import streamlit as st import numpy as np import pandas as pd import time import math from difflib import SequenceMatcher def calculate_weighted_ownership_vectorized(ownership_array): """ Vectorized version of calculate_weighted_ownership using NumPy operations. Args: ownership_array: 2D array of ownership values (rows x players) Returns: array: Calculated weighted ownership values for each row """ # Convert percentages to decimals and handle NaN values ownership_array = np.where(np.isnan(ownership_array), 0, ownership_array) / 100 # Calculate row means row_means = np.mean(ownership_array, axis=1, keepdims=True) # Calculate average of each value with the overall mean value_means = (ownership_array + row_means) / 2 # Take average of all those means avg_of_means = np.mean(value_means, axis=1) # Multiply by count of values weighted = avg_of_means * ownership_array.shape[1] # Subtract (max - min) for each row row_max = np.max(ownership_array, axis=1) row_min = np.min(ownership_array, axis=1) weighted = weighted - (row_max - row_min) # Convert back to percentage form return weighted * 10000 def calculate_weighted_ownership_wrapper(row_ownerships): """ Wrapper function for the original calculate_weighted_ownership to work with Pandas .apply() Args: row_ownerships: Series containing ownership values in percentage form Returns: float: Calculated weighted ownership value """ # Convert Series to 2D array for vectorized function ownership_array = row_ownerships.values.reshape(1, -1) return calculate_weighted_ownership_vectorized(ownership_array)[0] def calculate_player_similarity_score_vectorized(portfolio, player_columns): """ Vectorized version of calculate_player_similarity_score using NumPy operations. """ # Extract player data and convert to string array player_data = portfolio[player_columns].astype(str).fillna('').values # Get all unique players and create a mapping to numeric IDs all_players = set() for row in player_data: for val in row: if isinstance(val, str) and val.strip() != '': all_players.add(val) # Create player ID mapping player_to_id = {player: idx for idx, player in enumerate(sorted(all_players))} # Convert each row to a binary vector (1 if player is present, 0 if not) n_players = len(all_players) n_rows = len(portfolio) binary_matrix = np.zeros((n_rows, n_players), dtype=np.int8) # Vectorized binary matrix creation for i, row in enumerate(player_data): for val in row: if isinstance(val, str) and str(val).strip() != '' and str(val) in player_to_id: binary_matrix[i, player_to_id[str(val)]] = 1 # Vectorized Jaccard distance calculation intersection_matrix = np.dot(binary_matrix, binary_matrix.T) row_sums = np.sum(binary_matrix, axis=1) union_matrix = row_sums[:, np.newaxis] + row_sums - intersection_matrix # Calculate Jaccard distance: 1 - (intersection / union) with np.errstate(divide='ignore', invalid='ignore'): jaccard_similarity = np.divide(intersection_matrix, union_matrix, out=np.zeros_like(intersection_matrix, dtype=float), where=union_matrix != 0) jaccard_distance = 1 - jaccard_similarity # Exclude self-comparison and calculate average distance for each row np.fill_diagonal(jaccard_distance, 0) row_counts = n_rows - 1 similarity_scores = np.sum(jaccard_distance, axis=1) / row_counts # Normalize to 0-1 scale score_range = similarity_scores.max() - similarity_scores.min() if score_range > 0: similarity_scores = (similarity_scores - similarity_scores.min()) / score_range return similarity_scores def predict_dupes_vectorized(portfolio, maps_dict, site_var, type_var, Contest_Size, strength_var, sport_var): """ Vectorized version of predict_dupes using NumPy arrays for better performance. """ # Set multipliers based on strength if strength_var == 'Weak': dupes_multiplier = 0.75 