James McCool commited on
Commit
9051c91
·
1 Parent(s): 61dd8c5

Update ownership average calculation in predict_dupes function to reflect a new ratio of 0.66, improving accuracy in ownership metrics for both portfolio and team ownership assessments.

Browse files
Files changed (1) hide show
  1. global_func/predict_dupes.py +2 -2
global_func/predict_dupes.py CHANGED
@@ -471,7 +471,7 @@ def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, streng
471
  portfolio['FLEX5_Own'] = portfolio.iloc[:,5].map(maps_dict['own_map']).astype('float32') / 100
472
 
473
  portfolio['own_product'] = (portfolio[own_columns].product(axis=1))
474
- portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
475
  portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
476
  portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
477
 
@@ -520,7 +520,7 @@ def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, streng
520
  portfolio['Team_Own'] = portfolio.iloc[:,6].map(maps_dict['own_map']).astype('float32') / 100
521
 
522
  portfolio['own_product'] = (portfolio[own_columns].product(axis=1))
523
- portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
524
  portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
525
  portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
526
 
 
471
  portfolio['FLEX5_Own'] = portfolio.iloc[:,5].map(maps_dict['own_map']).astype('float32') / 100
472
 
473
  portfolio['own_product'] = (portfolio[own_columns].product(axis=1))
474
+ portfolio['own_average'] = (portfolio['Own'].max() * .66) / 100
475
  portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
476
  portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
477
 
 
520
  portfolio['Team_Own'] = portfolio.iloc[:,6].map(maps_dict['own_map']).astype('float32') / 100
521
 
522
  portfolio['own_product'] = (portfolio[own_columns].product(axis=1))
523
+ portfolio['own_average'] = (portfolio['Own'].max() * .66) / 100
524
  portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
525
  portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
526