James McCool
commited on
Commit
·
a138121
1
Parent(s):
3770981
Refactor Lineup Edge calculation in predict_dupes.py to utilize the raw edge value for duplicate adjustment. This change clarifies the computation and maintains the integrity of the prediction model.
Browse files
global_func/predict_dupes.py
CHANGED
|
@@ -420,7 +420,7 @@ def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, streng
|
|
| 420 |
portfolio['low_own_count'] = portfolio[own_columns].apply(lambda row: (row < 0.10).sum(), axis=1)
|
| 421 |
portfolio['Finish_percentile'] = portfolio.apply(lambda row: row['Finish_percentile'] if row['low_own_count'] <= 0 else row['Finish_percentile'] / row['low_own_count'], axis=1)
|
| 422 |
portfolio['Lineup Edge_Raw'] = portfolio['Win%'] * ((.5 - portfolio['Finish_percentile']) * (Contest_Size / 2.5))
|
| 423 |
-
portfolio['Lineup Edge'] = portfolio.apply(lambda row: row['Lineup
|
| 424 |
portfolio['Lineup Edge'] = (portfolio['Lineup Edge'] - portfolio['Lineup Edge'].mean())
|
| 425 |
portfolio['Weighted Own'] = portfolio[own_columns].apply(calculate_weighted_ownership_wrapper, axis=1)
|
| 426 |
portfolio['Geomean'] = np.power((portfolio[own_columns] * 100).product(axis=1), 1 / len(own_columns))
|
|
|
|
| 420 |
portfolio['low_own_count'] = portfolio[own_columns].apply(lambda row: (row < 0.10).sum(), axis=1)
|
| 421 |
portfolio['Finish_percentile'] = portfolio.apply(lambda row: row['Finish_percentile'] if row['low_own_count'] <= 0 else row['Finish_percentile'] / row['low_own_count'], axis=1)
|
| 422 |
portfolio['Lineup Edge_Raw'] = portfolio['Win%'] * ((.5 - portfolio['Finish_percentile']) * (Contest_Size / 2.5))
|
| 423 |
+
portfolio['Lineup Edge'] = portfolio.apply(lambda row: row['Lineup Edge_Raw'] / (row['Dupes'] + 1) if row['Dupes'] > 0 else row['Lineup Edge_Raw'], axis=1)
|
| 424 |
portfolio['Lineup Edge'] = (portfolio['Lineup Edge'] - portfolio['Lineup Edge'].mean())
|
| 425 |
portfolio['Weighted Own'] = portfolio[own_columns].apply(calculate_weighted_ownership_wrapper, axis=1)
|
| 426 |
portfolio['Geomean'] = np.power((portfolio[own_columns] * 100).product(axis=1), 1 / len(own_columns))
|