James McCool
commited on
Commit
·
9051c91
1
Parent(s):
61dd8c5
Update ownership average calculation in predict_dupes function to reflect a new ratio of 0.66, improving accuracy in ownership metrics for both portfolio and team ownership assessments.
Browse files
global_func/predict_dupes.py
CHANGED
@@ -471,7 +471,7 @@ def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, streng
|
|
471 |
portfolio['FLEX5_Own'] = portfolio.iloc[:,5].map(maps_dict['own_map']).astype('float32') / 100
|
472 |
|
473 |
portfolio['own_product'] = (portfolio[own_columns].product(axis=1))
|
474 |
-
portfolio['own_average'] = (portfolio['Own'].max() * .
|
475 |
portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
|
476 |
portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
|
477 |
|
@@ -520,7 +520,7 @@ def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, streng
|
|
520 |
portfolio['Team_Own'] = portfolio.iloc[:,6].map(maps_dict['own_map']).astype('float32') / 100
|
521 |
|
522 |
portfolio['own_product'] = (portfolio[own_columns].product(axis=1))
|
523 |
-
portfolio['own_average'] = (portfolio['Own'].max() * .
|
524 |
portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
|
525 |
portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
|
526 |
|
|
|
471 |
portfolio['FLEX5_Own'] = portfolio.iloc[:,5].map(maps_dict['own_map']).astype('float32') / 100
|
472 |
|
473 |
portfolio['own_product'] = (portfolio[own_columns].product(axis=1))
|
474 |
+
portfolio['own_average'] = (portfolio['Own'].max() * .66) / 100
|
475 |
portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
|
476 |
portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
|
477 |
|
|
|
520 |
portfolio['Team_Own'] = portfolio.iloc[:,6].map(maps_dict['own_map']).astype('float32') / 100
|
521 |
|
522 |
portfolio['own_product'] = (portfolio[own_columns].product(axis=1))
|
523 |
+
portfolio['own_average'] = (portfolio['Own'].max() * .66) / 100
|
524 |
portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
|
525 |
portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
|
526 |
|