percentile_multiplier = 0.90 elif strength_var == 'Average': dupes_multiplier = 1.00 percentile_multiplier = 1.00 elif strength_var == 'Sharp': dupes_multiplier = 1.25 percentile_multiplier = 1.10 max_ownership = max(maps_dict['own_map'].values()) / 100 average_ownership = np.mean(list(maps_dict['own_map'].values())) / 100 # Convert portfolio to NumPy arrays for faster operations portfolio_values = portfolio.values n_rows = len(portfolio) # Pre-allocate arrays for ownership data if site_var == 'Fanduel': if type_var == 'Showdown': num_players = 5 salary_cap = 60000 player_cols = list(range(5)) # First 5 columns are players elif type_var == 'Classic': if sport_var == 'WNBA': num_players = len([col for col in portfolio.columns if col not in ['salary', 'median', 'Own']]) salary_cap = 40000 player_cols = list(range(num_players)) else: num_players = len([col for col in portfolio.columns if col not in ['salary', 'median', 'Own']]) salary_cap = 60000 player_cols = list(range(num_players)) elif site_var == 'Draftkings': if type_var == 'Showdown': num_players = 6 salary_cap = 50000 player_cols = list(range(6)) elif type_var == 'Classic': if sport_var == 'CS2': num_players = 6 salary_cap = 50000 player_cols = list(range(6)) elif sport_var == 'LOL': num_players = 7 salary_cap = 50000 player_cols = list(range(7)) else: num_players = len([col for col in portfolio.columns if col not in ['salary', 'median', 'Own']]) salary_cap = 50000 player_cols = list(range(num_players)) # Pre-allocate ownership arrays ownership_array = np.zeros((n_rows, num_players), dtype=np.float32) ownership_rank_array = np.zeros((n_rows, num_players), dtype=np.float32) # Vectorized ownership mapping for i, col_idx in enumerate(player_cols): if i == 0 and type_var == 'Showdown': # Captain ownership_array[:, i] = np.vectorize(lambda x: maps_dict['cpt_own_map'].get(x, 0))(portfolio_values[:, col_idx]) / 100 ownership_rank_array[:, i] = np.vectorize(lambda x: maps_dict['cpt_own_map'].get(x, 0))(portfolio_values[:, col_idx]) else: # Flex players ownership_array[:, i] = np.vectorize(lambda x: maps_dict['own_map'].get(x, 0))(portfolio_values[:, col_idx]) / 100 ownership_rank_array[:, i] = np.vectorize(lambda x: maps_dict['own_map'].get(x, 0))(portfolio_values[:, col_idx]) # Calculate ranks for flex players (excluding captain) if type_var == 'Showdown': flex_ownerships = ownership_rank_array[:, 1:].flatten() flex_rank = pd.Series(flex_ownerships).rank(pct=True).values.reshape(n_rows, -1) ownership_rank_array[:, 1:] = flex_rank # Convert to percentile ranks ownership_rank_array = ownership_rank_array / 100 # Vectorized calculations own_product = np.prod(ownership_array, axis=1) own_average = (portfolio_values[:, portfolio.columns.get_loc('Own')].max() * 0.33) / 100 own_sum = np.sum(ownership_array, axis=1) avg_own_rank = np.mean(ownership_rank_array, axis=1) # Calculate dupes formula vectorized salary_col = portfolio.columns.get_loc('salary') own_col = portfolio.columns.get_loc('Own') dupes_calc = (own_product * avg_own_rank) * Contest_Size + \ ((portfolio_values[:, salary_col] - (salary_cap - portfolio_values[:, own_col])) / 100) - \ ((salary_cap - portfolio_values[:, salary_col]) / 100) dupes_calc *= dupes_multiplier # Round and handle negative values dupes = np.where(np.round(dupes_calc, 0) <= 0, 0, np.round(dupes_calc, 0) - 1) # Calculate own_ratio vectorized max_own_mask = np.any(ownership_array == max_ownership, axis=1) own_ratio = np.where(max_own_mask, own_sum / own_average, (own_sum - max_ownership) / own_average) # Calculate Finish_percentile vectorized percentile_cut_scalar = portfolio_values[:, portfolio.columns.get_loc('median')].max() if type_var == 'Classic': own_ratio_nerf = 2 if sport_var == 'CS2' or sport_var == 'LOL' else 