_var, sport_var, 'projections') if projections is not None: st.success('Projections file loaded successfully!') # Optimize projections data types early try: projections['salary'] = projections['salary'].str.replace(',', '').str.replace('$', '').str.replace(' ', '') st.write('replaced salary symbols') except: pass try: projections['ownership'] = projections['ownership'].str.replace('%', '').str.replace(' ', '') st.write('replaced ownership symbols') except: pass # Convert to efficient data types projections['salary'] = projections['salary'].dropna().astype('int32') projections['ownership'] = projections['ownership'].astype('float32') if projections['captain ownership'].isna().all(): projections['CPT_Own_raw'] = (projections['ownership'] / 2) * ((100 - (100-projections['ownership']))/100) cpt_own_var = 100 / projections['CPT_Own_raw'].sum() projections['captain ownership'] = projections['CPT_Own_raw'] * cpt_own_var projections = projections.drop(columns='CPT_Own_raw', axis=1) projections['captain ownership'] = projections['captain ownership'].astype('float32') projections['median'] = projections['median'].astype('float32') # More efficient string replacement for projections for col in projections.select_dtypes(include=['object']).columns: projections[col] = projections[col].replace(player_wrong_names_mlb) # Set position/team variables if needed if position_var is not None: projections['position'] = position_var if team_var is not None: projections['team'] = team_var st.dataframe(projections.head(10)) if portfolio_file and projections_file: if st.session_state['portfolio'] is not None and projections is not None: st.subheader("Name Matching Analysis") # Get unique names from portfolio portfolio_names = get_portfolio_names(st.session_state['portfolio']) try: csv_names = st.session_state['csv_file']['Name'].tolist() except: csv_names = st.session_state['csv_file']['Nickname'].tolist() projection_names = projections['player_names'].tolist() # Use chunked name matching for memory efficiency portfolio_match_dict, unmatched_names = chunk_name_matching(portfolio_names, csv_names) # Update portfolio with matched names (in-place to save memory) player_columns = [col for col in st.session_state['portfolio'].columns if col not in ['salary', 'median', 'Own']] # For each player column, update names using the match dictionary for col in player_columns: st.session_state['portfolio'][col] = st.session_state['portfolio'][col].map(lambda x: portfolio_match_dict.get(x, x)) # Create match dictionary for projections to CSV names (chunked) projections_match_dict, unmatched_proj_names = chunk_name_matching(projection_names, csv_names) # Update projections with matched names projections['player_names'] = projections['player_names'].map(lambda x: projections_match_dict.get(x, x)) st.session_state['projections_df'] = projections # Second round of matching (projections to portfolio) projections_names = st.session_state['projections_df']['player_names'].tolist() portfolio_names = get_portfolio_names(st.session_state['portfolio']) projections_match_dict2, unmatched_proj_names2 = chunk_name_matching(projection_names, portfolio_names) # Update projections with matched names projections['player_names'] = projections['player_names'].map(lambda x: projections_match_dict2.get(x, x)) st.session_state['projections_df'] = projections # Handle stacking if needed if sport_var in stacking_sports: team_dict = dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])) st.session_state['portfolio']['Stack'] = st.session_state['portfolio'].apply( lambda row: Counter( team_dict.get(player, '') for player in row[stack_column_dict[site_var][type_var][sport_var]] if team_dict.get(player, '') != '' ).most_common(1)[0][0] if any(team_dict.get(player, '') for player in row[stack_column_dict[site_var][type_var][sport_var]]) else '', axis=1 ) st.session_state['portfolio']['Size'] = st.session_state['portfolio'].apply( lambda row: Counter( team_dict.get(player, '') for player in row[stack_column_dict[site_var][type_var][sport_var]] if team_dict.get(player, '') != '' ).most_common(1)[0][1] if any(team_dict.get(player, '') for player in row[stack_column_dict[site_var][type_var][sport_var]]) else 0, axis=1 ) st.session_state['stack_dict'] = dict(zip(st.session_state['portfolio'].index, st.session_state['portfolio']['Stack'])) st.session_state['size_dict'] = dict(zip(st.session_state['portfolio'].index, st.session_state['portfolio']['Size'])) # Create export dictionary try: st.session_state['export_dict'] = dict(zip(st.session_state['csv_file']['Name'], st.session_state['csv_file']['Name + ID'])) except: st.session_state['export_dict'] = dict(zip(st.session_state['csv_file']['Nickname'], st.session_state['csv_file']['Id'])) # Create memory-efficient mappings if 'map_dict' not in st.session_state: st.session_state['map_dict'] = create_memory_efficient_mappings(st.session_state['projections_df'], site_var, type_var, sport_var) # Store portfolio in compressed format and clean up st.session_state['portfolio'] = st.session_state['portfolio'].astype(str) st.session_state['portfolio'] = st.session_state['portfolio'][~st.session_state['portfolio'].isin(['', 'nan', 'None', 'NaN']).any(axis=1)].reset_index(drop=True) buffer = io.BytesIO() st.session_state['portfolio'].to_parquet(buffer, compression='snappy') st.session_state['origin_portfolio'] = buffer.getvalue() # Clear large objects from session state to free memory del st.session_state['portfolio'], st.session_state['export_portfolio'] # with tab2: # if st.button('Clear data', key='reset2'): # st.session_state.clear() # if 'portfolio' in st.session_state and 'projections_df' in st.session_state: # optimized_df = None # map_dict = { # 'pos_map': dict(zip(st.session_state['projections_df']['player_names'], # st.session_state['projections_df']['position'])), # 'salary_map': dict(zip(st.session_state['projections_df']['player_names'], # st.session_state['projections_df']['salary'])), # 'proj_map': dict(zip(st.session_state['projections_df']['player_names'], # st.session_state['projections_df']['median'])), # 'own_map': dict(zip(st.session_state['projections_df']['player_names'], # st.session_state['projections_df']['ownership'])), # 'team_map': dict(zip(st.session_state['projections_df']['player_names'], # st.session_state['projections_df']['team'])) # } # # Calculate new stats for optimized lineups # st.session_state['portfolio']['salary'] = st.session_state['portfolio'].apply( # lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row if player in map_dict['salary_map']), axis=1 # ) # st.session_state['portfolio']['median'] = st.session_state['portfolio'].apply( # lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row if player in map_dict['proj_map']), axis=1 # ) # st.session_state['portfolio']['Own'] = st.session_state['portfolio'].apply( # lambda row: sum(map_dict['own_map'].get(player, 0) for player in row if player in map_dict['own_map']), axis=1 # ) # options_container = st.container() # with options_container: # col1, col2, col3, col4, col5, col6 = st.columns(6) # with col1: # curr_site_var = st.selectbox("Select your current site", options=['DraftKings', 'FanDuel']) # with col2: # curr_sport_var = st.selectbox("Select your current sport", options=['NBA', 'MLB', 'NFL', 'NHL', 'MMA']) # with col3: # swap_var = st.multiselect("Select late swap strategy", options=['Optimize', 'Increase volatility', 'Decrease volatility']) # with col4: # remove_teams_var = st.multiselect("What teams have already played?", options=st.session_state['projections_df']['team'].unique()) # with col5: # winners_var = st.multiselect("Are there any players doing exceptionally well?", options=st.session_state['projections_df']['player_names'].unique(), max_selections=3) # with col6: # losers_var = st.multiselect("Are there any players doing exceptionally poorly?", options=st.session_state['projections_df']['player_names'].unique(), max_selections=3) # if st.button('Clear Late Swap'): # if 'optimized_df' in st.session_state: # del st.session_state['optimized_df'] # map_dict = { # 'pos_map': dict(zip(st.session_state['projections_df']['player_names'], # st.session_state['projections_df']['position'])), # 'salary_map': dict(zip(st.session_state['projections_df']['player_names'], # st.session_state['projections_df']['salary'])), # 'proj_map': dict(zip(st.session_state['projections_df']['player_names'], # st.session_state['projections_df']['median'])), # 'own_map': dict(zip(st.session_state['projections_df']['player_names'], # st.session_state['projections_df']['ownership'])), # 'team_map': dict(zip(st.session_state['projections_df']['player_names'], # st.session_state['projections_df']['team'])) # } # # Calculate new stats for optimized lineups # st.session_state['portfolio']['salary'] = st.session_state['portfolio'].apply( # lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row if player in map_dict['salary_map']), axis=1 # ) # st.session_state['portfolio']['median'] = st.session_state['portfolio'].apply( # lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row if player in map_dict['proj_map']), axis=1 # ) # st.session_state['portfolio']['Own'] = st.session_state['portfolio'].apply( # lambda row: sum(map_dict['own_map'].get(player, 0) for player in row if player in map_dict['own_map']), axis=1 # ) # if st.button('Run Late Swap'): # st.session_state['portfolio'] = st.session_state['portfolio'].drop(columns=['salary', 'median', 'Own']) # if curr_sport_var == 'NBA': # if curr_site_var == 'DraftKings': # st.session_state['portfolio'] = st.session_state['portfolio'].set_axis(['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL'], axis=1) # else: # st.session_state['portfolio'] = st.session_state['portfolio'].set_axis(['PG', 'PG', 'SG', 'SG', 'SF', 'SF', 'PF', 'PF', 'C'], axis=1) # # Define roster position rules # if curr_site_var == 'DraftKings': # position_rules = { # 'PG': ['PG'], # 'SG': ['SG'], # 'SF': ['SF'], # 'PF': ['PF'], # 'C': ['C'], # 'G': ['PG', 'SG'], # 'F': ['SF', 'PF'], # 'UTIL': ['PG', 'SG', 'SF', 'PF', 'C'] # } # else: # position_rules = { # 'PG': ['PG'], # 'SG': ['SG'], # 'SF': ['SF'], # 'PF': ['PF'], # 'C': ['C'], # } # # Create position groups from projections data # position_groups = {} # for _, player in st.session_state['projections_df'].iterrows(): # positions = player['position'].split('/') # for pos in positions: # if pos not in position_groups: # position_groups[pos] = [] # position_groups[pos].append({ # 'player_names': player['player_names'], # 'salary': player['salary'], # 'median': player['median'], # 'ownership': player['ownership'], # 'positions': positions # Store all eligible positions # }) # def optimize_lineup(row): # current_lineup = [] # total_salary = 0 # if curr_site_var == 'DraftKings': # salary_cap = 50000 # else: # salary_cap = 60000 # used_players = set() # # Convert row to dictionary with roster positions # roster = {} # for col, player in zip(row.index, row): # if col not in ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Lineup Edge']: # roster[col] = { # 'name': player, # 'position': map_dict['pos_map'].get(player, '').split('/'), # 'team': map_dict['team_map'].get(player, ''), # 'salary': map_dict['salary_map'].get(player, 0), # 'median': map_dict['proj_map'].get(player, 0), # 'ownership': map_dict['own_map'].get(player, 0) # } # total_salary += roster[col]['salary'] # used_players.add(player) # # Optimize each roster position in random order # roster_positions = list(roster.items()) # random.shuffle(roster_positions) # for roster_pos, current in roster_positions: # # Skip optimization for players from removed teams # if current['team'] in remove_teams_var: # continue # valid_positions = position_rules[roster_pos] # better_options = [] # # Find valid replacements for this roster position # for pos in valid_positions: # if pos in position_groups: # pos_options = [ # p for p in position_groups[pos] # if p['median'] > current['median'] # and (total_salary - current['salary'] + p['salary']) <= salary_cap # and p['player_names'] not in used_players # and any(valid_pos in p['positions'] for valid_pos in valid_positions) # and map_dict['team_map'].get(p['player_names']) not in remove_teams_var # Check team restriction # ] # better_options.extend(pos_options) # if better_options: # # Remove duplicates # better_options = {opt['player_names']: opt for opt in better_options}.values() # # Sort by median projection and take the best one # best_replacement = max(better_options, key=lambda x: x['median']) # # Update the lineup and tracking variables # used_players.remove(current['name']) # used_players.add(best_replacement['player_names']) # total_salary = total_salary - current['salary'] + best_replacement['salary'] # roster[roster_pos] = { # 'name': best_replacement['player_names'], # 'position': map_dict['pos_map'][best_replacement['player_names']].split('/'), # 'team': map_dict['team_map'][best_replacement['player_names']], # 'salary': best_replacement['salary'], # 'median': best_replacement['median'], # 'ownership': best_replacement['ownership'] # } # # Return optimized lineup maintaining original column order # return [roster[pos]['name'] for pos in row.index if pos in roster] # def optimize_lineup_winners(row): # current_lineup = [] # total_salary = 0 # if curr_site_var == 'DraftKings': # salary_cap = 50000 # else: # salary_cap = 60000 # used_players = set() # # Check if any winners are in the lineup and count them # winners_in_lineup = sum(1 for player in row if player in winners_var) # changes_needed = min(winners_in_lineup, 3) if winners_in_lineup > 0 else 0 # changes_made = 0 # # Convert row to dictionary with roster positions # roster = {} # for col, player in zip(row.index, row): # if col not in ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Lineup Edge']: # roster[col] = { # 'name': player, # 'position': map_dict['pos_map'].get(player, '').split('/'), # 'team': map_dict['team_map'].get(player, ''), # 'salary': map_dict['salary_map'].get(player, 0), # 'median': map_dict['proj_map'].get(player, 0), # 'ownership': map_dict['own_map'].get(player, 0) # } # total_salary += roster[col]['salary'] # used_players.add(player) # # Only proceed with ownership-based optimization if we have winners in the lineup # if changes_needed > 0: # # Randomize the order of positions to optimize # roster_positions = list(roster.items()) # random.shuffle(roster_positions) # for roster_pos, current in roster_positions: # # Stop if we've made enough changes # if changes_made >= changes_needed: # break # # Skip optimization for players from removed teams or if the current player is a winner # if current['team'] in remove_teams_var or current['name'] in winners_var: # continue # valid_positions = list(position_rules[roster_pos]) # random.shuffle(valid_positions) # better_options = [] # # Find valid replacements with higher ownership # for pos in valid_positions: # if pos in position_groups: # pos_options = [ # p for p in position_groups[pos] # if p['ownership'] > current['ownership'] # and p['median'] >= current['median'] - 3 # and (total_salary - current['salary'] + p['salary']) <= salary_cap # and (total_salary - current['salary'] + p['salary']) >= salary_cap - 1000 # and p['player_names'] not in used_players # and any(valid_pos in p['positions'] for valid_pos in valid_positions) # and map_dict['team_map'].get(p['player_names']) not in remove_teams_var # ] # better_options.extend(pos_options) # if better_options: # # Remove duplicates # better_options = {opt['player_names']: opt for opt in better_options}.values() # # Sort by ownership and take the highest owned option # best_replacement = max(better_options, key=lambda x: x['ownership']) # # Update the lineup and tracking variables # used_players.remove(current['name']) # used_players.add(best_replacement['player_names']) # total_salary = total_salary - current['salary'] + best_replacement['salary'] # roster[roster_pos] = { # 'name': best_replacement['player_names'], # 'position': map_dict['pos_map'][best_replacement['player_names']].split('/'), # 'team': map_dict['team_map'][best_replacement['player_names']], # 'salary': best_replacement['salary'], # 'median': best_replacement['median'], # 'ownership': best_replacement['ownership'] # } # changes_made += 1 # # Return optimized lineup maintaining original column order # return [roster[pos]['name'] for pos in row.index if pos in roster] # def optimize_lineup_losers(row): # current_lineup = [] # total_salary = 0 # if curr_site_var == 'DraftKings': # salary_cap = 50000 # else: # salary_cap = 60000 # used_players = set() # # Check if any winners are in the lineup and count them # losers_in_lineup = sum(1 for player in row if player in losers_var) # changes_needed = min(losers_in_lineup, 3) if losers_in_lineup > 0 else 0 # changes_made = 0 # # Convert row to dictionary with roster positions # roster = {} # for col, player in zip(row.index, row): # if col not in ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Lineup Edge']: # roster[col] = { # 'name': player, # 'position': map_dict['pos_map'].get(player, '').split('/'), # 'team': map_dict['team_map'].get(player, ''), # 'salary': map_dict['salary_map'].get(player, 0), # 'median': map_dict['proj_map'].get(player, 0), # 'ownership': map_dict['own_map'].get(player, 0) # } # total_salary += roster[col]['salary'] # used_players.add(player) # # Only proceed with ownership-based optimization if we have winners in the lineup # if changes_needed > 0: # # Randomize the order of positions to optimize # roster_positions = list(roster.items()) # random.shuffle(roster_positions) # for roster_pos, current in roster_positions: # # Stop if we've made enough changes # if changes_made >= changes_needed: # break # # Skip optimization for players from removed teams or if the current player is a winner # if current['team'] in remove_teams_var or current['name'] in losers_var: # continue # valid_positions = list(position_rules[roster_pos]) # random.shuffle(valid_positions) # better_options = [] # # Find valid replacements with higher ownership # for pos in valid_positions: # if pos in position_groups: # pos_options = [ # p for p in position_groups[pos] # if p['ownership'] < current['ownership'] # and p['median'] >= current['median'] - 3 # and (total_salary - current['salary'] + p['salary']) <= salary_cap # and (total_salary - current['salary'] + p['salary']) >= salary_cap - 1000 # and p['player_names'] not in used_players # and any(valid_pos in p['positions'] for valid_pos in valid_positions) # and map_dict['team_map'].get(p['player_names']) not in remove_teams_var # ] # better_options.extend(pos_options) # if better_options: # # Remove duplicates # better_options = {opt['player_names']: opt for opt in better_options}.values() # # Sort by ownership and take the highest owned option # best_replacement = max(better_options, key=lambda x: x['ownership']) # # Update the lineup and tracking variables # used_players.remove(current['name']) # used_players.add(best_replacement['player_names']) # total_salary = total_salary - current['salary'] + best_replacement['salary'] # roster[roster_pos] = { # 'name': best_replacement['player_names'], # 'position': map_dict['pos_map'][best_replacement['player_names']].split('/'), # 'team': map_dict['team_map'][best_replacement['player_names']], # 'salary': best_replacement['salary'], # 'median': best_replacement['median'], # 'ownership': best_replacement['ownership'] # } # changes_made += 1 # # Return optimized lineup maintaining original column order # return [roster[pos]['name'] for pos in row.index if pos in roster] # # Create a progress bar # progress_bar = st.progress(0) # status_text = st.empty() # # Process each lineup # optimized_lineups = [] # total_lineups = len(st.session_state['portfolio']) # for idx, row in st.session_state['portfolio'].iterrows(): # # First optimization pass # first_pass = optimize_lineup(row) # first_pass_series = pd.Series(first_pass, index=row.index) # second_pass = optimize_lineup(first_pass_series) # second_pass_series = pd.Series(second_pass, index=row.index) # third_pass = optimize_lineup(second_pass_series) # third_pass_series = pd.Series(third_pass, index=row.index) # fourth_pass = optimize_lineup(third_pass_series) # fourth_pass_series = pd.Series(fourth_pass, index=row.index) # fifth_pass = optimize_lineup(fourth_pass_series) # fifth_pass_series = pd.Series(fifth_pass, index=row.index) # # Second optimization pass # final_lineup = optimize_lineup(fifth_pass_series) # optimized_lineups.append(final_lineup) # if 'Optimize' in swap_var: # progress = (idx + 1) / total_lineups # progress_bar.progress(progress) # status_text.text(f'Optimizing Lineups {idx + 1} of {total_lineups}') # else: # pass # # Create new dataframe with optimized lineups # if 'Optimize' in swap_var: # st.session_state['optimized_df_medians'] = pd.DataFrame(optimized_lineups, columns=st.session_state['portfolio'].columns) # else: # st.session_state['optimized_df_medians'] = st.session_state['portfolio'] # # Create a progress bar # progress_bar_winners = st.progress(0) # status_text_winners = st.empty() # # Process each lineup # optimized_lineups_winners = [] # total_lineups = len(st.session_state['optimized_df_medians']) # for idx, row in st.session_state['optimized_df_medians'].iterrows(): # final_lineup = optimize_lineup_winners(row) # optimized_lineups_winners.append(final_lineup) # if 'Decrease volatility' in swap_var: # progress_winners = (idx + 1) / total_lineups # progress_bar_winners.progress(progress_winners) # status_text_winners.text(f'Lowering Volatility around Winners {idx + 1} of {total_lineups}') # else: # pass # # Create new dataframe with optimized lineups # if 'Decrease volatility' in swap_var: # st.session_state['optimized_df_winners'] = pd.DataFrame(optimized_lineups_winners, columns=st.session_state['optimized_df_medians'].columns) # else: # st.session_state['optimized_df_winners'] = st.session_state['optimized_df_medians'] # # Create a progress bar # progress_bar_losers = st.progress(0) # status_text_losers = st.empty() # # Process each lineup # optimized_lineups_losers = [] # total_lineups = len(st.session_state['optimized_df_winners']) # for idx, row in st.session_state['optimized_df_winners'].iterrows(): # final_lineup = optimize_lineup_losers(row) # optimized_lineups_losers.append(final_lineup) # if 'Increase volatility' in swap_var: # progress_losers = (idx + 1) / total_lineups # progress_bar_losers.progress(progress_losers) # status_text_losers.text(f'Increasing Volatility around Losers {idx + 1} of {total_lineups}') # else: # pass # # Create new dataframe with optimized lineups # if 'Increase volatility' in swap_var: # st.session_state['optimized_df'] = pd.DataFrame(optimized_lineups_losers, columns=st.session_state['optimized_df_winners'].columns) # else: # st.session_state['optimized_df'] = st.session_state['optimized_df_winners'] # # Calculate new stats for optimized lineups # st.session_state['optimized_df']['salary'] = st.session_state['optimized_df'].apply( # lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row if player in map_dict['salary_map']), axis=1 # ) # st.session_state['optimized_df']['median'] = st.session_state['optimized_df'].apply( # lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row if player in map_dict['proj_map']), axis=1 # ) # st.session_state['optimized_df']['Own'] = st.session_state['optimized_df'].apply( # lambda row: sum(map_dict['own_map'].get(player, 0) for player in row if player in map_dict['own_map']), axis=1 # ) # # Display results # st.success('Optimization complete!') # if 'optimized_df' in st.session_state: # st.write("Increase in median highlighted in yellow, descrease in volatility highlighted in blue, increase in volatility highlighted in red:") # st.dataframe( # st.session_state['optimized_df'].style # .apply(highlight_changes, axis=1) # .apply(highlight_changes_winners, axis=1) # .apply(highlight_changes_losers, axis=1) # .background_gradient(axis=0) # .background_gradient(cmap='RdYlGn') # .format(precision=2), # height=1000, # use_container_width=True # ) # # Option to download optimized lineups # if st.button('Prepare Late Swap Export'): # export_df = st.session_state['optimized_df'].copy() # # Map player names to their export IDs for all player columns # for col in export_df.columns: # if col not in ['salary', 'median', 'Own']: # export_df[col] = export_df[col].map(st.session_state['export_dict']) # csv = export_df.to_csv(index=False) # st.download_button( # label="Download CSV", # data=csv, # file_name="optimized_lineups.csv", # mime="text/csv" # ) # else: # st.write("Current Portfolio") # st.dataframe( # st.session_state['portfolio'].style # .background_gradient(axis=0) # .background_gradient(cmap='RdYlGn') # .format(precision=2), # height=1000, # use_container_width=True # ) if selected_tab == 'Manage Portfolio': if 'origin_portfolio' in st.session_state and 'projections_df' in st.session_state: with st.container(): reset_port_col, recalc_div_col, blank_reset_col, contest_size_col = st.columns([1, 1, 6, 4]) with reset_port_col: if st.button('Reset Portfolio', key='reset_port'): st.session_state['settings_base'] = True st.session_state['working_frame'] = st.session_state['base_frame'] with recalc_div_col: if st.button("Recalculate Diversity"): st.session_state['display_frame']['Diversity'] = recalc_diversity(st.session_state['display_frame'], st.session_state['player_columns']) with contest_size_col: with st.form(key='contest_size_form'): size_col, strength_col, submit_col = st.columns(3) with size_col: Contest_Size = st.number_input("Enter Contest Size", value=25000, min_value=1, step=1) with strength_col: strength_var = st.selectbox("Select field strength", ['Average', 'Sharp', 'Weak']) with submit_col: submitted = st.form_submit_button("Submit Size/Strength") if submitted: del st.session_state['working_frame'] excluded_cols = ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Stack', 'Size', 'Win%', 'Lineup Edge', 'Lineup Edge_Raw', 'Weighted Own', 'Geomean', 'Diversity'] if 'working_frame' not in st.session_state: st.session_state['settings_base'] = True st.session_state['working_frame'] = pd.read_parquet(io.BytesIO(st.session_state['origin_portfolio'])) st.session_state['player_columns'] = [col for col in st.session_state['working_frame'].columns if col not in excluded_cols] # Use vectorized calculation function st.session_state['working_frame'] = calculate_lineup_metrics( st.session_state['working_frame'], st.session_state['player_columns'], st.session_state['map_dict'], type_var, sport_var, st.session_state['projections_df'] if 'stack_dict' in st.session_state else None ) st.session_state['working_frame'] = st.session_state['working_frame'][st.session_state['working_frame']['salary'] <= salary_max] # Map existing stack/size data if available if 'stack_dict' in st.session_state: st.session_state['working_frame']['Stack'] = st.session_state['working_frame'].index.map(st.session_state['stack_dict']) st.session_state['working_frame']['Size'] = st.session_state['working_frame'].index.map(st.session_state['size_dict']) st.session_state['base_frame'] = predict_dupes(st.session_state['working_frame'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var, salary_max) st.session_state['working_frame'] = st.session_state['base_frame'].copy() # st.session_state['highest_owned_teams'] = st.session_state['projections_df'][~st.session_state['projections_df']['position'].isin(['P', 'SP'])].groupby('team')['ownership'].sum().sort_values(ascending=False).head(3).index.tolist() # st.session_state['highest_owned_pitchers'] = st.session_state['projections_df'][st.session_state['projections_df']['position'].isin(['P', 'SP'])]['player_names'].sort_values(by='ownership', ascending=False).head(3).tolist() #set some maxes for trimming variables if 'trimming_dict_maxes' not in st.session_state: st.session_state['trimming_dict_maxes'] = { 'Own': st.session_state['working_frame']['Own'].max(), 'Geomean': st.session_state['working_frame']['Geomean'].max(), 'Weighted Own': st.session_state['working_frame']['Weighted Own'].max(), 'median': st.session_state['working_frame']['median'].max(), 'Finish_percentile': st.session_state['working_frame']['Finish_percentile'].max(), 'Diversity': st.session_state['working_frame']['Diversity'].max() } with st.sidebar: if 'trimming_dict_maxes' not in st.session_state: st.session_state['trimming_dict_maxes'] = { 'Own': 500.0, 'Geomean': 500.0, 'Weighted Own': 500.0, 'median': 500.0, 'Finish_percentile': 1.0, 'Diversity': 1.0 } with st.expander('Macro Filter Options'): # recent changes for showdown included with st.form(key='macro_filter_form'): macro_min_col, macro_max_col = st.columns(2) with macro_min_col: min_salary = st.number_input("Min acceptable salary?", value=0, min_value=0, max_value=salary_max, step=100) min_proj = st.number_input("Min acceptable projection?", value=0.0, min_value=0.0, max_value=500.0, step=1.0) min_own = st.number_input("Min acceptable ownership?", value=0.0, min_value=0.0, max_value=500.0, step=1.0) min_dupes = st.number_input("Min acceptable dupes?", value=0, min_value=0, max_value=1000, step=1) min_finish_percentile = st.number_input("Min acceptable finish percentile?", value=0.00, min_value=0.00, max_value=1.00, step=.001) min_lineup_edge = st.number_input("Min acceptable Lineup Edge?", value=-1.00, min_value=-1.00, max_value=1.00, step=.001) with macro_max_col: max_salary = st.number_input("Max acceptable salary?", value=salary_max, min_value=0, max_value=salary_max, step=100) max_proj = st.number_input("Max acceptable projection?", value=500.0, min_value=0.0, max_value=500.0, step=1.0) max_own = st.number_input("Max acceptable ownership?", value=500.0, min_value=0.0, max_value=500.0, step=1.0) max_dupes = st.number_input("Max acceptable dupes?", value=1000, min_value=1, max_value=1000, step=1) max_finish_percentile = st.number_input("Max acceptable finish percentile?", value=1.00, min_value=0.00, max_value=1.00, step=.001) max_lineup_edge = st.number_input("Max acceptable Lineup Edge?", value=1.00, min_value=-1.00, max_value=1.00, step=.001) if sport_var in stacking_sports: stack_include_toggle = st.selectbox("Include specific stacks?", options=['All Stacks', 'Specific Stacks'], index=0) stack_selections = st.multiselect("If Specific Stacks, Which to include?", options=sorted(list(set(st.session_state['stack_dict'].values()))), default=[]) stack_remove_toggle = st.selectbox("Remove specific stacks?", options=['No', 'Yes'], index=0) stack_remove = st.multiselect("If Specific Stacks, Which to remove?", options=sorted(list(set(st.session_state['stack_dict'].values()))), default=[]) submitted_col, export_col = st.columns(2) st.info("Portfolio Button applies to your overall Portfolio, Export button applies to your Custom Export") with submitted_col: reg_submitted = st.form_submit_button("Portfolio") with export_col: exp_submitted = st.form_submit_button("Export") if reg_submitted: st.session_state['settings_base'] = False # Use index-based filtering instead of copying DataFrame filter_mask = ( (st.session_state['working_frame']['salary'] >= min_salary) & (st.session_state['working_frame']['salary'] <= max_salary) & (st.session_state['working_frame']['median'] >= min_proj) & (st.session_state['working_frame']['median'] <= max_proj) & (st.session_state['working_frame']['Own'] >= min_own) & (st.session_state['working_frame']['Own'] <= max_own) & (st.session_state['working_frame']['Dupes'] >= min_dupes) & (st.session_state['working_frame']['Dupes'] <= max_dupes) & (st.session_state['working_frame']['Finish_percentile'] >= min_finish_percentile) & (st.session_state['working_frame']['Finish_percentile'] <= max_finish_percentile) & (st.session_state['working_frame']['Lineup Edge'] >= min_lineup_edge) & (st.session_state['working_frame']['Lineup Edge'] <= max_lineup_edge) ) # Handle stack filtering if 'Stack' in st.session_state['working_frame'].columns: if stack_include_toggle != 'All Stacks': filter_mask &= st.session_state['working_frame']['Stack'].isin(stack_selections) if stack_remove_toggle == 'Yes': filter_mask &= ~st.session_state['working_frame']['Stack'].isin(stack_remove) # Apply all filters at once st.session_state['working_frame'] = st.session_state['working_frame'][filter_mask].sort_values(by='median', ascending=False).reset_index(drop=True) st.session_state['export_merge'] = st.session_state['working_frame'].copy() if exp_submitted: st.session_state['settings_base'] = False # Use index-based filtering for export_base export_filter_mask = ( (st.session_state['export_base']['salary'] >= min_salary) & (st.session_state['export_base']['salary'] <= max_salary) & (st.session_state['export_base']['median'] >= min_proj) & (st.session_state['export_base']['median'] <= max_proj) & (st.session_state['export_base']['Own'] >= min_own) & (st.session_state['export_base']['Own'] <= max_own) & (st.session_state['export_base']['Dupes'] >= min_dupes) & (st.session_state['export_base']['Dupes'] <= max_dupes) & (st.session_state['export_base']['Finish_percentile'] >= min_finish_percentile) & (st.session_state['export_base']['Finish_percentile'] <= max_finish_percentile) & (st.session_state['export_base']['Lineup Edge'] >= min_lineup_edge) & (st.session_state['export_base']['Lineup Edge'] <= max_lineup_edge) ) if 'Stack' in st.session_state['export_base'].columns: if stack_include_toggle != 'All Stacks': export_filter_mask &= st.session_state['export_base']['Stack'].isin(stack_selections) if stack_remove_toggle == 'Yes': export_filter_mask &= ~st.session_state['export_base']['Stack'].isin(stack_remove) st.session_state['export_base'] = st.session_state['export_base'][export_filter_mask].sort_values(by='median', ascending=False).reset_index(drop=True) st.session_state['export_merge'] = st.session_state['export_base'].copy() with st.expander('Micro Filter Options'): with st.form(key='micro_filter_form'): player_names = set() for col in st.session_state['working_frame'].columns: if col not in excluded_cols: player_names.update(st.session_state['working_frame'][col].unique()) if type_var == 'Showdown': cpt_flex_focus = st.selectbox("Focus on Overall, CPT, or FLEX?", options=['Overall', 'CPT', 'FLEX'], index=0) player_lock = st.multiselect("Lock players?", options=sorted(list(player_names)), default=[]) player_remove = st.multiselect("Remove players?", options=sorted(list(player_names)), default=[]) team_include = st.multiselect("Include teams?", options=sorted(list(set(st.session_state['projections_df']['team'].unique()))), default=[]) team_remove = st.multiselect("Remove teams?", options=sorted(list(set(st.session_state['projections_df']['team'].unique()))), default=[]) if sport_var in stacking_sports: size_include = st.multiselect("Include sizes?", options=sorted(list(set(st.session_state['working_frame']['Size'].unique()))), default=[]) else: size_include = [] if sport_var == 'NFL': qb_force = st.selectbox("Force QB Stacks?", options=['No', 'Yes'], index=0) else: qb_force = 'No' submitted_col, export_col = st.columns(2) st.info("Portfolio Button applies to your overall Portfolio, Export button applies to your Custom Export") with submitted_col: reg_submitted = st.form_submit_button("Portfolio") with export_col: exp_submitted = st.form_submit_button("Export") if reg_submitted: st.session_state['settings_base'] = False parsed_frame = st.session_state['working_frame'].copy() if player_remove: if type_var == 'Showdown': if cpt_flex_focus == 'CPT': remove_mask = parsed_frame.iloc[:, 0].apply( lambda player: not any(remove_player in str(player) for remove_player in player_remove) ) elif cpt_flex_focus == 'FLEX': remove_mask = parsed_frame.iloc[:, 1:].apply( lambda row: not any(player in list(row) for player in player_remove), axis=1 ) elif cpt_flex_focus == 'Overall': remove_mask = parsed_frame[st.session_state['player_columns']].apply( lambda row: not any(player in list(row) for player in player_remove), axis=1 ) else: # Create mask for lineups that contain any of the removed players remove_mask = parsed_frame[st.session_state['player_columns']].apply( lambda row: not any(player in list(row) for player in player_remove), axis=1 ) parsed_frame = parsed_frame[remove_mask] if player_lock: if type_var == 'Showdown': if cpt_flex_focus == 'CPT': lock_mask = parsed_frame.iloc[:, 0].apply( lambda player: any(lock_player in str(player) for lock_player in player_lock) ) elif cpt_flex_focus == 'FLEX': lock_mask = parsed_frame.iloc[:, 1:].apply( lambda row: all(player in list(row) for player in player_lock), axis=1 ) elif cpt_flex_focus == 'Overall': lock_mask = parsed_frame[st.session_state['player_columns']].apply( lambda row: all(player in list(row) for player in player_lock), axis=1 ) else: lock_mask = parsed_frame[st.session_state['player_columns']].apply( lambda row: all(player in list(row) for player in player_lock), axis=1 ) parsed_frame = parsed_frame[lock_mask] if team_include: if type_var == 'Showdown': if cpt_flex_focus == 'CPT': team_frame = parsed_frame.iloc[:, 0].apply( lambda x: x.map(st.session_state['map_dict']['team_map']) ) include_mask = team_frame.apply( lambda row: any(team in list(row) for team in team_include), axis=1 ) elif cpt_flex_focus == 'FLEX': team_frame = parsed_frame.iloc[:, 1:].apply( lambda x: x.map(st.session_state['map_dict']['team_map']) ) include_mask = team_frame.apply( lambda row: any(team in list(row) for team in team_include), axis=1 ) elif cpt_flex_focus == 'Overall': team_frame = parsed_frame[st.session_state['player_columns']].apply( lambda x: x.map(st.session_state['map_dict']['team_map']) ) include_mask = team_frame.apply( lambda row: any(team in list(row) for team in team_include), axis=1 ) else: # Create a copy of the frame with player names replaced by teams, excluding SP1 and SP2 filtered_player_columns = [col for col in st.session_state['player_columns'] if col not in ['SP1', 'SP2']] team_frame = parsed_frame[filtered_player_columns].apply( lambda x: x.map(st.session_state['map_dict']['team_map']) ) # Create mask for lineups that contain any of the included teams include_mask = team_frame.apply( lambda row: any(team in list(row) for team in team_include), axis=1 ) parsed_frame = parsed_frame[include_mask] if team_remove: if type_var == 'Showdown': if cpt_flex_focus == 'CPT': team_frame = parsed_frame.iloc[:, 0].apply( lambda x: x.map(st.session_state['map_dict']['team_map']) ) remove_mask = team_frame.apply( lambda row: not any(team in list(row) for team in team_remove), axis=1 ) elif cpt_flex_focus == 'FLEX': team_frame = parsed_frame.iloc[:, 1:].apply( lambda x: x.map(st.session_state['map_dict']['team_map']) ) remove_mask = team_frame.apply( lambda row: not any(team in list(row) for team in team_remove), axis=1 ) elif cpt_flex_focus == 'Overall': team_frame = parsed_frame[st.session_state['player_columns']].apply( lambda x: x.map(st.session_state['map_dict']['team_map']) ) remove_mask = team_frame.apply( lambda row: not any(team in list(row) for team in team_remove), axis=1 ) else: # Create a copy of the frame with player names replaced by teams, excluding SP1 and SP2 filtered_player_columns = [col for col in st.session_state['player_columns'] if col not in ['SP1', 'SP2']] team_frame = parsed_frame[filtered_player_columns].apply( lambda x: x.map(st.session_state['map_dict']['team_map']) ) # Create mask for lineups that don't contain any of the removed teams remove_mask = team_frame.apply( lambda row: not any(team in list(row) for team in team_remove), axis=1 ) parsed_frame = parsed_frame[remove_mask] if size_include: parsed_frame = parsed_frame[parsed_frame['Size'].isin(size_include)] if qb_force == 'Yes': if type_var == 'Classic': # Get team for the first player column for each lineup team_frame = parsed_frame.iloc[:, 0].map(st.session_state['map_dict']['team_map']) # Create mask where the first player's team matches the Stack column include_mask = team_frame == parsed_frame['Stack'] parsed_frame = parsed_frame[include_mask] st.session_state['working_frame'] = parsed_frame.sort_values(by='median', ascending=False).reset_index(drop=True) st.session_state['export_merge'] = st.session_state['working_frame'].copy() elif exp_submitted: st.session_state['settings_base'] = False parsed_frame = st.session_state['export_base'].copy() if player_remove: if type_var == 'Showdown': if cpt_flex_focus == 'CPT': remove_mask = parsed_frame.iloc[:, 0].apply( lambda player: not any(remove_player in str(player) for remove_player in player_remove) ) elif cpt_flex_focus == 'FLEX': remove_mask = parsed_frame.iloc[:, 1:].apply( lambda row: not any(player in list(row) for player in player_remove), axis=1 ) elif cpt_flex_focus == 'Overall': remove_mask = parsed_frame[st.session_state['player_columns']].apply( lambda row: not any(player in list(row) for player in player_remove), axis=1 ) else: remove_mask = parsed_frame[st.session_state['player_columns']].apply( lambda row: not any(player in list(row) for player in player_remove), axis=1 ) parsed_frame = parsed_frame[remove_mask] if player_lock: if type_var == 'Showdown': if cpt_flex_focus == 'CPT': lock_mask = parsed_frame.iloc[:, 0].apply( lambda player: any(lock_player in str(player) for lock_player in