Spaces:
Sleeping
Sleeping
James McCool
commited on
Commit
·
d38df13
1
Parent(s):
1b1db4f
Refactor large_field_preset function to streamline the portfolio selection process by removing unnecessary iterations and simplifying the logic for team-based filtering, enhancing efficiency and lineup accuracy.
Browse files
global_func/large_field_preset.py
CHANGED
|
@@ -4,67 +4,24 @@ def large_field_preset(portfolio: pd.DataFrame, lineup_target: int, exclude_cols
|
|
| 4 |
|
| 5 |
for slack_var in range(1, 20):
|
| 6 |
concat_portfolio = pd.DataFrame(columns=portfolio.columns)
|
| 7 |
-
|
| 8 |
-
player_columns = [col for col in concat_portfolio.columns if col not in concat_portfolio]
|
| 9 |
-
|
| 10 |
-
remove_list = []
|
| 11 |
-
|
| 12 |
-
max_iterations = 5
|
| 13 |
-
for each_iteration in range(max_iterations):
|
| 14 |
-
player_stats = []
|
| 15 |
-
concat_portfolio = pd.DataFrame(columns=portfolio.columns)
|
| 16 |
-
|
| 17 |
-
for team in portfolio['Stack'].unique():
|
| 18 |
-
rows_to_drop = []
|
| 19 |
-
working_portfolio = portfolio.copy()
|
| 20 |
-
if remove_list:
|
| 21 |
-
if len(remove_list) > 0:
|
| 22 |
-
remove_mask = working_portfolio[player_columns].apply(
|
| 23 |
-
lambda row: not any(player in list(row) for player in remove_list), axis=1
|
| 24 |
-
)
|
| 25 |
-
working_portfolio = working_portfolio[remove_mask]
|
| 26 |
-
|
| 27 |
-
working_portfolio = working_portfolio[working_portfolio['Stack'] == team].sort_values(by='Finish_percentile', ascending = True)
|
| 28 |
-
working_portfolio = working_portfolio.reset_index(drop=True)
|
| 29 |
-
|
| 30 |
-
if len(working_portfolio) == 0:
|
| 31 |
-
continue
|
| 32 |
-
|
| 33 |
-
curr_own_type_max = working_portfolio.loc[0, 'Own'] + (slack_var / 20 * working_portfolio.loc[0, 'Own'])
|
| 34 |
-
|
| 35 |
-
for i in range(1, len(working_portfolio)):
|
| 36 |
-
if working_portfolio.loc[i, 'Own'] > curr_own_type_max:
|
| 37 |
-
rows_to_drop.append(i)
|
| 38 |
-
else:
|
| 39 |
-
curr_own_type_max = working_portfolio.loc[i, 'Own'] + (slack_var / 20 * working_portfolio.loc[i, 'Own'])
|
| 40 |
-
|
| 41 |
-
working_portfolio = working_portfolio.drop(rows_to_drop).reset_index(drop=True)
|
| 42 |
-
|
| 43 |
-
concat_portfolio = pd.concat([concat_portfolio, working_portfolio])
|
| 44 |
-
|
| 45 |
-
player_names = set()
|
| 46 |
-
for col in concat_portfolio.columns:
|
| 47 |
-
if col not in exclude_cols:
|
| 48 |
-
player_names.update(concat_portfolio[col].unique())
|
| 49 |
-
for player in player_names:
|
| 50 |
-
player_mask = concat_portfolio[player_columns].apply(
|
| 51 |
-
lambda row: player in list(row), axis=1
|
| 52 |
-
)
|
| 53 |
-
|
| 54 |
-
if player_mask.any():
|
| 55 |
-
player_stats.append({
|
| 56 |
-
'Player': player,
|
| 57 |
-
'Lineup Count': player_mask.sum(),
|
| 58 |
-
'Exposure': player_mask.sum() / len(concat_portfolio),
|
| 59 |
-
})
|
| 60 |
-
player_exposure = pd.DataFrame(player_stats)
|
| 61 |
-
player_exposure = player_exposure[player_exposure['Exposure'] > .50]
|
| 62 |
-
remove_list = player_exposure['Player'].tolist()
|
| 63 |
-
|
| 64 |
-
if len(remove_list) == 0:
|
| 65 |
-
break
|
| 66 |
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
return concat_portfolio.sort_values(by='Finish_percentile', ascending=True).head(lineup_target)
|
| 69 |
|
| 70 |
return concat_portfolio.sort_values(by='Finish_percentile', ascending=True)
|
|
|
|
| 4 |
|
| 5 |
for slack_var in range(1, 20):
|
| 6 |
concat_portfolio = pd.DataFrame(columns=portfolio.columns)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
for team in portfolio['Stack'].unique():
|
| 9 |
+
rows_to_drop = []
|
| 10 |
+
working_portfolio = portfolio.copy()
|
| 11 |
+
working_portfolio = working_portfolio[working_portfolio['Stack'] == team].sort_values(by='Finish_percentile', ascending = True)
|
| 12 |
+
working_portfolio = working_portfolio.reset_index(drop=True)
|
| 13 |
+
curr_own_type_max = working_portfolio.loc[0, 'Own'] + (slack_var / 20 * working_portfolio.loc[0, 'Own'])
|
| 14 |
+
|
| 15 |
+
for i in range(1, len(working_portfolio)):
|
| 16 |
+
if working_portfolio.loc[i, 'Own'] > curr_own_type_max:
|
| 17 |
+
rows_to_drop.append(i)
|
| 18 |
+
else:
|
| 19 |
+
curr_own_type_max = working_portfolio.loc[i, 'Own'] + (slack_var / 20 * working_portfolio.loc[i, 'Own'])
|
| 20 |
+
|
| 21 |
+
working_portfolio = working_portfolio.drop(rows_to_drop).reset_index(drop=True)
|
| 22 |
+
concat_portfolio = pd.concat([concat_portfolio, working_portfolio])
|
| 23 |
+
|
| 24 |
+
if len(concat_portfolio) >= lineup_target:
|
| 25 |
return concat_portfolio.sort_values(by='Finish_percentile', ascending=True).head(lineup_target)
|
| 26 |
|
| 27 |
return concat_portfolio.sort_values(by='Finish_percentile', ascending=True)
|