1.5 elif type_var == 'Showdown': own_ratio_nerf = 1.5 median_col = portfolio.columns.get_loc('median') finish_percentile = (own_ratio - own_ratio_nerf) / ((5 * (portfolio_values[:, median_col] / percentile_cut_scalar)) / 3) finish_percentile = np.where(finish_percentile < 0.0005, 0.0005, finish_percentile / 2) # Calculate other metrics vectorized ref_proj = portfolio_values[:, median_col].max() max_proj = ref_proj + 10 min_proj = ref_proj - 10 avg_ref = (max_proj + min_proj) / 2 win_percent = (((portfolio_values[:, median_col] / avg_ref) - (0.1 + ((ref_proj - portfolio_values[:, median_col])/100))) / (Contest_Size / 1000)) / 10 max_allowed_win = (1 / Contest_Size) * 5 win_percent = win_percent / win_percent.max() * max_allowed_win finish_percentile = finish_percentile + 0.005 + (0.005 * (Contest_Size / 10000)) finish_percentile *= percentile_multiplier win_percent *= (1 - finish_percentile) # Calculate low ownership count vectorized low_own_count = np.sum(ownership_array < 0.10, axis=1) finish_percentile = np.where(low_own_count <= 0, finish_percentile, finish_percentile / low_own_count) # Calculate Lineup Edge vectorized lineup_edge = win_percent * ((0.5 - finish_percentile) * (Contest_Size / 2.5)) lineup_edge = np.where(dupes > 0, lineup_edge / (dupes + 1), lineup_edge) lineup_edge = lineup_edge - lineup_edge.mean() # Calculate Weighted Own vectorized weighted_own = calculate_weighted_ownership_vectorized(ownership_array) # Calculate Geomean vectorized geomean = np.power(np.prod(ownership_array * 100, axis=1), 1 / num_players) # Calculate Diversity vectorized diversity = calculate_player_similarity_score_vectorized(portfolio, player_cols) # Create result DataFrame with optimized data types result_data = { 'Dupes': dupes.astype('uint16'), 'median': portfolio_values[:, portfolio.columns.get_loc('median')].astype('float32'), 'Own': portfolio_values[:, portfolio.columns.get_loc('Own')].astype('float32'), 'salary': portfolio_values[:, portfolio.columns.get_loc('salary')].astype('uint16'), 'Finish_percentile': finish_percentile.astype('float32'), 'Win%': win_percent.astype('float32'), 'Lineup Edge': lineup_edge.astype('float32'), 'Weighted Own': weighted_own.astype('float32'), 'Geomean': geomean.astype('float32'), 'Diversity': diversity.astype('float32') } # Add Size column if it exists if 'Size' in portfolio.columns: result_data['Size'] = portfolio_values[:, portfolio.columns.get_loc('Size')].astype('uint16') # Add player columns back for i, col_name in enumerate(portfolio.columns[:num_players]): result_data[col_name] = portfolio_values[:, i] return pd.DataFrame(result_data) # Keep the original function for backward compatibility def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, strength_var, sport_var): if strength_var == 'Weak': dupes_multiplier = .75 percentile_multiplier = .90 elif strength_var == 'Average': dupes_multiplier = 1.00 percentile_multiplier = 1.00 elif strength_var == 'Sharp': dupes_multiplier = 1.25 percentile_multiplier = 1.10 max_ownership = max(maps_dict['own_map'].values()) / 100 average_ownership = np.mean(list(maps_dict['own_map'].values())) / 100 if site_var == 'Fanduel': if type_var == 'Showdown': dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank'] own_columns = ['CPT_Own', 'FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own'] calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'own_ratio', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio'] # Get the original player columns (first 5 columns excluding salary, median, Own) player_columns = [col for col in portfolio.columns[:5] if col not in ['salary', 'median', 'Own']] flex_ownerships = pd.concat([ portfolio.iloc[:,1].map(maps_dict['own_map']), portfolio.iloc[:,2].map(maps_dict['own_map']), portfolio.iloc[:,3].map(maps_dict['own_map']), portfolio.iloc[:,4].map(maps_dict['own_map']) ]) flex_rank = flex_ownerships.rank(pct=True) # Assign ranks back to individual columns using the same rank scale portfolio['CPT_Own_percent_rank'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).rank(pct=True) portfolio['FLEX1_Own_percent_rank'] = portfolio.iloc[:,1].