player_lock) ) elif cpt_flex_focus == 'FLEX': lock_mask = parsed_frame.iloc[:, 1:].apply( lambda row: all(player in list(row) for player in player_lock), axis=1 ) elif cpt_flex_focus == 'Overall': lock_mask = parsed_frame[st.session_state['player_columns']].apply( lambda row: all(player in list(row) for player in player_lock), axis=1 ) else: lock_mask = parsed_frame[st.session_state['player_columns']].apply( lambda row: all(player in list(row) for player in player_lock), axis=1 ) parsed_frame = parsed_frame[lock_mask] if team_include: if type_var == 'Showdown': if cpt_flex_focus == 'CPT': team_frame = parsed_frame.iloc[:, 0].apply( lambda x: x.map(st.session_state['map_dict']['team_map']) ) include_mask = team_frame.apply( lambda row: any(team in list(row) for team in team_include), axis=1 ) elif cpt_flex_focus == 'FLEX': team_frame = parsed_frame.iloc[:, 1:].apply( lambda x: x.map(st.session_state['map_dict']['team_map']) ) include_mask = team_frame.apply( lambda row: any(team in list(row) for team in team_include), axis=1 ) elif cpt_flex_focus == 'Overall': team_frame = parsed_frame[st.session_state['player_columns']].apply( lambda x: x.map(st.session_state['map_dict']['team_map']) ) include_mask = team_frame.apply( lambda row: any(team in list(row) for team in team_include), axis=1 ) else: # Create a copy of the frame with player names replaced by teams, excluding SP1 and SP2 filtered_player_columns = [col for col in st.session_state['player_columns'] if col not in ['SP1', 'SP2']] team_frame = parsed_frame[filtered_player_columns].apply( lambda x: x.map(st.session_state['map_dict']['team_map']) ) # Create mask for lineups that contain any of the included teams include_mask = team_frame.apply( lambda row: any(team in list(row) for team in team_include), axis=1 ) parsed_frame = parsed_frame[include_mask] if team_remove: if type_var == 'Showdown': if cpt_flex_focus == 'CPT': team_frame = parsed_frame.iloc[:, 0].apply( lambda x: x.map(st.session_state['map_dict']['team_map']) ) remove_mask = team_frame.apply( lambda row: not any(team in list(row) for team in team_remove), axis=1 ) elif cpt_flex_focus == 'FLEX': team_frame = parsed_frame.iloc[:, 1:].apply( lambda x: x.map(st.session_state['map_dict']['team_map']) ) remove_mask = team_frame.apply( lambda row: not any(team in list(row) for team in team_remove), axis=1 ) elif cpt_flex_focus == 'Overall': team_frame = parsed_frame[st.session_state['player_columns']].apply( lambda x: x.map(st.session_state['map_dict']['team_map']) ) remove_mask = team_frame.apply( lambda row: not any(team in list(row) for team in team_remove), axis=1 ) else: # Create a copy of the frame with player names replaced by teams, excluding SP1 and SP2 filtered_player_columns = [col for col in st.session_state['player_columns'] if col not in ['SP1', 'SP2']] team_frame = parsed_frame[filtered_player_columns].apply( lambda x: x.map(st.session_state['map_dict']['team_map']) ) # Create mask for lineups that don't contain any of the removed teams remove_mask = team_frame.apply( lambda row: not any(team in list(row) for team in team_remove), axis=1 ) parsed_frame = parsed_frame[remove_mask] if size_include: parsed_frame = parsed_frame[parsed_frame['Size'].isin(size_include)] st.session_state['export_base'] = parsed_frame.sort_values(by='median', ascending=False).reset_index(drop=True) st.session_state['export_merge'] = st.session_state['export_base'].copy() with st.expander('Trimming Options'): with st.form(key='trim_form'): st.write("Sorting and trimming variables:") perf_var, own_var = st.columns(2) with perf_var: performance_type = st.selectbox("Sorting variable", ['median', 'Own', 'Weighted Own'], key='sort_var') with own_var: own_type = st.selectbox("Trimming variable", ['Own', 'Geomean', 'Weighted Own', 'Diversity'], key='trim_var') trim_slack_var = st.number_input("Trim slack (percentile addition to trimming variable ceiling)", value=0.0, min_value=0.0, max_value=1.0, step=0.1, key='trim_slack') st.write("Sorting threshold range:") min_sort, max_sort = st.columns(2) with min_sort: performance_threshold_low = st.number_input("Min", value=0.0, min_value=0.0, step=1.0, key='min_sort') with max_sort: performance_threshold_high = st.number_input("Max", value=float(st.session_state['trimming_dict_maxes'][performance_type]), min_value=0.0, step=1.0, key='max_sort') st.write("Trimming threshold range:") min_trim, max_trim = st.columns(2) with min_trim: own_threshold_low = st.number_input("Min", value=0.0, min_value=0.0, step=1.0, key='min_trim') with max_trim: own_threshold_high = st.number_input("Max", value=float(st.session_state['trimming_dict_maxes'][own_type]), min_value=0.0, step=1.0, key='max_trim') submitted_col, export_col = st.columns(2) st.info("Portfolio Button applies to your overall Portfolio, Export button applies to your Custom Export") with submitted_col: reg_submitted = st.form_submit_button("Portfolio") with export_col: exp_submitted = st.form_submit_button("Export") if reg_submitted: st.session_state['settings_base'] = False st.write('initiated') parsed_frame = st.session_state['working_frame'].copy() parsed_frame = trim_portfolio(parsed_frame, trim_slack_var, performance_type, own_type, performance_threshold_high, performance_threshold_low, own_threshold_high, own_threshold_low) st.session_state['working_frame'] = parsed_frame.sort_values(by='median', ascending=False) st.session_state['export_merge'] = st.session_state['working_frame'].copy() elif exp_submitted: st.session_state['settings_base'] = False parsed_frame = st.session_state['export_base'].copy() parsed_frame = trim_portfolio(parsed_frame, trim_slack_var, performance_type, own_type, performance_threshold_high, performance_threshold_low, own_threshold_high, own_threshold_low) st.session_state['export_base'] = parsed_frame.sort_values(by='median', ascending=False) st.session_state['export_merge'] = st.session_state['export_base'].copy() with st.expander('Presets'): st.info("Still heavily in testing here, I'll announce when they are ready for use.") with st.form(key='Small Field Preset'): preset_choice = st.selectbox("Preset", options=['Small Field (Heavy Own)', 'Large Field (Manage Diversity)', 'Hedge Chalk (Manage Leverage)', 'Volatility (Heavy Lineup Edge)'], index=0) lineup_target = st.number_input("Lineups to produce", value=150, min_value=1, step=1) submitted_col, export_col = st.columns(2) st.info("Portfolio Button applies to your overall Portfolio, Export button applies to your Custom Export") with submitted_col: reg_submitted = st.form_submit_button("Portfolio") with export_col: exp_submitted = st.form_submit_button("Export") if reg_submitted: st.session_state['settings_base'] = False if preset_choice == 'Small Field (Heavy Own)': parsed_frame = small_field_preset(st.session_state['working_frame'], lineup_target, excluded_cols, sport_var) elif preset_choice == 'Large Field (Manage Diversity)': parsed_frame = large_field_preset(st.session_state['working_frame'], lineup_target, excluded_cols, sport_var) elif preset_choice == 'Volatility (Heavy Lineup Edge)': parsed_frame = volatility_preset(st.session_state['working_frame'], lineup_target, excluded_cols, sport_var) elif preset_choice == 'Hedge Chalk (Manage Leverage)': parsed_frame = hedging_preset(st.session_state['working_frame'], lineup_target, st.session_state['projections_df'], sport_var) elif preset_choice == 'Reduce Volatility (Manage Own)': parsed_frame = reduce_volatility_preset(st.session_state['working_frame'], lineup_target, excluded_cols, sport_var) st.session_state['working_frame'] = parsed_frame.reset_index(drop=True) st.session_state['export_merge'] = st.session_state['working_frame'].copy() elif exp_submitted: st.session_state['settings_base'] = False parsed_frame = st.session_state['export_base'].copy() if preset_choice == 'Small Field (Heavy Own)': parsed_frame = small_field_preset(st.session_state['export_base'], lineup_target, excluded_cols, sport_var) elif preset_choice == 'Large Field (Manage Diversity)': parsed_frame = large_field_preset(st.session_state['export_base'], lineup_target, excluded_cols, sport_var) elif preset_choice == 'Volatility (Heavy Lineup Edge)': parsed_frame = volatility_preset(st.session_state['export_base'], lineup_target, excluded_cols, sport_var) elif preset_choice == 'Hedge Chalk (Manage Leverage)': parsed_frame = hedging_preset(st.session_state['export_base'], lineup_target, st.session_state['projections_df'], sport_var) elif preset_choice == 'Reduce Volatility (Manage Own)': parsed_frame = reduce_volatility_preset(st.session_state['export_base'], lineup_target, excluded_cols, sport_var) st.session_state['export_base'] = parsed_frame.reset_index(drop=True) st.session_state['export_merge'] = st.session_state['export_base'].copy() with st.expander('Stratify'): with st.form(key='Stratification'): sorting_choice = st.selectbox("Stat Choice", options=['median', 'Own', 'Weighted Own', 'Geomean', 'Lineup Edge', 'Finish_percentile', 'Diversity'], index=0) lineup_target = st.number_input("Lineups to produce", value=150, min_value=1, step=1) strat_sample = st.slider("Sample range", value=[0.0, 100.0], min_value=0.0, max_value=100.0, step=1.0) submitted_col, export_col = st.columns(2) st.info("Portfolio Button applies to your overall Portfolio, Export button applies to your Custom Export") with submitted_col: reg_submitted = st.form_submit_button("Portfolio") with export_col: exp_submitted = st.form_submit_button("Export") if reg_submitted: st.session_state['settings_base'] = False parsed_frame = stratification_function(st.session_state['working_frame'], lineup_target, excluded_cols, sport_var, sorting_choice, strat_sample[0], strat_sample[1]) st.session_state['working_frame'] = parsed_frame.reset_index(drop=True) st.session_state['export_merge'] = st.session_state['working_frame'].copy() elif exp_submitted: st.session_state['settings_base'] = False parsed_frame = stratification_function(st.session_state['export_base'], lineup_target, excluded_cols, sport_var, sorting_choice, strat_sample[0], strat_sample[1]) st.session_state['export_base'] = parsed_frame.reset_index(drop=True) st.session_state['export_merge'] = st.session_state['export_base'].copy() with st.expander('Conditionals Manager (players)'): # a set of functions for removing lineups that contain