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0]) portfolio['FLEX2_Own_percent_rank'] = portfolio.iloc[:,2].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0]) portfolio['FLEX3_Own_percent_rank'] = portfolio.iloc[:,3].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0]) portfolio['FLEX4_Own_percent_rank'] = portfolio.iloc[:,4].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0]) portfolio['FLEX5_Own_percent_rank'] = portfolio.iloc[:,5].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0]) portfolio['CPT_Own'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).astype('float32') / 100 portfolio['FLEX1_Own'] = portfolio.iloc[:,1].map(maps_dict['own_map']).astype('float32') / 100 portfolio['FLEX2_Own'] = portfolio.iloc[:,2].map(maps_dict['own_map']).astype('float32') / 100 portfolio['FLEX3_Own'] = portfolio.iloc[:,3].map(maps_dict['own_map']).astype('float32') / 100 portfolio['FLEX4_Own'] = portfolio.iloc[:,4].map(maps_dict['own_map']).astype('float32') / 100 portfolio['FLEX5_Own'] = portfolio.iloc[:,5].map(maps_dict['own_map']).astype('float32') / 100 portfolio['own_product'] = (portfolio[own_columns].product(axis=1)) portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100 portfolio['own_sum'] = portfolio[own_columns].sum(axis=1) portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1) # Calculate dupes formula portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (60000 - portfolio['Own'])) / 100) - ((60000 - portfolio['salary']) / 100) portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier # Round and handle negative values portfolio['Dupes'] = np.where( np.round(portfolio['dupes_calc'], 0) <= 0, 0, np.round(portfolio['dupes_calc'], 0) - 1 ) elif type_var == 'Classic': num_players = len([col for col in portfolio.columns if col not in ['salary', 'median', 'Own']]) dup_count_columns = [f'player_{i}_percent_rank' for i in range(1, num_players + 1)] own_columns = [f'player_{i}_own' for i in range(1, num_players + 1)] calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'own_ratio', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio'] # Get the original player columns (first num_players columns excluding salary, median, Own) player_columns = [col for col in portfolio.columns[:num_players] if col not in ['salary', 'median', 'Own']] for i in range(1, num_players + 1): portfolio[f'player_{i}_percent_rank'] = portfolio.iloc[:,i-1].map(maps_dict['own_percent_rank']) portfolio[f'player_{i}_own'] = portfolio.iloc[:,i-1].map(maps_dict['own_map']).astype('float32') / 100 portfolio['own_product'] = (portfolio[own_columns].product(axis=1)) portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100 portfolio['own_sum'] = portfolio[own_columns].sum(axis=1) portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1) portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (60000 - portfolio['Own'])) / 100) - ((60000 - portfolio['salary']) / 100) portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier # Round and handle negative values portfolio['Dupes'] = np.where( np.round(portfolio['dupes_calc'], 0) <= 0, 0, np.round(portfolio['dupes_calc'], 0) - 1 ) elif site_var == 'Draftkings': if type_var == 'Showdown': if sport_var == 'GOLF': dup_count_columns = ['FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank', 'FLEX5_Own_percent_rank', 'FLEX6_Own_percent_rank'] own_columns = ['FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own', 'FLEX5_Own', 'FLEX6_Own'] else: dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank', 'FLEX5_Own_percent_rank'] own_columns = ['CPT_Own', 'FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own', 'FLEX5_Own'] calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio'] # Get the original player columns (first 6 columns excluding salary, median, Own) player_columns = [col for col in portfolio.columns[:6] if col not in ['salary', 'median', 'Own']] if sport_var == 'GOLF': flex_ownerships = pd.concat([ portfolio.iloc[:,0].map(maps_dict['own_map']), portfolio.iloc[:,1].map(maps_dict['own_map']), portfolio.iloc[:,2].map(maps_dict['own_map']), portfolio.iloc[:,3].map(maps_dict['own_map']), portfolio.iloc[:,4].map(maps_dict['own_map']), portfolio.iloc[:,5].map(maps_dict['own_map']) ]) else: flex_ownerships = pd.concat([ portfolio.iloc[:,1].map(maps_dict['own_map']), portfolio.iloc[:,2].map(maps_dict['own_map']), portfolio.iloc[:,3].map(maps_dict['own_map']), portfolio.iloc[:,4].map(maps_dict['own_map']), portfolio.iloc[:,5].map(maps_dict['own_map']) ]) flex_rank = flex_ownerships.rank(pct=True) # Assign ranks back to individual columns using the same rank scale if sport_var == 'GOLF': portfolio['FLEX1_Own_percent_rank'] = portfolio.iloc[:,0].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0]) portfolio['FLEX2_Own_percent_rank'] = portfolio.iloc[:,1].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0]) portfolio['FLEX3_Own_percent_rank'] = portfolio.iloc[:,2].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0]) portfolio['FLEX4_Own_percent_rank'] = portfolio.iloc[:,3].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0]) portfolio['FLEX5_Own_percent_rank'] = portfolio.iloc[:,4].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0]) portfolio['FLEX6_Own_percent_rank'] = portfolio.iloc[:,5].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0]) portfolio['FLEX1_Own'] = portfolio.iloc[:,0].map(maps_dict['own_map']).astype('float32') / 100 portfolio['FLEX2_Own'] = portfolio.iloc[:,1].map(maps_dict['own_map']).astype('float32') / 100 portfolio['FLEX3_Own'] = portfolio.iloc[:,2].map(maps_dict['own_map']).astype('float32') / 100 portfolio['FLEX4_Own'] = portfolio.iloc[:,3].map(maps_dict['own_map']).astype('float32') / 100 portfolio['FLEX5_Own'] = portfolio.iloc[:,4].map(maps_dict['own_map']).astype('float32') / 100 portfolio['FLEX6_Own'] = portfolio.iloc[:,5].map(maps_dict['own_map']).astype('float32') / 100 else: portfolio['CPT_Own_percent_rank'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).rank(pct=True) portfolio['FLEX1_Own_percent_rank'] = portfolio.iloc[:,1].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0]) portfolio['FLEX2_Own_percent_rank'] = portfolio.iloc[:,2].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0]) portfolio['FLEX3_Own_percent_rank'] = portfolio.iloc[:,3].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0]) portfolio['FLEX4_Own_percent_rank'] = portfolio.iloc[:,4].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0]) portfolio['FLEX5_Own_percent_rank'] = portfolio.iloc[:,5].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0]) portfolio['CPT_Own'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).astype('float32') / 100 portfolio['FLEX1_Own'] = portfolio.iloc[:,1].map(maps_dict['own_map']).astype('float32') / 100 portfolio['FLEX2_Own'] = portfolio.iloc[:,2].map(maps_dict['own_map']).astype('float32') / 100 portfolio['FLEX3_Own'] = portfolio.iloc[:,3].map(maps_dict['own_map']).astype('float32') / 100 portfolio['FLEX4_Own'] = portfolio.iloc[:,4].map(maps_dict['own_map']).astype('float32') / 100 portfolio['FLEX5_Own'] = portfolio.iloc[:,5].map(maps_dict['own_map']).astype('float32') / 