a conditional between players and stacks with st.form(key='conditional_players_form'): player_names = set() for col in st.session_state['working_frame'].columns: if col not in excluded_cols: player_names.update(st.session_state['working_frame'][col].unique()) keep_remove_var = st.selectbox("Conditional:", options=['Keep', 'Remove'], index=0) conditional_side_alpha = st.multiselect("Lineups containing:", options=sorted(list(player_names)), default=[]) cpt_flex_alpha = st.selectbox("in slot:", options=['Overall', 'CPT', 'FLEX'], index=0, key='cpt_flex_alpha') conditional_var = st.selectbox("where they also contain:", options=['Any', 'All', 'None'], index=0) conditional_side_beta = st.multiselect("of the following player(s):", options=sorted(list(player_names)), default=[]) cpt_flex_beta = st.selectbox("in slot:", options=['Overall', 'CPT', 'FLEX'], index=0, key='cpt_flex_beta') submitted_col, export_col = st.columns(2) st.info("Portfolio Button applies to your overall Portfolio, Export button applies to your Custom Export") with submitted_col: reg_submitted = st.form_submit_button("Portfolio") with export_col: exp_submitted = st.form_submit_button("Export") if reg_submitted: st.session_state['settings_base'] = False parsed_frame = st.session_state['working_frame'].copy() # Check if we have players selected for both alpha and beta sides if conditional_side_alpha and conditional_side_beta: # Create boolean mask for rows containing ALL players from alpha side alpha_mask = pd.Series([True] * len(parsed_frame), index=parsed_frame.index) for player in conditional_side_alpha: if type_var == 'Showdown': if cpt_flex_alpha == 'Overall': player_present = parsed_frame.apply(lambda row: player in row.values, axis=1) elif cpt_flex_alpha == 'CPT': player_present = parsed_frame.iloc[:, 0].apply(lambda row: player in row) elif cpt_flex_alpha == 'FLEX': player_present = parsed_frame.iloc[:, 1:].apply(lambda row: player in row.values, axis=1) else: player_present = parsed_frame.apply(lambda row: player in row.values, axis=1) alpha_mask = alpha_mask & player_present # Only apply beta logic to rows that match alpha condition rows_to_process = alpha_mask # For rows that match alpha condition, check beta condition if conditional_var == 'Any': # Check if row contains ANY of the beta players beta_mask = pd.Series([False] * len(parsed_frame), index=parsed_frame.index) for player in conditional_side_beta: if type_var == 'Showdown': if cpt_flex_beta == 'Overall': player_present = parsed_frame.apply(lambda row: player in row.values, axis=1) elif cpt_flex_beta == 'CPT': player_present = parsed_frame.iloc[:, 0].apply(lambda row: player in row) elif cpt_flex_beta == 'FLEX': player_present = parsed_frame.iloc[:, 1:].apply(lambda row: player in row.values, axis=1) else: player_present = parsed_frame.apply(lambda row: player in row.values, axis=1) beta_mask = beta_mask | player_present elif conditional_var == 'All': # Check if row contains ALL of the beta players beta_mask = pd.Series([True] * len(parsed_frame), index=parsed_frame.index) for player in conditional_side_beta: if type_var == 'Showdown': if cpt_flex_beta == 'Overall': player_present = parsed_frame.apply(lambda row: player in row.values, axis=1) elif cpt_flex_beta == 'CPT': player_present = parsed_frame.iloc[:, 0].apply(lambda row: player in row) elif cpt_flex_beta == 'FLEX': player_present = parsed_frame.iloc[:, 1:].apply(lambda row: player in row.values, axis=1) else: player_present = parsed_frame.apply(lambda row: player in row.values, axis=1) beta_mask = beta_mask & player_present elif conditional_var == 'None': # Check if row contains NONE of the beta players beta_mask = pd.Series([True] * len(parsed_frame), index=parsed_frame.index) for player in conditional_side_beta: if type_var == 'Showdown': if cpt_flex_beta == 'Overall': player_present = parsed_frame.apply(lambda row: player in row.values, axis=1) elif cpt_flex_beta == 'CPT': player_present = parsed_frame.iloc[:, 0].apply(lambda row: player in row) elif cpt_flex_beta == 'FLEX': player_present = parsed_frame.iloc[:, 1:].apply(lambda row: player in row.values, axis=1) else: player_present = parsed_frame.apply(lambda row: player in row.values, axis=1) player_present = parsed_frame.apply(lambda row: player in row.values, axis=1) beta_mask = beta_mask & (~player_present) # Combine conditions: alpha_mask AND beta_mask final_condition = rows_to_process & beta_mask # Apply keep or remove logic if keep_remove_var == 'Keep': parsed_frame = parsed_frame[~rows_to_process | final_condition] else: # Remove parsed_frame = parsed_frame[~final_condition] elif conditional_side_alpha: # Only alpha side specified - filter based on presence of alpha players alpha_mask = pd.Series([True] * len(parsed_frame), index=parsed_frame.index) for player in conditional_side_alpha: if type_var == 'Showdown': if cpt_flex_alpha == 'Overall': player_present = parsed_frame.apply(lambda row: player in row.values, axis=1) elif cpt_flex_alpha == 'CPT': player_present = parsed_frame.iloc[:, 0].apply(lambda row: player in row) elif cpt_flex_alpha == 'FLEX': player_present = parsed_frame.iloc[:, 1:].apply(lambda row: player in row.values, axis=1) else: player_present = parsed_frame.apply(lambda row: player in row.values, axis=1) player_present = parsed_frame.apply(lambda row: player in row.values, axis=1) alpha_mask = alpha_mask & player_present if keep_remove_var == 'Keep': parsed_frame = parsed_frame[alpha_mask] else: # Remove parsed_frame = parsed_frame[~alpha_mask] st.session_state['working_frame'] = parsed_frame.sort_values(by='median', ascending=False).reset_index(drop=True) st.session_state['export_merge'] = st.session_state['working_frame'].copy() elif exp_submitted: st.session_state['settings_base'] = False parsed_frame = st.session_state['export_base'].copy() # Check if we have players selected for both alpha and beta sides if conditional_side_alpha and conditional_side_beta: # Create boolean mask for rows containing ALL players from alpha side alpha_mask = pd.Series([True] * len(parsed_frame), index=parsed_frame.index) for player in conditional_side_alpha: if type_var == 'Showdown': if cpt_flex_alpha == 'Overall': player_present = parsed_frame.apply(lambda row: player in row.values, axis=1) elif cpt_flex_alpha == 'CPT': player_present = parsed_frame.iloc[:, 0].apply(lambda row: player in row) elif cpt_flex_alpha == 'FLEX': player_present = parsed_frame.iloc[:, 1:].apply(lambda row: player in row.values, axis=1) else: player_present = parsed_frame.apply(lambda row: player in row.values, axis=1) alpha_mask = alpha_mask & player_present # Only apply beta logic to rows that match alpha condition rows_to_process = alpha_mask # For rows that match alpha condition, check beta condition if conditional_var == 'Any': # Check if row contains ANY of the beta players beta_mask = pd.Series([False] * len(parsed_frame), index=parsed_frame.index) for player in conditional_side_beta: if type_var == 'Showdown': if cpt_flex_beta == 'Overall': player_present = parsed_frame.apply(lambda row: player in row.values, axis=1) elif cpt_flex_beta == 'CPT': player_present = parsed_frame.iloc[:, 0].apply(lambda row: player in row) elif cpt_flex_beta == 'FLEX': player_present = parsed_frame.iloc[:, 1:].apply(lambda row: player in row.values, axis=1) else: player_present = parsed_frame.apply(lambda row: player in row.values, axis=1) beta_mask = beta_mask | player_present elif conditional_var == 'All': # Check if row contains ALL of the beta players beta_mask = pd.Series([True] * len(parsed_frame), index=parsed_frame.index) for player in conditional_side_beta: if type_var == 'Showdown': if cpt_flex_beta == 'Overall': player_present = parsed_frame.apply(lambda row: player in row.values, axis=1) elif cpt_flex_beta == 'CPT': player_present = parsed_frame.iloc[:, 0].apply(lambda row: player in row) elif cpt_flex_beta == 'FLEX': player_present = parsed_frame.iloc[:, 1:].apply(lambda row: player in row.values, axis=1) else: player_present = parsed_frame.apply(lambda row: player in row.values, axis=1) beta_mask = beta_mask & player_present elif conditional_var == 'None': # Check if row contains NONE of the beta players beta_mask = pd.Series([True] * len(parsed_frame), index=parsed_frame.index) for player in conditional_side_beta: if type_var == 'Showdown': if cpt_flex_beta == 'Overall': player_present = parsed_frame.apply(lambda row: player in row.values, axis=1) elif cpt_flex_beta == 'CPT': player_present = parsed_frame.iloc[:, 0].apply(lambda row: player in row) elif cpt_flex_beta == 'FLEX': player_present = parsed_frame.iloc[:, 1:].apply(lambda row: player in row.values, axis=1) else: player_present = parsed_frame.apply(lambda row: player in row.values, axis=1) player_present = parsed_frame.apply(lambda row: player in row.values, axis=1) beta_mask = beta_mask & (~player_present) # Combine conditions: alpha_mask AND beta_mask final_condition = rows_to_process & beta_mask # Apply keep or remove logic if keep_remove_var == 'Keep': parsed_frame = parsed_frame[~rows_to_process | final_condition] else: # Remove parsed_frame = parsed_frame[~final_condition] elif conditional_side_alpha: # Only alpha side specified - filter based on presence of alpha players alpha_mask = pd.Series([True] * len(parsed_frame), index=parsed_frame.index) for player in conditional_side_alpha: if type_var == 'Showdown': if cpt_flex_alpha == 'Overall': player_present = parsed_frame.apply(lambda row: player in row.values, axis=1) elif cpt_flex_alpha == 'CPT': player_present = parsed_frame.iloc[:, 0].apply(lambda row: player in row) elif cpt_flex_alpha == 'FLEX': player_present = parsed_frame.iloc[:, 1:].apply(lambda row: player in row.values, axis=1) else: player_present = parsed_frame.apply(lambda row: player in row.values, axis=1) player_present = parsed_frame.apply(lambda row: player in row.values, axis=1) alpha_mask = alpha_mask & player_present if keep_remove_var == 'Keep': parsed_frame = parsed_frame[alpha_mask] else: # Remove parsed_frame = parsed_frame[~alpha_mask] st.session_state['export_base'] = parsed_frame.sort_values(by='median', ascending=False).reset_index(drop=True) st.session_state['export_merge'] = st.session_state['export_base'].copy() with st.expander('Exposure Management'): with st.form(key='Exposures'): exposure_player = st.selectbox("Player", options=sorted(list(set(st.session_state['projections_df']['player_names'].unique()))), key='exposure_player') exposure_target = st.number_input("Target Exposure", value=.50, min_value=0.0, max_value=1.0, step=0.01) if 'Stack' in st.session_state['working_frame'].columns: ignore_stacks = st.multiselect("Ignore Specific Stacks?", options=sorted(list(set(st.session_state['projections_df']['team'].unique()))), default=[]) else: ignore_stacks = [] remove_teams_exposure = st.multiselect("Removed/Locked teams?", options=sorted(list(set(st.session_state['projections_df']['team'].unique()))), default=[]) specific_replacements = st.multiselect("Specific Replacements?", options=sorted(list(set(st.session_state['projections_df']['player_names'].unique()))), default=[]) # Considering making it so Showdown is CPT/FLEX not column specific but eh specific_columns = st.multiselect("Specific Positions?", options=sorted(list(st.session_state['player_columns'])), default=[]) submitted_col, export_col = st.columns(2) st.info("Portfolio Button applies to your overall Portfolio, Export button applies to your Custom Export") with submitted_col: reg_submitted = st.form_submit_button("Portfolio") with export_col: exp_submitted = st.form_submit_button("Export") if reg_submitted: st.session_state['settings_base'] = False # Prepare DataFrame for exposure_spread to avoid categorical issues working_frame_prepared = prepare_dataframe_for_exposure_spread(st.session_state['working_frame'], st.session_state['player_columns']) parsed_frame = exposure_spread(working_frame_prepared, st.session_state['exposure_player'], exposure_target, ignore_stacks, remove_teams_exposure, specific_replacements, specific_columns, st.session_state['projections_df'], sport_var, type_var, salary_max, stacking_sports) # Use consolidated calculation function parsed_frame = calculate_lineup_metrics( parsed_frame, st.session_state['player_columns'], st.session_state['map_dict'], type_var, sport_var, st.session_state['projections_df'] ) st.session_state['working_frame'] = parsed_frame.reset_index(drop=True) # st.session_state['working_frame'] = predict_dupes(st.session_state['working_frame'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var) st.session_state['working_frame'] = reassess_edge(st.session_state['working_frame'], st.session_state['base_frame'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var, salary_max) team_dict = dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])) st.session_state['working_frame']['Stack'] = st.session_state['working_frame'].apply( lambda row: Counter( team_dict.get(player, '') for player in row[stack_column_dict[site_var][type_var][sport_var]] if team_dict.get(player, '') != '' ).most_common(1)[0][0] if any(team_dict.get(player, '') for player in row[stack_column_dict[site_var][type_var][sport_var]]) else '', axis=1 ) st.session_state['working_frame']['Size'] = st.session_state['working_frame'].apply( lambda row: Counter( team_dict.get(player, '') for player in row[stack_column_dict[site_var][type_var][sport_var]] if team_dict.get(player, '') != '' ).most_common(1)[0][1] if any(team_dict.get(player, '') for player in row[stack_column_dict[site_var][type_var][sport_var]]) else 0, axis=1 ) st.session_state['export_merge'] = st.session_state['working_frame'].copy() elif exp_submitted: st.session_state['settings_base'] = False # Prepare DataFrame for exposure_spread to avoid categorical issues export_base_prepared = prepare_dataframe_for_exposure_spread(st.session_state['export_base'], st.session_state['player_columns']) parsed_frame = exposure_spread(export_base_prepared, st.session_state['exposure_player'], exposure_target, ignore_stacks, remove_teams_exposure, specific_replacements, specific_columns, st.session_state['projections_df'], sport_var, type_var, salary_max, stacking_sports) # Use consolidated calculation function for export parsed_frame = calculate_lineup_metrics( parsed_frame, st.session_state['player_columns'], st.session_state['map_dict'], type_var, sport_var, st.session_state['projections_df'] ) st.session_state['export_base'] = parsed_frame.reset_index(drop=True) # st.session_state['export_base'] = predict_dupes(st.session_state['export_base'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var) st.session_state['export_base'] = reassess_edge(st.session_state['export_base'], st.session_state['base_frame'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var, salary_max) team_dict = dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])) st.session_state['working_frame']['Stack'] = st.session_state['working_frame'].apply( lambda row: Counter( team_dict.get(player, '') for player in row[stack_column_dict[site_var][type_var][sport_var]] if team_dict.get(player, '') != '' ).most_common(1)[0][0] if any(team_dict.get(player, '') for player in row[stack_column_dict[site_var][type_var][sport_var]]) else '', axis=1 ) st.session_state['working_frame']['Size'] = st.session_state['working_frame'].apply( lambda row: Counter( team_dict.get(player, '') for player in row[stack_column_dict[site_var][type_var][sport_var]] if team_dict.get(player, '') != '' ).most_common(1)[0][1] if any(team_dict.get(player, '') for player in row[stack_column_dict[site_var][type_var][sport_var]]) else 0, axis=1 ) st.session_state['export_merge'] = st.session_state['export_base'].copy() with st.container(): if 'export_base' not in st.session_state: st.session_state['export_base'] = pd.DataFrame(columns=st.session_state['working_frame'].columns) display_frame_source = st.selectbox("Display:", options=['Portfolio', 'Export Base'], key='display_frame_source') if display_frame_source == 'Portfolio': st.session_state['display_frame'] = st.session_state['working_frame'] st.session_state['export_file'] = st.session_state['display_frame'].copy() for col in st.session_state['export_file'].columns: if col not in excluded_cols: st.session_state['export_file'][col] = st.session_state['export_file'][col].map(st.session_state['export_dict']) elif display_frame_source == 'Export Base': st.session_state['display_frame'] = st.session_state['export_base'] st.session_state['export_file'] = st.session_state['display_frame'].copy() for col in st.session_state['export_file'].columns: if col not in excluded_cols: # Create position-specific export dictionary on the fly position_dict = create_position_export_dict(col, st.session_state['csv_file'], site_var, type_var, sport_var) st.session_state['export_file'][col] = st.session_state['export_file'][col].map(position_dict) if 'export_file' in st.session_state: download_port, merge_port, clear_export, add_rows_col, remove_rows_col, blank_export_col = st.columns([1, 1, 1, 2, 2, 6]) with download_port: st.download_button(label="Download Portfolio", data=st.session_state['export_file'].to_csv(index=False), file_name="portfolio.csv", mime="text/csv") with merge_port: if st.button("Add all to Custom Export"): st.session_state['export_base'] = pd.concat([st.session_state['export_base'], st.session_state['export_merge']]) st.session_state['export_base'] = st.session_state['export_base'].drop_duplicates() st.session_state['export_base'] = st.session_state['export_base'].reset_index(drop=True) with clear_export: if st.button("Clear Custom Export"): st.session_state['export_base'] = pd.DataFrame(columns=st.session_state['working_frame'].columns) if display_frame_source == 'Portfolio': st.session_state['display_frame'] = st.session_state['working_frame'] elif display_frame_source == 'Export Base': st.session_state['display_frame'] = st.session_state['export_base'] with add_rows_col: select_custom_index = st.multiselect("Select rows to add (based on first column):", options=st.session_state['display_frame'].index, default=[]) if st.button("Add selected to Custom Export"): st.session_state['export_base'] = pd.concat([st.session_state['export_base'], st.session_state['display_frame'].loc[select_custom_index]]) st.session_state['export_base'] = st.session_state['export_base'].drop_duplicates() st.session_state['export_base'] = st.session_state['export_base'].reset_index(drop=True) with remove_rows_col: remove_custom_index = st.multiselect("Remove rows (based on first column):", options=st.session_state['display_frame'].index, default=[]) if st.button("Remove selected from Display"): st.session_state['display_frame'] = st.session_state['display_frame'].drop(remove_custom_index) st.session_state['display_frame'] = st.session_state['display_frame'].drop_duplicates() st.session_state['display_frame'] = st.session_state['display_frame'].reset_index(drop=True) total_rows = len(st.session_state['display_frame']) rows_per_page = 500 total_pages = (total_rows + rows_per_page - 1) // rows_per_page # Ceiling division # Initialize page number in session state if not exists if 'current_page' not in st.session_state: st.session_state.current_page = 1 # Display current page range info and pagination control in a single line st.write( f"Showing rows {(st.session_state.current_page - 1) * rows_per_page + 1} " f"to {min(st.session_state.current_page * rows_per_page, total_rows)} of {total_rows}" ) # Add page number input st.session_state.current_page = st.number_input( f"Page (1-{total_pages})", min_value=1, max_value=total_pages, value=st.session_state.current_page ) # Calculate start and end indices for current page start_idx = (st.session_state.current_page - 1) * rows_per_page end_idx = min(start_idx + rows_per_page, total_rows) # Get the subset of data for the current page current_page_data = st.session_state['display_frame'].iloc[start_idx:end_idx] # Display the paginated dataframe first st.dataframe( current_page_data.style .background_gradient(axis=0) .background_gradient(cmap='RdYlGn') .background_gradient(cmap='RdYlGn_r', subset=['Finish_percentile', 'Own', 'Dupes']) .format(freq_format, precision=2), column_config={ "Finish_percentile": st.column_config.NumberColumn( "Finish%", help="Projected finishing percentile", width="small", min_value=0.0, max_value=1.0 ), "Lineup Edge": st.column_config.NumberColumn( "Edge", help="Projected lineup edge", width="small", min_value=-1.0, max_value=1.0 ), "Diversity": st.column_config.NumberColumn( "Diversity", help="Projected lineup diversity", width="small", min_value=0.0, max_value=1.0 ), }, height=499, use_container_width=True ) player_stats_col, stack_stats_col, combos_col = st.tabs(['Player Stats', 'Stack Stats', 'Combos']) with player_stats_col: if st.button("Analyze Players", key='analyze_players'): player_stats = [] if st.session_state['settings_base'] and 'origin_player_exposures' in st.session_state and display_frame_source == 'Portfolio': st.session_state['player_summary'] = st.session_state['origin_player_exposures'] else: if type_var == 'Showdown': if sport_var == 'GOLF': for player in player_names: player_mask = st.session_state['display_frame'][st.session_state['player_columns']].apply( lambda row: player in list(row), axis=1 ) if player_mask.any(): player_stats.append({ 'Player': player, 'Position': st.session_state['map_dict']['pos_map'][player], 'Lineup Count': player_mask.sum(), 'Exposure': player_mask.sum() / len(st.session_state['display_frame']), 'Avg Median': st.session_state['display_frame'][player_mask]['median'].mean(), 'Avg Own': st.session_state['display_frame'][player_mask]['Own'].mean(), 'Avg Dupes': st.session_state['display_frame'][player_mask]['Dupes'].mean(), 'Avg Finish %': st.session_state['display_frame'][player_mask]['Finish_percentile'].mean(), 'Avg Lineup Edge': st.session_state['display_frame'][player_mask]['Lineup Edge'].mean(), 'Avg Diversity': st.session_state['display_frame'][player_mask]['Diversity'].mean(), }) else: for player in player_names: # Create mask for lineups where this player is Captain (first column) cpt_mask = st.session_state['display_frame'][st.session_state['player_columns'][0]] == player if cpt_mask.any(): player_stats.append({ 'Player': f"{player} (CPT)", 'Position': st.session_state['map_dict']['pos_map'][player], 'Lineup Count': cpt_mask.sum(), 'Exposure': cpt_mask.sum() / len(st.session_state['display_frame']), 'Avg Median': st.session_state['display_frame'][cpt_mask]['median'].mean(), 'Avg Own': st.session_state['display_frame'][cpt_mask]['Own'].mean(), 'Avg Dupes': st.session_state['display_frame'][cpt_mask]['Dupes'].mean(), 'Avg Finish %': st.session_state['display_frame'][cpt_mask]['Finish_percentile'].mean(), 'Avg Lineup Edge': st.session_state['display_frame'][cpt_mask]['Lineup Edge'].mean(), 'Avg Diversity': st.session_state['display_frame'][cpt_mask]['Diversity'].mean(), }) # Create mask for lineups where this player is FLEX (other columns) flex_mask = st.session_state['display_frame'][st.session_state['player_columns'][1:]].apply( lambda row: player in list(row), axis=1 ) if flex_mask.any(): player_stats.append({ 'Player': f"{player} (FLEX)", 'Position': st.session_state['map_dict']['pos_map'][player], 'Lineup Count': flex_mask.sum(), 'Exposure': flex_mask.sum() / len(st.session_state['display_frame']), 'Avg Median': st.session_state['display_frame'][flex_mask]['median'].mean(), 'Avg Own': st.session_state['display_frame'][flex_mask]['Own'].mean(), 'Avg Dupes': st.session_state['display_frame'][flex_mask]['Dupes'].mean(), 'Avg Finish %': st.session_state['display_frame'][flex_mask]['Finish_percentile'].mean(), 'Avg Lineup Edge': st.session_state['display_frame'][flex_mask]['Lineup Edge'].mean(), 'Avg Diversity': st.session_state['display_frame'][flex_mask]['Diversity'].mean(), }) else: if sport_var == 'CS2' or sport_var == 'LOL': # Handle Captain positions for player in player_names: # Create mask for lineups where this player is Captain (first column) cpt_mask = st.session_state['display_frame'][st.session_state['player_columns'][0]] == player if cpt_mask.any(): player_stats.append({ 'Player': f"{player} (CPT)", 'Position': st.session_state['map_dict']['pos_map'][player], 'Lineup Count': cpt_mask.sum(), 'Exposure': cpt_mask.sum() / len(st.session_state['display_frame']), 'Avg Median': st.session_state['display_frame'][cpt_mask]['median'].mean(), 'Avg Own': st.session_state['display_frame'][cpt_mask]['Own'].mean(), 'Avg Dupes': st.session_state['display_frame'][cpt_mask]['Dupes'].mean(), 'Avg Finish %': st.session_state['display_frame'][cpt_mask]['Finish_percentile'].mean(), 'Avg Lineup Edge': st.session_state['display_frame'][cpt_mask]['Lineup Edge'].mean(), 'Avg Diversity': st.session_state['display_frame'][cpt_mask]['Diversity'].mean(), }) # Create mask for lineups where this player is FLEX (other columns) flex_mask = st.session_state['display_frame'][st.session_state['player_columns'][1:]].apply( lambda row: player in list(row), axis=1 ) if flex_mask.any(): player_stats.append({ 'Player': f"{player} (FLEX)", 'Position': st.session_state['map_dict']['pos_map'][player], 'Lineup Count': flex_mask.sum(), 'Exposure': flex_mask.sum() / len(st.session_state['display_frame']), 'Avg Median': st.session_state['display_frame'][flex_mask]['median'].mean(), 'Avg Own': st.session_state['display_frame'][flex_mask]['Own'].mean(), 'Avg Dupes': st.session_state['display_frame'][flex_mask]['Dupes'].mean(), 'Avg Finish %': st.session_state['display_frame'][flex_mask]['Finish_percentile'].mean(), 'Avg Lineup Edge': st.session_state['display_frame'][flex_mask]['Lineup Edge'].mean(), 'Avg Diversity': st.session_state['display_frame'][flex_mask]['Diversity'].mean(), }) elif sport_var != 'CS2' and sport_var != 'LOL': # Original Classic format processing for player in player_names: player_mask = st.session_state['display_frame'][st.session_state['player_columns']].apply( lambda row: player in list(row), axis=1 ) if player_mask.any(): player_stats.append({ 'Player': player, 'Position': st.session_state['map_dict']['pos_map'][player], 'Lineup Count': player_mask.sum(), 'Exposure': player_mask.sum() / len(st.session_state['display_frame']), 'Avg Median': st.session_state['display_frame'][player_mask]['median'].mean(), 'Avg Own': st.session_state['display_frame'][player_mask]['Own'].mean(), 'Avg Dupes': st.session_state['display_frame'][player_mask]['Dupes'].mean(), 'Avg Finish %': st.session_state['display_frame'][player_mask]['Finish_percentile'].mean(), 'Avg Lineup Edge': st.session_state['display_frame'][player_mask]['Lineup Edge'].mean(), 'Avg Diversity': st.session_state['display_frame'][player_mask]['Diversity'].mean(), }) player_summary = pd.DataFrame(player_stats) player_summary = player_summary.sort_values('Lineup Count', ascending=False) st.session_state['player_summary'] = player_summary.copy() if 'origin_player_exposures' not in st.session_state: st.session_state['origin_player_exposures'] = player_summary.copy() st.subheader("Player Summary") st.dataframe( st.session_state['player_summary'].style .background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Avg Finish %', 'Avg Own', 'Avg Dupes']) .format({ 'Avg Median': '{:.2f}', 'Avg Own': '{:.2f}', 'Avg Dupes': '{:.2f}', 'Avg Finish %': '{:.2%}', 'Avg Lineup Edge': '{:.2%}', 'Exposure': '{:.2%}', 'Avg Diversity': '{:.2%}' }), height=400, use_container_width=True ) with stack_stats_col: if 'Stack' in st.session_state['display_frame'].columns: if st.button("Analyze Stacks", key='analyze_stacks'): stack_stats = [] stack_columns = [col for col in st.session_state['display_frame'].columns if col.startswith('Stack')] if st.session_state['settings_base'] and 'origin_stack_exposures' in st.session_state and display_frame_source == 'Portfolio': st.session_state['stack_summary'] = st.session_state['origin_stack_exposures'] else: for stack in st.session_state['stack_dict'].values(): stack_mask = st.session_state['display_frame']['Stack'] == stack if stack_mask.any(): stack_stats.append({ 'Stack': stack, 'Lineup Count': stack_mask.sum(), 'Exposure': stack_mask.sum() / len(st.session_state['display_frame']), 'Avg Median': st.session_state['display_frame'][stack_mask]['median'].mean(), 'Avg Own': st.session_state['display_frame'][stack_mask]['Own'].mean(), 'Avg Dupes': st.session_state['display_frame'][stack_mask]['Dupes'].mean(), 'Avg Finish %': st.session_state['display_frame'][stack_mask]['Finish_percentile'].mean(), 'Avg Lineup Edge': st.session_state['display_frame'][stack_mask]['Lineup Edge'].mean(), 'Avg Diversity': st.session_state['display_frame'][stack_mask]['Diversity'].mean(), }) stack_summary = pd.DataFrame(stack_stats) stack_summary = stack_summary.sort_values('Lineup Count', ascending=False).drop_duplicates() st.session_state['stack_summary'] = stack_summary.copy() if 'origin_stack_exposures' not in st.session_state: st.session_state['origin_stack_exposures'] = stack_summary.copy() st.subheader("Stack Summary") st.dataframe( st.session_state['stack_summary'].style .background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Avg Finish %', 'Avg Own', 'Avg Dupes']) .format({ 'Avg Median': '{:.2f}', 'Avg Own': '{:.2f}', 'Avg Dupes': '{:.2f}', 'Avg Finish %': '{:.2%}', 'Avg Lineup Edge': '{:.2%}', 'Exposure': '{:.2%}', 'Avg Diversity': '{:.2%}' }), height=400, use_container_width=True ) else: stack_summary = pd.DataFrame(columns=['Stack', 'Lineup Count', 'Avg Median', 'Avg Own', 'Avg Dupes', 'Avg Finish %', 'Avg Lineup Edge']) with combos_col: st.subheader("Player Combinations") # Add controls for combo analysis with st.form("combo_analysis_form"): combo_size_col, columns_excluded_col, combo_analyze_col = st.columns(3) with combo_size_col: combo_size = st.selectbox("Combo Size", [2, 3], key='combo_size') with columns_excluded_col: try: excluded_cols_extended = st.multiselect("Exclude Columns?", st.session_state['display_frame'].drop(columns=excluded_cols).columns, key='excluded_cols_extended') except: excluded_cols_extended = st.multiselect("Exclude Columns?", st.session_state['display_frame'].columns, key='excluded_cols_extended') with combo_analyze_col: submitted = st.form_submit_button("Analyze Combos") if submitted: st.session_state['combo_analysis'] = analyze_player_combos( st.session_state['display_frame'], excluded_cols + excluded_cols_extended, combo_size ) # Display results if 'combo_analysis' in st.session_state: st.dataframe( st.session_state['combo_analysis'].style .background_gradient(axis=0) .background_gradient(cmap='RdYlGn') .background_gradient(cmap='RdYlGn_r', subset=['Avg Finish %', 'Avg Own', 'Avg Dupes']) .format({ 'Avg Median': '{:.2f}', 'Avg Own': '{:.2f}', 'Avg Dupes': '{:.2f}', 'Avg Finish %': '{:.2%}', 'Avg Lineup Edge': '{:.2%}', 'Exposure': '{:.2%}', 'Avg Diversity': '{:.2%}' }), height=400, use_container_width=True ) else: st.info("Click 'Analyze Combos' to see the most common player combinations.")