100 portfolio['own_product'] = (portfolio[own_columns].product(axis=1)) portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100 portfolio['own_sum'] = portfolio[own_columns].sum(axis=1) portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1) # Calculate dupes formula portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (50000 - portfolio['Own'])) / 100) - ((50000 - portfolio['salary']) / 100) portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier # Round and handle negative values portfolio['Dupes'] = np.where( np.round(portfolio['dupes_calc'], 0) <= 0, 0, np.round(portfolio['dupes_calc'], 0) - 1 ) elif type_var == 'Classic': if sport_var == 'CS2': dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank', 'FLEX5_Own_percent_rank'] own_columns = ['CPT_Own', 'FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own', 'FLEX5_Own'] calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio'] # Get the original player columns (first 6 columns excluding salary, median, Own) player_columns = [col for col in portfolio.columns[:6] if col not in ['salary', 'median', 'Own']] flex_ownerships = pd.concat([ portfolio.iloc[:,1].map(maps_dict['own_map']), portfolio.iloc[:,2].map(maps_dict['own_map']), portfolio.iloc[:,3].map(maps_dict['own_map']), portfolio.iloc[:,4].map(maps_dict['own_map']), portfolio.iloc[:,5].map(maps_dict['own_map']) ]) flex_rank = flex_ownerships.rank(pct=True) # Assign ranks back to individual columns using the same rank scale portfolio['CPT_Own_percent_rank'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).rank(pct=True) portfolio['FLEX1_Own_percent_rank'] = portfolio.iloc[:,1].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0]) portfolio['FLEX2_Own_percent_rank'] = portfolio.iloc[:,2].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0]) portfolio['FLEX3_Own_percent_rank'] = portfolio.iloc[:,3].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0]) portfolio['FLEX4_Own_percent_rank'] = portfolio.iloc[:,4].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0]) portfolio['FLEX5_Own_percent_rank'] = portfolio.iloc[:,5].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0]) portfolio['CPT_Own'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).astype('float32') / 100 portfolio['FLEX1_Own'] = portfolio.iloc[:,1].map(maps_dict['own_map']).astype('float32') / 100 portfolio['FLEX2_Own'] = portfolio.iloc[:,2].map(maps_dict['own_map']).astype('float32') / 100 portfolio['FLEX3_Own'] = portfolio.iloc[:,3].map(maps_dict['own_map']).astype('float32') / 100 portfolio['FLEX4_Own'] = portfolio.iloc[:,4].map(maps_dict['own_map']).astype('float32') / 100 portfolio['FLEX5_Own'] = portfolio.iloc[:,5].map(maps_dict['own_map']).astype('float32') / 100 portfolio['own_product'] = (portfolio[own_columns].product(axis=1)) portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100 portfolio['own_sum'] = portfolio[own_columns].sum(axis=1) portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1) # Calculate dupes formula portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (50000 - portfolio['Own'])) / 100) - ((50000 - portfolio['salary']) / 100) portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier # Round and handle negative values portfolio['Dupes'] = np.where( np.round(portfolio['dupes_calc'], 0) <= 0, 0, np.round(portfolio['dupes_calc'], 0) - 1 ) if sport_var == 'LOL': dup_count_columns = ['CPT_Own_percent_rank', 'TOP_Own_percent_rank', 'JNG_Own_percent_rank', 'MID_Own_percent_rank', 'ADC_Own_percent_rank', 'SUP_Own_percent_rank', 'Team_Own_percent_rank'] own_columns = ['CPT_Own', 'TOP_Own', 'JNG_Own', 'MID_Own', 'ADC_Own', 'SUP_Own', 'Team_Own'] calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio'] # Get the original player columns (first 6 columns excluding salary, median, Own) player_columns = [col for col in portfolio.columns[:7] if col not in ['salary', 'median', 'Own']] flex_ownerships = pd.concat([ portfolio.iloc[:,1].map(maps_dict['own_map']), portfolio.iloc[:,2].map(maps_dict['own_map']), portfolio.iloc[:,3].map(maps_dict['own_map']), portfolio.iloc[:,4].map(maps_dict['own_map']), portfolio.iloc[:,5].map(maps_dict['own_map']), portfolio.iloc[:,6].map(maps_dict['own_map']) ]) flex_rank = flex_ownerships.rank(pct=True) # Assign ranks back to individual columns using the same rank scale portfolio['CPT_Own_percent_rank'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).rank(pct=True) portfolio['TOP_Own_percent_rank'] = portfolio.iloc[:,1].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0]) portfolio['JNG_Own_percent_rank'] = portfolio.iloc[:,2].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0]) portfolio['MID_Own_percent_rank'] = portfolio.iloc[:,3].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0]) portfolio['ADC_Own_percent_rank'] = portfolio.iloc[:,4].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0]) portfolio['SUP_Own_percent_rank'] = portfolio.iloc[:,5].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0]) portfolio['Team_Own_percent_rank'] = portfolio.iloc[:,6].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0]) portfolio['CPT_Own'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).astype('float32') / 100 portfolio['TOP_Own'] = portfolio.iloc[:,1].map(maps_dict['own_map']).astype('float32') / 100 portfolio['JNG_Own'] = portfolio.iloc[:,2].map(maps_dict['own_map']).astype('float32') / 100 portfolio['MID_Own'] = portfolio.iloc[:,3].map(maps_dict['own_map']).astype('float32') / 100 portfolio['ADC_Own'] = portfolio.iloc[:,4].map(maps_dict['own_map']).astype('float32') / 100 portfolio['SUP_Own'] = portfolio.iloc[:,5].map(maps_dict['own_map']).astype('float32') / 100 portfolio['Team_Own'] = portfolio.iloc[:,6].map(maps_dict['own_map']).astype('float32') / 100 portfolio['own_product'] = (portfolio[own_columns].product(axis=1)) portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100 portfolio['own_sum'] = portfolio[own_columns].sum(axis=1) portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1) print(portfolio[['Own', 'own_product', 'own_average', 'own_sum', 'avg_own_rank']].head(10)) # Calculate dupes formula portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (50000 - portfolio['Own'])) / 100) - ((50000 - portfolio['salary']) / 100) portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier # Round and handle negative values portfolio['Dupes'] = np.where( np.round(portfolio['dupes_calc'], 0) <= 0, 0, np.round(portfolio['dupes_calc'], 0) - 1 ) elif sport_var != 'CS2' and sport_var != 'LOL': num_players = len([col for col in portfolio.columns if col not in ['salary', 'median', 'Own']]) dup_count_columns = [f'player_{i}_percent_rank' for i in range(1, num_players + 1)] own_columns = [f'player_{i}_own' for i in range(1, num_players + 1)] calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio'] # Get the original player columns (first num_players columns excluding salary, median, Own) player_columns = [col for col in portfolio.columns[:num_players] if col not in ['salary', 'median', 'Own']] for i in range(1, num_players + 1): portfolio[f'player_{i}_percent_rank'] = portfolio.iloc[:,i-1].map(maps_dict['own_percent_rank']) portfolio[f'player_{i}_own'] = portfolio.iloc[:,i-1].map(maps_dict['own_map']).astype('float32') / 100 portfolio['own_product'] = (portfolio[own_columns].product(axis=1)) portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100 portfolio['own_sum'] = portfolio[own_columns].sum(axis=1) portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1) portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (50000 - portfolio['Own'])) / 100) - ((50000 - portfolio['salary']) / 100) portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier # Round and handle negative values portfolio['Dupes'] = np.where( np.round(portfolio['dupes_calc'], 0) <= 0, 0, np.round(portfolio['dupes_calc'], 0) - 1 ) portfolio['Dupes'] = np.round(portfolio['Dupes'], 0) portfolio['own_ratio'] = np.where( portfolio[own_columns].isin([max_ownership]).any(axis=1), portfolio['own_sum'] / portfolio['own_average'], (portfolio['own_sum'] - max_ownership) / portfolio['own_average'] ) percentile_cut_scalar = portfolio['median'].max() # Get scalar value if type_var == 'Classic': if sport_var == 'CS2': own_ratio_nerf = 2 elif sport_var == 'LOL': own_ratio_nerf = 2 else: own_ratio_nerf = 1.5 elif type_var == 'Showdown': own_ratio_nerf = 1.5 portfolio['Finish_percentile'] = portfolio.apply( lambda row: .0005 if (row['own_ratio'] - own_ratio_nerf) / ((5 * (row['median'] / percentile_cut_scalar)) / 3) < .0005 else ((row['own_ratio'] - own_ratio_nerf) / ((5 * (row['median'] / percentile_cut_scalar)) / 3)) / 2, axis=1 ) portfolio['Ref_Proj'] = portfolio['median'].max() portfolio['Max_Proj'] = portfolio['Ref_Proj'] + 10 portfolio['Min_Proj'] = portfolio['Ref_Proj'] - 10 portfolio['Avg_Ref'] = (portfolio['Max_Proj'] + portfolio['Min_Proj']) / 2 portfolio['Win%'] = (((portfolio['median'] / portfolio['Avg_Ref']) - (0.1 + ((portfolio['Ref_Proj'] - portfolio['median'])/100))) / (Contest_Size / 1000)) / 10 max_allowed_win = (1 / Contest_Size) * 5 portfolio['Win%'] = portfolio['Win%'] / portfolio['Win%'].max() * max_allowed_win portfolio['Finish_percentile'] = portfolio['Finish_percentile'] + .005 + (.005 * (Contest_Size / 10000)) portfolio['Finish_percentile'] = portfolio['Finish_percentile'] * percentile_multiplier portfolio['Win%'] = portfolio['Win%'] * (1 - portfolio['Finish_percentile']) portfolio['Win%'] = portfolio['Win%'].clip(lower=0, upper=max_allowed_win) portfolio['low_own_count'] = portfolio[own_columns].apply(lambda row: (row < 0.10).sum(), axis=1) portfolio['Finish_percentile'] = portfolio.apply(lambda row: row['Finish_percentile'] if row['low_own_count'] <= 0 else row['Finish_percentile'] / row['low_own_count'], axis=1) portfolio['Lineup Edge'] = portfolio['Win%'] * ((.5 - portfolio['Finish_percentile']) * (Contest_Size / 2.5)) portfolio['Lineup Edge'] = portfolio.apply(lambda row: row['Lineup Edge'] / (row['Dupes'] + 1) if row['Dupes'] > 0 else row['Lineup Edge'], axis=1) portfolio['Lineup Edge'] = portfolio['Lineup Edge'] - portfolio['Lineup Edge'].mean() portfolio['Weighted Own'] = portfolio[own_columns].apply(calculate_weighted_ownership_wrapper, axis=1) portfolio['Geomean'] = np.power((portfolio[own_columns] * 100).product(axis=1), 1 / len(own_columns)) # Calculate similarity score based on actual player selection portfolio['Diversity'] = calculate_player_similarity_score_vectorized(portfolio, player_columns) portfolio = portfolio.drop(columns=dup_count_columns) portfolio = portfolio.drop(columns=own_columns) portfolio = portfolio.drop(columns=calc_columns) int16_columns_stacks = ['Dupes', 'Size', 'salary'] int16_columns_nstacks = ['Dupes', 'salary'] float32_columns = ['median', 'Own', 'Finish_percentile', 'Win%', 'Lineup Edge', 'Weighted Own', 'Geomean', 'Diversity'] print(portfolio.columns) print(portfolio.head(10)) try: portfolio[int16_columns_stacks] = portfolio[int16_columns_stacks].astype('uint16') except: pass try: portfolio[int16_columns_nstacks] = portfolio[int16_columns_nstacks].astype('uint16') except: pass if sport_var != 'LOL': try: portfolio[float32_columns] = portfolio[float32_columns].astype('float32') except: pass return portfolio